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PREFACE

Individuals interested in developing, using, and selling massively parallel

computers converged on George Mason University in Fairfax, Virginia, on

October 10 for Frontiers '88: The Second Symposium on the Frontiers of

Massively Parallel Computation. Four-hundred-forty-five registrants (in-

cluding five from foreign countries) attended the 3-day conference. Seven-

ty-six universities, 81 corporations, and 37 Government organizations were

represented.

There were 52 oral presentations and more than 60 poster presentations.

There were also exhibits, a tutorial (attended by 129 registrants), and a

panel discussion. The wide attendance and scope of the papers indicates

that the field of massively parallel computing is attaining ever greater im-

portance.

The sponsors and grantors look forward to continuing this series of sympo-

sia every other year at university sites in the greater Washington, DC,

area. We hope these Proceedings give you some feel of the excitement that

Frontiers '88 generated.

James R. Fischer

NASA/Goddard Space Flight Center
Conference Chairman

David H. Schaefer

George Mason University

Program Chairman



A note about the exhibits:

Nine organizations mounted exhibits at the symposium. Four of these

exhibits featured operational massively parallel systems:

Active Memory Technology had both their 1024 processor

DAP 510 and their 4096 processor DAP 610 performing

demonstrations.

George Mason University demonstrated the student-built

GAM 2 pyramid structure, containing 1365 processing ele-

ments on six levels, in their Advanced Computer Architec-

ture Laboratory.

Martin Marietta Aerospace had a 40,000 processor Geo-

metric Arithmetic Parallel Processor (GAPP) system in op-

eration.

Thinking Machines Corporation had a 32,768 processor

Connection Machine-2 running and demonstratinz a va-

riety of applications.

Other exhibitors were the Space Data and Computing Division at NASA/

Goddard Space Flight Center with an exhibit of Massively Parallel Pro-

cessor (MPP) applications, LORAL Defense Systems-Akron with an ex-

hibit on the MPP and the Associative Parallel Processor (ASPRO)

computer, and the Cornell Theory Center with an exhibit of their Trolli-

us Operating System. Two publisher exhibitors were John Wiley & Sons,

Ltd., who advertised their new journal Concurrency: Practice and Experi-

ence, and the publishers of Supercomputing Review.
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FOREWORD

This section was transcribed from welcoming remarks presented at the symposium.

Dr. George W. Johnson,
President of George Mason University

George Mason University, in order to move quickly, has had to make certain bets.
Two of those bets are represented by this conference. One bet was that we had
always to anticipate what the cutting edge of developments in the fields that we
chose to embark on would be. We decided that we would have to build a new

engineering school, but that it would not be one built on the base of the physical
sciences, but on the base of the information sciences. That was the first bet that we
made.

The 2nd bet was that as a new university, we could not afford to be aloof and remote
from our community, that we had to be what we call "interactive." We had to

break down the walls between town and gown, the walls between marketplace and
academy, and we have embarked aggressively on doing exactly that. You can see

that the two come together in our School of Information Technology and
Engineering, where the demarcation between business, government, and academy
really is successfully blurred. And so this conference coming here at this
particular time is really a signal event for George Mason University, and for that
reason, among many others, you're very very welcome to the institution, and I'm
glad to see you here. Thank you.

Dr. Lee Holcomb

Director, Information Sciences and Human Factors Division
NASA Headquarters

On behalf of NASA, I would like to welcome you all to this symposium--The 2nd
Symposium on the Frontiers of Massively Parallel Computation. The NASA Office
of Aeronautics and Space Technology has had a long history in parallel processing
technology. Beginning in the early 1970's with the evaluation of the ILLIAC IV,
we gained valuable knowledge on how to apply parallel processing power to
aerospace computational requirements. In the late 1970's NASA was at the

forefront of this important computing technology by funding the development of the
world's first massively parallel processor, the MPP, which was originally intended
for image processing applications. The MPP was designed, fabricated, and
delivered to NASA in 1983, and an Applications Working Group was formed to
encourage researchers from widely varied disciplines to conduct research on the
MPP. That early investment is now bearing fruit, and is certainly evident, in part,
by this symposium.

In the 1982 and 1983 time frame, the White House Office of Science and Technology
Policy (OSTP) Federal Coordinating Committee on Science Engineering and
Technology (FCCSET) established a subcommittee on supercomputing to
coordinate the activities of the various federal government agencies. The early
FCCSET committee focused on the concept of the federal government as a friendly
buyer of supercomputers and on the concept of providing researchers access to

supercomputers. Some of the programs that came out of this early activity were
the Numerical Aerodynamic Simulation program at NASA/Ames, the NSF

supercomputer centers that have been established throughout this country, and
the Supercomputing Research Center in Maryland.

vii



More recently, the FCCSETcommittee has focusedon the governmentbeing more
than a friendly buyer. A recent OSTPreport titled "A Researchand Development
Strategy for High PerformanceComputing," which was issued in November1987,
calls for government sponsorship of research in high performance computers,
software technology and algorithms, networking, and basic research, and
resources. Each government agencythat is participating in FCCSET is preparing
a response to this report. NASA has developeda high-performance computing
initiative which includes 3 parallel computing testbeds, one for computational
aerosciences,one for Earth & spacesciences,and one for spaceborneapplications.
We intend to support algorithm and architecture research and advances in
software for massively parallel systems,both operating systems and languages.

To date, this initiative has been worked primarily within the government through

planning activities of the FCCSET committee. NASA now wants to solicit stronger
involvement from industry and universities in this program. Dr. Paul Smith of
my staff, who is here today, will be formulating an approach for forming a
government, industry, and university planning team to advance this country's
massively parallel computational capability. Dr. Smith will be present throughout
this conference, and we solicit your views on how best to form this partnership. At

the hearings on the National Supercomputer Network in September 1988, Senator
Albert Gore, challenged the government to strengthen its ties with academia and
industry. This conference provides one forum to begin forming a partnership of
federal, academic and industrial researchers in this important frontier. I'm
happy to welcome you to this symposium and hope that you will find it stimulating

and productive.

viii
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ORIGINAL PAG_E IS

OF POOR QUALITY

/
/

THE PANEL DISCUSSION

OILWId_mosday afternoon, October 12, a panel convened to discuss the following topics:

• What is the future of MIMD in massively parallel systems?

• Will massively parallel computingenvironments ever be comparable to those of

vector processors?

• Can progress in the use of massively parallel computing take place in a world

dominated by dusty FORTRAN decks?

David Schaefer of George Mason University led the discussion. The panel
m_mlm_ were:

Dr. Milton Haleru - Goddard Space Flight Center

Professor Kai Hwang - University of Southern California

Professor Dennis Parkinson - Active Memory Technology and

Queen Mary College

Pr_essor John Reif- Duke University

Professor Anthony Reeves - Cornell University

Dr. Paul Schneck - Supercomputing Research Center

Dr. Guy Steele - Thinking Machines Corporation

Professor Leonard Uhr - University of Wisconsin.

The following is an edited version of this session. It was prepared by David Schaefer

from a tape recording of the discussion. He gratefully acknowledges help from Jim

of Goddard, from notes taken during the session by David Middleton ofICASE,

and from the panel members, all of whom reviewed the first draft and made sugges-
tion.

The w_sion started with the reading of a communication.

David Schaefer

Machines Corporation has given me a memo concerning their feelings about

SIMD and MIMD. The memo, a little edited, is as follows:

People have an emotional attachment to MIMD. They keep wanting it to

be the answer, but they keep seeing SIMD come up as the answer.

Appeal of MIMD: You only understand in terms of what you understand,

and people know single processors.
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Achievements ofSIMD:

• high processorcount

• applicationsfit(God isSIMD)

• very basic circuitry

• priceperformance ratioisgood

The ultimate issue: Software is too expensive to be run on just one

processor. You need to write as littlecode as possibleand run each

program on as many processorsas possible. "Wf

MIMD: _Ifyouare willingtoacceptalotofcomplexity,you can do amazing

things."

SIMD: _Ifyouare willingtoaccepta lotofsimplicity,you can do amazing

things."

That isthe end ofthe Thinking Machines communique. Milt,do you want totake the

balland giveyour answer tothe question,_What isthe futureofMIMD inmassively

parallelsystems?"

Milt Halem

With the proliferationand increase in power ofour workstations and our growing

powerful PC's,the impetus on industry willbe totiethatcapabilitytogether todevelop

a more powerful resource.ItisfairlyobviousthatthereisaplaceforMIMD inmassively

parallelsystems and there isa place forSIMD in massively parallelsystems. Ithink

we willsee them both continue toevolveand merge in the next dozen years.

Schaefer

Do you think the panel should agree on what we mean by _massively parallel?"

Kai Hwang

The definition of massive parallelism is a time functionmit varies. If you said a
thousand now, five years from now you would be embarrassed to say a thousand.

What Ifeelabout massive parallelisminMIMD systems relatestocomputations inthe

neural computing area. Ifeelthat iswhere massively parallelMIMD operations are

needed. Neurons are not synchronized inthe biologicalcase.To model a largeneural

mass, we need a simulation which isasynchronous.

The realbottom lineconcerning MIMD massive parallelismisnot the hardware--it's

reallythe software. We don't know how to partitionprograms so that multiple

instructionstreams can handle them. So software isone ofthe major research areas

where we should push in order tosee reallylargescaleMIMD machines.
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I feel there are real massively parallel MIMD candidates (with even a million PE's) in

the neural computing area.

Dennis Parkinson

Whenever you get two groups of human beings fighting very hard about any subject

such as BASIC versus FORTRAN, you know it is really an irrelevant argument. This

is another of these irrelevant arguments which keeps academics happy most of the

time. The future is not going to be MIMD, the future is not going to be SIMD, it is going

to be some mucky mixture of the two.

When I look at the system I use, it has a component, one of its many components, which

is a SIMD processor. It also has a Sun host which has a few other independent units.

I use a collection of processors and I'm using them for their different abilities to do

different parts of my total task, and that really is what is going to happen.

I think the massively parallel components are probably going to be very much ofa SIMD

nature. But they are going to be connected into an environment which we would

consider to be MIMD in principle.

Schaefer

I have a quote here, that maybe you recognize. It says "the optimal algorithm for a

MIMD system is a SIMD algorithm, therefore there is no point in building MIMD

systems." Does that sound at all familiar?

Parkinson

I think I have heard it before. I actually used it many times, but it was, in fact, first said

to me by Enrico Clemente, who put together MIMD systems from array processors at
the IBM labs.

MIMD has an apparent advantage for the dusty LISP deck people, and that smaller

community which uses dusty FORTRAN decks. If you start from how we used to

program a serial machine, then the MIMD model is the easiest one to play with.

Naturally, most people are starting from there.

If you start from old-fashioned languages like LISP, then you really are stuck in a

computation model which wants to do one thing at a time. The easiest way to do that

is to break your problem up into a few large independent tasks.

If you want to go into thousands of processors or tens of thousands of processors or

millions of processors (I aspire, for Christmas every year, ofl 6 million, by the way), you

will find that you can optimally keep everything synchronized by using SIMD algo-

rithms. That's the best algorithm for many MIMD architectures. That's why the quote
is there.
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Tony Reeves

The thing I see with the SIMD system is that there is a remarkable number of

applications that map onto such an architecture. When you get a good mapping from

an algorithm to the architecture, then there is very little that you can do to beat that

in terms of performance. The additional cost of an MIMD system is never going to be
justified in that context.

I guess what concerns me is that class, even though an increasing class, is a restrictive

class. I have been moving some algorithms that don't fit well onto SIMD systems over
to MIMD systems. And what, do you know? They turn out to be a lot faster and a lot
more efficient.

We say SIMD is easy to program. I think software is the key. We don't really know how

to program an MIMD system and it is going to be a while, a number of years, before we

have the proper formalized techniques for doing so. We don't know how to express

problems for MIMD systems. This harks back to the type of mathematics we use. There

is a tremendous amount of work to be done in algorithms and concepts.

Consider simulation, for exmnple. I think the mathematical approach we take to it

right now is very clumsy. We specify a vast number of operations that are not necessary.

It is going to take a more flexible computing structure to take advantage of any

techniques we devise to not bother with some of the redundant calculation operations.

The answer is that there has got to be a place for both kinds of systems. MIMD
architectures are going to assume a more important role as we are able to make the

hardware cheaper as more effective software systems and environments are developed.

Schaefer

Tony, do you see a million-processor, MIMD system?

Reeves

Why not?

John Reif

I guess there are perhaps a number of answers to your question. I am a partly
theoretical computer scientist, and there are some interesting ideas on the theory side

of this issue. You've probably all heard of P versus NP. Can you take any arbitrary

sequential problem that is running on a conventional machine, and then can you take

it and put it on a parallel machine so it runs in, say, polylog time? This is a deep

theoretical issue, but the conventional wisdom from the theory community is that the
answer is "no."

PRECEDING PAGE BLANK NOT FILMED
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So what this means in practice is that there will remain out there, in spite of very

brilliant algorithm people and brilliant architectures like the Connection Machine, and

other machines like that, a vast collection of non-parallelizable applications areas.
That's the bad news.

The good news is that, as we have seen in demos here and from many of the talks, there

remains a very large class of scientific problems that we can paraUelize. The great

advantage of these specialized SIMD architectures is they are more cost effective than
a Cray.

Cray type architectures, incidentally, include SIMD attributes in their vector opera-

tions, and they have very fast MIMD capability. That is crucial if you want a general

purpose machine that can handle anything. As I mentioned, there are significant

classes of application areas which you cannot parallelize.

SIMD architecturesare not necessarilypurely SIMD any more. They once were, say

fiveyears ago,but as an example there isa MIMD indirectaddress feature which was

firstadded by the DEC people. Itwas also added in our projectwhere we have 128

processorson a chip,each having MIMD addressing.The Connection Machine now has

that capabilityas well.Probably many ofthe futureSIMD systems willinvolveMIMD

aspects.

What they probably won't have is full independent control. But they are evolving in that

direction. MIMD systems will evolve very successfully and there will eventually be a

capability of putting more than one MIMD processor on a chip, perhaps even dozens to
hundreds. There will be million-processor MIMD systems if we believe in the continual

evolution of VLSI, just as we have seen in SIMD applications.

What will not happen will be that MIMD will take over because for specialized scientific

computing problems, such as matrix problems and many fluid-flow problems and so
forth, it is more cost effective to have massively parallel SIMD. So it is really a
coexistence of two types of intellectual cultures that I think will become somewhat

fused. They will remain and have various costs and computation power tradeoffs even
through the next century.

Schaefer

As soon as you have a mask register, you don't have a completely SIMD system

anymore. Therefore, hardly any pure SIMD systems are around anyway.

Reif

Well, indirect addressingis a significant jump past conditional control at the processor
level.
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Paul Schneck

Professor Parkinson pointed out that this is a religious issue, so let me state immedi-

ately that I'm a polytheist.

Some of you will recall the IBM compatible systems. That first operating system made

a 360/75 completely compatible to a 360/30. They all ran at the same speed.

Allen Turing pointed out in a little informal proof that all computing systems, in the

sense that we know of them, are equivalent. A problem which is soluble on one is soluble

on another. The only difference is speed. Of course it is that difference which is the

essence ofwhy we are all here and why some computers are supercomputers and others

are not supercomputers.

When I look at a computer system, I don't look directly at the computer. (Remember

Dave introduced me as a compiler person.) I see it through a programming language,

actually through an algorithm and then through a programming language, then

through a compiler. There is an operating system that gets in the way before I ever get

on the machine, and there is a loader and a library. There are a lot ofintervening layers.

I would challenge almost anyone in this audience (this is an analog of the Turing test)

to figure out not whether the thing on the other end of the teletype line is a person or

a computer, but whether it's a SIMD machine, a MIMD machine, or a sequential
machine.

You've got a twisted pair going out of the room (if you want to go modern, a fiber cable)

and all that you have in front of you is a keyboard and a screen. You get to write a
program and the important point is capturing the ideas of the program. Then you leave

it to the compiler writing community to worry about the issue of parallelization.

Not that those are trivial issues, but I think all of the harder issues of SIMD and MIMD

and sequential pale by comparison. In fact, right now there are 80 to 100 university

projects building various types of parallel machines. Very few of those will see the light
of day as commercial machines. Very few of those have compilers or languages
associated with them.

It is largely a software compiler and language expressivity issue. Right now, probably

among the couple of hundred people in this room, there are a couple of hundred ideas
as to machines. I dare say there are far fewer language ideas, and that is where the real
difference will be.

Schaefer

So Paul, you do see massively parallel MIMD systems?
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Schneck

Sure I do, not to the exclusion of anything else, however.

Guy Steele

I don't believe in driving nails with a wrenchDunless that's all I've got; or in driving
carpet tacks with a sledge hammer or spikes with a tack hammer--unless thatis all rve

got. And by the way, these are not hypothetical examples. I've been in all these

situations both literally and metaphorically. So my position is that let a thousand

flowers bloom. Some of them will prove to be perennial and the rest won't.

Len Uhr

Yes, I agree. There are many intriguing possibilities to be explored. MIMD systems

certainly will develop in many fruitful directions, but probably very gradually in
relatively simple small steps.

It might make sense to look at our technology curve and pack as much into as good a

system as we can build economically. Indeed, we developed more powerful individual

processors that way, and the Cray is our standard leading example. We have much

more powerful processors than the one-bit processing elements that today we associate
with SIMD, and remember there is no reason to associate bit serial PE's with SIMD.

That just happens to be the case today.

So my point is that the MIMD people have a very good argument. Let's build a good
cheap powerful processor. Let's put a lot of them together. Each one has its own

controller and that is what MIMD means, not the power of each processor.

But now they have the problem that they have not been able to solve. How on earth do

these independent computers talk to each other? The best I have heard now is 5,000,

or maybe 500, instructions to get a message from me to you. So they have major

problems, but they will probably make progress toward solving them. Almost certainly
what we want is to combine the virtues of SIMD and MIMD.

SIMD also has its problems when synchronous operation and a fixed topology are not
appropriate.

We do have, fortunately, many cases of beautiful mappings of algorithms, usually onto

an array, but sometimes onto a pyramid. Without a good mapping, we really need

something to augment the array or pyramid. At the moment I'd suggest we see whether

we can't design powerful SIMD-MIMD systems. I'm hoping that we will be able to solve
the major problems on beth sides, and get many successful new architectures.
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Parkinson

Your references to Turing reminded me of when I had a few less gray hairs than I have

now and I went to the office of Tony Hoare (who had a number of things that he was

responsible for, including things like Quick Sort and MIMD languages) to describe the

DAP architecture. I gave my talk describing the lock step, one thousand single-bit

processor system.

At the end he threw me completely by saying "It's all a lie. You have not described a

multiple processor at all to me. What you have described is a system with a 1,000-bit

word which is arranged as a 32 by 32 matrix and has a rather strange instruction set

which does operations between these words."

He would say the same to Guy Steele about his sixty-four thousand processor hyper-

cube. He would say it was a one-word machine, that every instruction just has a

hypercube shaped word. It's a totally valid approach to SIMD architectures.

Even if you had a million processors with 16 bit words, Tony Hoare would sort of say

that you have got this three-dimensional word which is xyz, and it is a totally valid view

that these SIMD architectures are just single-processor machines. It all depends what
kind of software you care to put on these machines and how you care to interpret the

results. And as I say, the argument is religious.

Hwang

I believe this audience, most of you, are probably more experienced with SIMD

machines because signal processing and image processing need fine-grain processors.

It is really the state of the technology and the simplicity of the control of the SIMD

machines that leads to the massive parallelism of today.

The control complexity ofa MIMD machine is tremendous. So that is why we didn't see

large scale MIMD machines. The fundamental difference is that, on the one hand,

SIMD machines have higher efficiency. On the other hand, MIMD machines have
greater application flexibility. So you are talking about a trade-offbetween efficiency

and flexibility.

Sometimes I use this comparison, communism versus capitalism. O.K.? In terms of

production, you want to use SIMD machines; in terms of consumption, you want MIMD
machines. Right! We need a hybrid architecture. When we want to engage in extensive

production operations, we use the SIMD portion. When we are involved in the area of

applications, we need flexibility, we needinteractions. The MIMD machines then play
more of a role.

Reif

I would concur, but we need the resources that are available for Crays. The better Crays

cost $15 million. One could have the hypothetical massively parallel machine with
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significant MIMD capabilities and with state-of-the-art SIMD capabilities as well.
That would be very very exciting.

What we have currently is the first stage toward that. It is not anywhere near what

could be, given significant monetary resources. Imagine a $15 million Connection

Machine-type of computer with MIMD capability and incredible I/O. It would be very

interesting then to compare its ability with the Cray. We are really not playing a fair

game. The Cray, the full expensive version of the Cray, is far more expensive than
existing SIMD machines.

Schneck

I have two comments, the first being, I would like to argue with John about economics.

We are talking about the price of the Cray, not its cost. When you own a big piece of the

market you price it at what you can get for it Cost, I think, changes the equation rather
dramatically.

More importantly, Ken Iobst, who is sitting in this audience, his chin just dropped, has
an interestingtest for these machines. He simulates one ilk of machine on another. You

simulate a connection machine or the MPP on a Cray. You can try simulating a Cray

on a Connection Machine, or if you have an SIMD machine, you can try simulating a

Cray on an Intel V-6. I wouldn't try that too long, but you get the essence of the
experiment.

If machine A can simulate machine B and machine C and do it well, but machine B

cannot simulate machine A, then maybe there is a hierarchy that one sees coming out
of'this. I think the hierarchy is that for simulation purposes, SIMD machines seem to

do a good job of simulating even MIMD machines. Part of that may be because so much

of the effort is spent in instruction access, instruction decode and control and so little

of the hardware, relatively speaking, is spent on the disparate aims and disparate
actions of the program, which is of course the only thing we really care about. So I would

pose this simulation metaphor as something to think about.

Uhr

It may well be that if we can handle a 64 computer MIMD system (one big enough so
we can't stick it on a bus) then we can go up to any number.

Assume we have 64 anarchists, the MIT "actors," each one an independent agent that

does all sorts of AI style "reasoning." It's as if each one of us on this panel is thinking,

and then we decide we want to interrupt each other. If we were all talking then you,
the audience, wouldn't hear much of the panel, and none of us would hear much of

anything, or do much of anything.

The point is there is a problem in 5 or 10 people coordinating effectively. We might

examine the sociology of small group behavior to try to develop the kind of message
passing that MIMD systems need.
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On a related issue, I usedto think that wewere really beingcostefficient in SIMD
systemsin that everybodywasworking all thetime. Which indeedthey are,because
they haveto beworking all the time. But are they working onanything useful?

Forcomputervision,it ispretty cleartheyinitially aredoingusefulworkbecausewhen
a general vision program starts out, it doesn'tknow what is goingto bewhere and,
therefore, it has to look everywherefor everything. But assoonasit gathers some
information, then clearly everything is not going to be everywhere,but all the
processingelementscontinueto cyclein synchrony.

Asprocessingcontinues,I getmoreandmoreunhappy.All theprocessorsareworking
all the time, but moreand moreof them arejust doingnothing.

NowtheMIMD systemisabletoreconfigureits structure andhandlethat kind ofthing
with muchmoreefficiency. If it wereonly capableofpassingmessages,which today,
of course,it is not.

Schaefer

Well, we have whipped through the first questionin record time of 40 minutes. So, Milt,

I am going to ask you this question, '_Will massively parallel computing environments

ever be comparable to those of vector processors?"

Haleru

Well, ifI should take this question literally, I think it is safe to say that people are not
going to give up an operation that already has a long heritage in mathematics, such as

vector and scalar operations. The number of applications that currently are running
on vector processing machines is almost exclusive with the exceptions of a few

disciplines, perhaps computer vision or neural networking, and even those have been

put on vector processors.

I think it is pretty obvious that vector processors will continue to dominate the

computing market. But that doesn't mean that it will be exclusively a vector processing

or serial market. There certainly is a place for massively parallel processing because

we have a class of problems that will continue to require an architecture which is more

suited to those problems.

So I think the problem domain will guarantee a place for massively parallel processing,

but that vector processors will still continue to develop and expand and dominate the
markets.

Let me mention a very specific problem domain area--problems related to the space

program. We will be acquiring images in space with arrays of sensitive detectors. The
use of massively parallel processors will be required to reduce the data and to analyze

this high volume of data.
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But that is not the publicmarket, that is not themassmarket. In themassmarket, we
will continue to have growing vector processingcapabilities, especially as vector
processorsshrink downinto the work stationdomain.

Hwang

To me, "environments" represents application environments, that is the environment
a user will see where he or she will be located. The environment includes user interface,

language support, software support, run time support, debugging systems, etc.

I would say that the concurrent processing growth in environment build-up will be
much slower because it is a lot more difficult. Vectorizing compilers vectorize the inner

loops of do-loops. The inner loop operation is an identical operation being vectorized.

So that is easy to detect in a program construct.

You see a lot ofvectorizing compilers around. You don't see too many concurrentizing

or parallelizing compilers. I have seen only two. One is the Alliant, which has a
FORTRAN compiler and that can do a "do across." That is a do loop spread into several

processors. The other is the CMU Warp machine compiler that can partition a job and

spread it around.

Until we have very intelligent parallelizing compilers, I really don't see that a massively

parallel environment is there yet. It will grow, but it will be very slow.

Parkinson

We have a large community of people now who have by heroic efforts modified their

sequential FORTRAN to run on vector FORTRAN machines, even though they were

promised that that wasn't going to be necessary. They are not going to lose that

investment. Their problem is not to solve a particular problem in physics. It is to run
an existing FORTRAN code.

The commercial realities of that means that even after fifty years we will still have

things which accept that kind of code. There will be manufacturers who will make a lot

of money from the fact that it is human nature to not want to learn anything new.

I don't know when Newton invented the calculus, but when I was a schoolboy you still

were able to take courses in physics which didn't use calculus. People don't want to

learn anything new, and these things are. People keep talking about algorithms. I wish

people would talk about problems.

Everybody says "how do you do xyz algorithm on SIMD or MIMD machines?" Nobody

comes to me and says how doyou solve such and such a problem on the machine. They

always talk about method and that's the difficulty. If we could only talk about our

problems, then halfofthis argument would go away.
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When John Reif was talking he said he knows algorithms which are not suitable for

SIMD machines. I don't know any probl¢m_ which are not suitable for SIMD machines.

Reif

It is important for the audience to know that as far as the theory community seems to

know, there are many problems out there that cannot be parallelized. It was not
algorithms I was talking about, it was problems. That means that for a fair amount of

code out there, you cannot expect that it can be parallelized.

It is not the algorithms; in fact, we are relatively creative about new parallel algorithms.
That is what I do a lot, and I should be more optimistic. But the absolute truth, as far

as people who have thought long and deeply about this, is that we will not be able to

parallelize the world away. There are fundamental problems with that. Even if you

have gigantic massively parallel machines, they will never reach their full potential for
every problem.

Person in audience

Give us one example.

Reif

Sure, there is the example of the Boolean circuit evaluation problem. Given a Boolean

circuit, the problem is to evaluate it. Suppose the circuit has n inputs, size polynomial
in n, and depth d. No one knows how to take an arbitrary circuit and evaluate it at a

depth significantly less than d. Therefore an arbitrary sequential computation cannot

be parallelized as far as anyone knows. There have been very very bright individuals
that have looked at that problem.

On the other hand, that does not mean that we are out of our jobs. It means that instead

we should look carefully at scientific computing problems that do, in fact, have good

parallel solutions. Many people in the audience have had major application areas

where they have found beautifhl parallel algorithms. It is both a positive and negative
thing.

You shouldn't take the religion of parallelism too far. The realistic answer is, it does
work in many, many cases, but by no means is every problem parallelizable.

Uhr

That is obviously true. It is a complexity argument in terms of the worst case.

On the other hand, surely anything to do with intelligence, anything that the brain does

is massively phenomenalogically parallelized. I would imagine that most data base
problems and most scientific problems are highly parallelizable. So in terms of the real

world and the real kinds of problems that do interest us, that argument should be sort
&tempered.
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Reeves

Will parallel computing environments everbe comparable to those of vector processors?

I hope they never sink so low!

As Guy pointed out, there aren't m any vectorizing compilers that really look very neat

even today, and they have had many years of development to get into the act. I hope

we make vast improvements in software over the next 20 or 30 years.

One should imagine that there will be tremendous improvements in both vectorizing

compilers and parallelizing compilers, and in ways of expressing problems. This will

far transcend what we currently do today in FORTRAN, although of course I don't

expect FORTRAN to die in any sense.

I am sure that in the future there will be much better environments. I see these

environments more tailored to specific application areas. Today we don't program in

raw FORTRAN, we program with packages, which is a very limited higher level

approach.

I see much higher level approaches as specific application areas evolve. Then there may

be systems and environments tailored specifically to those application areas. These

environments may be ported to more than one type of machine architecture, even to

heterogeneous collections of different computing resources.

So I think we should look to much better paradigms than those we are currently using.
Ultimately we will get better environments, more of the kind of environments that we

deserve for both massively parallel and vector machines, or whatever our computing
resources may be.

Reif

I don't think there is anything natural about the computing environments around

vector processors. It is true that it is fairly easy to port certain types of scientific

computing code into these vector processors. In part, that is due to work by Kuck at

Illinois and his group.

In that type of technology, Kuck takes recurrence equations, the FORTRAN code,

unwraps it and develops a recurrence equation model for certain inner loops, and

vectorizes those. In fact that can be done for massively parallel SIMD architectures.

Within five years, there will be systems that can do that for SIMD computing

components.

I would also comment that again, I don't think the vector environments, which are

FORTRAN based, generally speaking, are anything magical. I think they will persist,
but I think that in the software world there are other environments, C-based environ-

ments, Connection Machine C*, things like that, that look to me like they would be more
effective in the future.
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One example, this is actually a star LISP example. The fellow who gave the talk last

night about computer graphics wrote his original code in half a million lines of

vectorized code. He ported that onto the Connection Machine and, this is second hand,

the new code was approximately one to two hundred thousand lines of code instead of

500 thousand lines of coding. So already, there exists parallel computing environments

about which I think the community can be very proud.

So I am fairly optimistic about evolving environments for massively parallel comput-

ing. There is also a lot of interest in DARPA. They are really pushing in this direction.

It is possible to have very flexible, very powerful primitives for massively parallel

computing. What is not possible again, is just that you can effectively use all that

parallel computing power in all possible instances.

Schneck

Dave Schaefer asked me to join the panel because I am an argumentative cuss. Since

I don't want to disappoint him, this is my opportunity.

It seems to me there are two issues here that are getting confused. One is languages

and the other is environments. Although they are strongly related, they are not the

sanle.

The language issue deals with expressivity and the wayin which we write an algorithm
or a problem. Environments have to do with what I like to call the psychological issues.

How we deal with the programming process. I think the psychological issues belongin

a different conference; I think that environments belong in a different conference.

I think we are much more concerned with technical issues of parallelism, issues of how

programs work, how algorithms work, how we express parallelism in a concise and

direct way. Not whether we get ten lines of code or whether when we change one

package or subroutine, we need to change another one. Not whether we need to do a

recompile or a make. I think those are all things that are second-order effects.

In the high speed computing community, much more time and effort is given to the

running of the programs than to the writing of programs. Down at the PC level, much
more time and effort goes into the writing of the programs. I think our attention ought

to be carefully focused on the running of programs and the speed at which programs run,

not on, from my point of view, the mundane issues of how to write programs and how
to do it effectively and efficiently with the smallest number of people.

Steele

I suppose I am going to take a very pragmatic position, not that the previous arguments

have not been pragmatic. I just want to tell you that I am going to take an extreme on
that. I think that the issue here is purely an economic one. A lot of investment has gone
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into program environments and compilers and other tools for the developing of

programs for vector processors.

If the approach of massive parallelism proves to be effective, then over the long run at
least as much effort is going to be invested in producing good environments there. The

question is "how can we go about improving those environments?", and the other

question is "will it be worth our while to do so?".

I think reasonable people may have differences of opinion over what fraction of the

market, measured in dollars, or problems to be solved, or whatever, is going to be

tackled through massive parallelism in preference to vector or other approaches. If that
fraction turns out to be large, the investment will be made.

What needs to be done to improve those environments is to look at the necessary

abstraction and metaphors that will make things easier. It is necessary to capture the

standard pattern of doing things and because the approach of massively parallelism is

still relatively young, we haven't figured out what all the standard patterns andidioms

are going to be.

To connect that with the previous remark, Tony Hoare might choose to characterize a

SIMD machine as being a serial processor with very wide words. I agree that is a

perfectly valid description for some programming purposes, a very useful description.
The question is ,"is that the most useful description for all ways in which one might use
the machine?" I think that the answer to that is "no."

Sometimes you want to think of the metaphor as programming many individual

processors. Sometimes you want to think about wide words. Sometimes you want to
think about organizing your view of the machines in other ways. We need to figure out

what these patterns are and then capture them in an integrated way with the other

tools in the programming environment, so we can deal with them easily.

Uhr

It has never been clear to me, and I guess to a lot of people, why two-dimensional array

processors shouldn't replace vector processors. About '78 or '79, the DAP group tried
to sell a lot of DAP's and didn't get very far, I think for quite irrelevant commercial

reasons.

Probably there are also relatively small but crucial things that still need to be ironed

out. The lack of fast floating point operations, that you finally have in the Connection

Machine, is one of the things that sort of put massively parallel systems behind. Others

are the rigidity of a fixed size array and the fact that the array is not an integral part

of a larger system.

We have a very comparable situation with image processing where we have pipelining

vector processors and we have array processors. They are both sort of flourishing
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equally now, although the vector processorsare mucheasier to handle and more

popular. I personally think that the array processors will end up ahead.

I am suggesting that image processing is one of the better shots for massively parallel

systems. In image processing, we don't have what seems to be a problem for numerical

processing, where a short pipeline is better than a long one. I believe it is Fujitsu that
has a long pipeline which may not be too usable. The short pipeline gives more

flexibility but, of course, it gives slower processing.

In a similar manner, a fixed size array, like the DAP 64 by 64, is too rigid for applications
using arrays of different sizes.

Schaefer

We are running out of time. Let's see if we can get this panel to give one word answers

to the question "Can progress in the use of massively parallel computing take place in

a world dominated by dusty FORTRAN decks?" "Yes" or "No", right!

Haleru

I think the answer is pretty obvious. Over the last two years, we've seen the size of this

conference double. I believe there is every reason to expect it will double again in

another two years based on what we see coming in the market and what the agencies

are putting in. We live in the world of dusty decks, and we are still making tremendous
exponential growth.

Schaefer

Thank you for your one word answer.

Hwang

My answer is "yes", but I want to give you an explanation. We were talking about

parallel programingenvironments. There is a special issue on language compilers and
the environments for parallel programming which appeared last month in the Journal

of Parallel and Distributed Computing. If you are interested, David Kuck edited a

special issue of eight papers. One describes how IBM is developing a "PTRAN"

environment. '_PTRAN" stands for "Parallel FORTRAN". Just for your information.

Schaefer

We are having massively parallel one-word answers.

Parkinson

Yes, the FORTRAN programmers are going to die out of old age.
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Reeves

Yes, of course. FORTRAN programmers of today won't die so quickly, but they will die.

Reif

I think the dusty FORTRAN deck will stay around until we are quite old, but I think

that massively parallel computing will be real exciting in the next few years.

Schneck

John has said it, but let me just remind you since no one has said it before. We don't

know what the next language will look like, but it certainly will be called "FORTRAN".

Steele

Yes.

Uhr

No, in the sense that we will be developing into a new world with new kinds of

computers to handle new kinds of problems, and the old world will continue to exist.
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Languages for Massively Parallel Computers

Guy L. Steele, Jr.

Thinking Machines Corporation

I'm here to talk about languages for massively

parallel computers. Programming languages

is a very wide field and there isn't any way I

can possibly cover everything that's been

done. I'm just going to talk about the ones I

know about, which is always a good policy.

This is an outline for what I'm going to dis-

CUSS.

First off, we'll discuss some common themes

I've seen over and over again in many pro-

gramming languages that have been de-

signed for parallel computation. These are

common themes about the way you organize

control structures of programs, the way you

organize data, and about communication

patterns. As we will see through the course of

this talk, these themes tend to pop up in

different ways in different language design.

They are common threads and serve as a

taxonomy I use to categorize the different

aspects of parallel programming languages.

Once I've shown you these common themes,

I'm going to give you thumbnail sketches of

three different parallel programming lan-

guages. They happen to be ones with which I

am particularly familiar because they are

running on, or are in the process of being

designed for, the CM-2 computer system with

which I work at Thinking Machines. After I've

sketched out these three languages, I'm going

to try to pull them back together and do a

thematic comparison of them so we can see

how the themes fit in and how various aspects

of these languages can be ccmpared according
to these themes.

First, I'd like to present some principles of

language design that are merely guidelines

that I've found useful in trying to design

parallel programming languages. The first

rule is don't start from scratch. It is very

important to build on existing knowledge and

traditions partly to avoid reinventing the

wheel. And it is important to take advantage

of programmers' existing familiarity about

ways one can do things in programming lan-

guages and take advantage of certain tradi-

tions. For example, the standard scientific

notation of floating point numbers is a tradi-

tion and you just do it that way unless you've

got a really good reason to do it some other

way in your language. A particularly impor-

tant kind of tradition to build on in designing

parallel languages is a set of expectations we

build up about how serial programming lan-

guages are designed. Even when running

parallel programs, there are still large parts

of them that will be sequential, or that can be

regarded as sequential programs operating

on each of many data items at once. So, it is

important to build on that set of traditions. A

consequence of that first principle, and one

approach, is to start with existing serial lan-

guages that are well understood, and then

judiciously make extensions for parallelism.

On the other hand, which brings us to the

second principle, don't settle for a superficial

patch. It doesn't produce a really satisfactory

parallel programming language simply to

take Fortran or C and add two message-

passing primitives, or add semaphores or

something like that, and call that a parallel

programming language. Yes, it is possible to

program a parallel computer that way, but it

tends to feel very low level because you simply

slap the two primitives on top rather than
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integrating them into the structure of the

language. You ought to arrange itso that the

features you add for parallelism fitin well

with the personality of the language and are

integrated with the various other features of

the language so as to interact smoothly. The

other important thing is you want to be sure

that the features you add support important

paradigms of parallel programming, and

those paradigms are the subject of my listof

themes.

Given those principles, a third possible deci-

sion one might make is to concentrate on the

data rather than on the control structures,

and this is particularly appropriate for mas-

sively parallel computations. There are dif-

ferent styles of parallelism: there are MIMD

and SIMD; there is focusing on large amounts

of data, there isfocusing on large numbers of

processors, there is focusing on small num-

bers of processors in the 10-20 range. These

callfor different styles of programming lan-

guage. My interest happens to lie in the

massively parallel arena, so most of what I

have to say willaddress languages and topics

in that area.

Ifone chooses to concentrate on the data, then

a strategy one can adopt is to take an addi-

tional sequential programming language,

add a parallel data type---whatever that

means--and that may mean different things

in different languages, but having added a

data type, try as hard as possible to use the

existing language operators rather than in-

venting a whole slew ofnew ones. In this way,

one can take advantage of understanding on

the part of programmers of the semantics of

the existing operators. On the other hand, you

have to ensure that those semantics extend

smoothly and in an intuitive way for the new

data type.

Now, let'slook at these common themes: ele-

mentwise parallelism, replication,reduction,

permutation, and conditionals. There isnoth-

ing terribly profound about them, this is just

a list of useful things. However, I would ex-

hort you to examine each item on the checklist

when programming in a parallel language.

One obvious theme is elementwise parallel-

ism. Typically, if you've got two arrays, you

want to add the elements of the arrays, com-

ponentwise, for example. This is a case where

you're doing computation on corresponding

elements of arrays. But, the elements in cor-

respondence aren't interacting much. That's

one kind of thing you want to see. That hap-

pens so often, it is so pervasive in parallel

programming, that it seems commonplace to

mention it. Yet, you want to ensure that,

because it is so commonplace, that it is easy to

say in the language. As we'll see when we get

to the thumbnail sketches, sometimes, it's not

so easy to design languages that make that
smooth.

Another example is replication: taking a

small amount of data and making more of it.

This breaks down into several cases: there is

the one-to-many case which you might call

broadcasting; there is the few-to-many case,

which can be in either a regular or an irregu-

lar pattern. The regular case is sometimes

called spreading (in Fortran, for example).

The converse of replication is reduction,

where you're taking many data items and

reducing them to a few items or one item.

Then, there is the question of how you do that

reduction. You might take many data items,

reduce them to one data item by choosing one

and discarding the rest. Or, you might take

the sum over many values or the product, or

the maximum or minimum, or the greatest

common divisor. There are any number of

interesting reduction operators, some of

which are more useful than others.

Then, there is the case of permutation, where

the amount of data doesn't change, but you

are rearranging it in some interesting way.

That breaks down into dozens of subcatego-



ries, such as shifting of the Cartesian grid or
arbitrary permutations controlled by a per-
mutation vector.

By the time we get to substantive condition-
als, it is a control structure issue rather than
a data stucture issue. In fact, one can try to
categorize other kinds of control structures as
well, except I don't seeatheme that pops up in
any regular way in all the programming lan-
guages except for conditionals. It is very fre-
quently the case that, based on the value of
somepiece of data, you want to make a choice
of doing this or that computation. Sometimes,
this is the most difficult theme to embed in a
parallel programming language in atrue way.

So, that is my list of themes. I'm now going to
give you thumbnail sketches of three pro-
gramming languages. The first is the particu-
lar dialect of Fortran running on the CM-2,
which is not particularly specific for the
CM-2. It is precisely Fortran 77 with the
proposed Fortran 8X array features added in.
But no other features of Fortran 8X. There
wasno particular reason to leave out the other
ones, it was just an implementation decision
made for the purpose of this project. When we
set out to do Fortran at Thinking Machines,
we were prepared for the possibility of having
to do it our own way and invent a new lan-
guage. That is something we are loathe to do
when we can stand on the shoulders of some
other giants. We were delighted to find, in
fact, that the Fortran comittee, X3J3, has
comeup with a very reasonable and plausible
design for a data parallel Fortran in the pro-
posed array features.

This is going to be a very quick sketch of a
parallel Fortran since there is no way that I
can do justice to any of these languages in
10-15 minutes, or even in an hour. I'm simply
going to show you some highlights of the
language that will hook into the develop-
ments I want to show you later.

First of all, the Fortran 8X array extensions
provide for elementwise expressions. If you
declare three arrays (A, B, and C), each with
1,000 elements, they are said to conform since
they are the same length. Because they con-
form, I can mix them in expressions. For
example, I can write A = B. That means copy

the entire process ofb into a elementwise. So,

that B1 gets aassigned to A1, and B2, to A2.

Similarly, I can do elementwise addition. In A

= B + C, the corresponding elements of B and

C are added together and were both assigned

to A. Or, I can do multiplication, like

A = B x C. This is elementwise multiplication.

I can also use the built-in library intrinsics

from the built-in subroutine library. For ex-

ample, in

A - SQRT(B)/SIN(C), I can take the square

root of every element of B, and a sine of every

element of C, do an elementwise division, and

assign the result to A.

Also, there is no reason why arrays have to be
constrained to be one-dimensional. I could

have taken matrices for five-dimensional

objects, and as long as their corresponding

dimensions matched, I could use them in an

elementwise fashion. What this technique of

language design manages to do, is to take

operations on arrays and make them look

syntactically like operations on single items.

In effect, I have overloaded addition and

multiplication and extended it to the array

case.

Another important rule in language is scalar

extension. Again, this is something that is so

natural and so embedded into mathematical

and programming notations, that it hardly

seems worth remarking on. With scalar ex-

tension, you can take a scalar and mix it with

an array within an expression. The rule is

that the scalar is automatically replicated to

match the array. For example, if A = 0, the

effect is to replicate the zero so that there are

enough zeroes to match all of the components

in A. So that every element in A gets cleared.



Similarly, I can write a complex expression
such as A = B/2 = C/(I+4), and it looks perfectly

natural. I'd take every element of B, divide by

2, take every element of C, and divide by I + 4

(which is scalar), add them, and assign to the

corresponding elements of A. As you look at it

closer, you'll see that parts of this expression

are scalar and parts are arrays. So, for ex-

ample, the constant 2 is scalar. The addition

operation (I+4) has scalar operands, so it will

be executed in scalar mode. First, this scalar

subexpression is computed. Then, the result

is replicated, and then divided into C.

The Fortran 8X proposal provides for reduc-

tion by providing a series of new intrinsics

such as SUM, MAXVAL, PRODUCT, MIN-

VAL, COUNT, ANY, ALL, etc. In the simplest

case, you can just give it an array as an

argument and get a scalar value back. A more

complex variant involves specifying an op-

tional mask argument, the value of which is

an array of logicals that matches the first

array argument and specifies which ones are

to participate in reduction. For example, in

the case SUM9A,MASK=A.GT.00, it adds up

only those elements of A that are greater than

zero and ignores the elements of A that are

less than or equal to zero. Also, it is possible to

do summation over an entire array, along

rows or columns of a matrix. For example,

REAL M(100,100) provides a matrix of 100 x

100 elements. SUM(M,DIM=2) sums up rows.

So, the result of either of these would be an

array of length 100. Given a square, it pro-

duces a result that is either stored along the

top or down the edge.

The converse of the reduction intrinsics is an

intrinsic called "spread." Spread can take an

array of some smaller dimension and repli-

cate it along a new axis so as to make an array

that's of a rank one higher. For example, in

REAL A (100), M(100,100), I have a vector A

of length 100 and a matrix, M. Then, M =

SPREAD(A, DIM=I,NCOPIES=100) says:

take A and make 100 copies of it. The new

dimension is to be dimension I and should be

assigned to M. Because the new dimension is

dimension 1, the vertical direction, A, gets

replicated and is used to fill in each row of M.

On the other hand, ifI had said DIM = 2, then

A would be used to fill in the columns of M

instead.

A very interesting feature of the proposal,

which is in the category of removed exten-

sions, is vector-valued subscripts. This is a
feature that the committee has debated and

both inserted and deleted a few times. It is one

of those things that looks really important,

but that might be hard to implement on some
machines. We decided to include it in Fortran

for the CM-2, because it seems to be a very

valuable thing, and we have a reasonable

implementation for it. Vector-valued sub-

scripts can be viewed as simply allowing the

subscripting operation to be componentwise

in the same way that addition and multiplica-

tion are. For example, in

REAL A(100), B(593)

INTEGER V(100).

I have a vector A of length 100, a vector V of

length 100, and a vector B of length 593. The

assignment A=B(V) means that for every

element of V, use its value to subscript. This

produces a vector of results of the subscript-

ing operation which then gets assigned to A.

So, you can see why the length of V has to

match the length of A because there will be

one result in the subscripting operation for

every element of V. The length of B is not

relevant to the conformality property.

Rather, the rule is that the value stored in

vector V would have to be suitable indices for

B. By using the subscript vector this way, you

can encode fairly arbitrary patterns of data

rearrangement. For example, V might be a

permutation vector, in which case, you'd want

B to be the same length of A. You can also

arrange for few-to-many replications, since it

might be that V has duplicate values. In that



case,many elements of A might receive copies
of the same element of B.

You can also use a vector-valued subscript on
the left-hand side asin B(V)=A. In which case,
elements of A will be assigned to places in B
that are dictated by V. In this case, the lan-
guage designers imposed the rule that no
collisions are allowed. That is, it is forbidden
for V to contain duplicate values. This avoids
the problem of what happens when two values
try to get assgned to the same location. That
problem was solved in Fortran by fiat. We'll
seelater that in C*, it is solved in a different
way.

Another of the very powerful removed exten-
sions is the FORALL statement. This is an-
other feature that has come in and out of the
standard, and I'm not sure what its status is
as of this week. It is a very powerful state-
ment. You can say all kinds of marvelous
things with it. It is effectively like a parallel
DO loop (or at least a DO loop that is easier to
parallelize than the standard DO loop, which
has sequential semantics). For example,

FORALL (I=1:100)
A(I)=B(I)*I

The body of the FORALL statement must be
a single array assignment statement. That is
an important restriction that is imposed be-
cause it eliminates the problem that can
happen if you have multiple assignment
statements in the regular semantics for "exe-
cute all assignment statements where I=l,
then execute all of the assignments for I=2."
Or, whether you execute the first assignment
for all values of I and then the second for all
values of I, or some other scrambled order.
You avoid that set of problems by saying that
there will only be one assignment statement
within a FORALL.

FORALL allows you to solve a problem with
the vector-valued subscripts where you have

duplicate indices on the left-hand side. If you
write a sufficiently elaborate statement, you
can specify how to resolve collisions. For ex-
ample,

FORALL(I=1:593)
B(I)=SUM(A,MASK=V.EQ.I)

In this case, I tried to represent B(V)=A, but,
where V may have duplicate values. If there
are duplicate values, then I want the corre-
sponding elements of A to be summed and
have the sum of all the values acquired there
put into B.What I am sayingis: for I runs from
1 to 593 (which is the length of B, not A), B(I)
gets the sum over A in the positions where V
equals I. So, in effect, instead of using sub-
scripting, I have used this calculated logical
mask instead. Now, whether the implementa-
tion of that will be as efficient as what you
would expect from B(V)=A is a question that
canonly be decided by looking at the implem-
entation and the architecture. Somearchitec-
tures will do a much better job of this kind of
thing than others. So,it is possible to say it in
the language, but whether or not it is an
effective statement of what you want, onethat
will be efficiently executable, dependsonyour
implementation. This points out the differ-
ence between expressiveness and effective-
ness.

There is a parallel condition statement that is
very much like a parallel IF. The syntax is as
follows:

WHERE (A.NE.0)
B=B/A
C=C/A

ELSEWHERE
B=0
C=C'3

END WHERE

In this example, I am saying, in positions
where A does not equal zero, you can divide
both B and C by A. In all other places, you



execute the other statements in the corre-
sponding positions of B and C. Again, there is
a restriction. The statements that are con-
trolled by the WHERE statements are only
permitted to be array assignment state-
ments, and all of the arrays assigned to it
must conform to the array logical expression
that appears as the predicate of the WHERE.
So, it better be the case that B and C conform
with A.

A very important observation ofthis language
design is that very few of these features
matter. If you don't use these array features,
if you don't use the array expressions and the
reduction transitions for work, then the lan-
guage looks like plain old sequential For-
tran--it's completely upward compatible. So,
any Fortran 77 code is, in fact, CM Fortran
code,and also full Fortran 8X code.That is a
nice property of the design.

Okay, now let's take a look at C*. C* is a
parallel dialect of C that was developed at
Thinking Machines Corporation, but which
seemsalso to be in use elsewhere in the world
now. In fact, I think there is a project at the
University of New Hampshire that Michael
Quinn is involved with and he is :implement-
ing it on, I believe, the NCUBE :machine. A
language isn't real until it is running onmore
than one machine. So, C* is at least real in
that sense, if not in other senses.

Okay, now, let's look at a particularly nasty
language design problem. We would like to
have scalar extension in C*, much the same
way that we did in Fortran because it is so
convenient. But, supposethat Xis the name of
an array. What does X+I mean? Well, unfor-
tunately, that already means something in C.
Because in C, unlike Fortran, arrays are
pointers, and to have an array with abunch of
things is the same as to have a pointer to the
first element. In C, X+I already means to do
pointer arithmetic. It means take the address

of X (which, if it is the name of an array, then
it is a pointer), and increment that pointer by
1 to point to the next element. So, if you just
say, "Well, we'll just let that mean add 1 to
every element of X," it won't work.

How doyou get around that? This is a problem
that I worried over for several months and
just couldn't seehow to do it. Then finally, we
cameup with a solution that sort of goesin the
back door. Instead of trying to wedge the
parallel data type in using C arrays, which
won't work becausearrays coerceto pointers,
we introduce the parallel data type in another
way and then later add the necessary "array-
ness._This was accomplished by adding two
new storage classes to C that describe where
the data reside. The keywords used are:
"mono_for scalar data, and "poly" for parallel
data.

Poly data are organized into domains. For

example,

domain particle {

float x, y, z;

float mass;

float vx, vy, vz;

};
domain particle w[10000];

Each particle can have a bunch of compo-

nents. Here, I have chosen position, velocity

coordinates, and mass as a demonstration.

Within a declaration of a domain, given that

declarations are implicitly poly, I could have

written the word poly explicitly in front of

each of these declarations. In fact, the words

mono and poly tend not to pop up too much in

actual C* code simply because the defaults

are arranged so you get what you want by the

time that you write it. Since these are implic-

itly poly, these will represent parallel data.

There is an essential rule about domain ar-

rays. When you make an array of domains, the

result is to get something that can be proc-

essed in parallel. In the above example, we

have an array of 10,000 particles called W.



When you select a domain, you are activating
parallel processing. It is as if for every in-
stance of that domain that you have declared,
there is a separate processor that can execute
code. To select a domain, I would like to
introduce a new statement type (square
brackets around _domain particle" with the
body enclosedby {} and a. in between). Within
the selection statement, it can again be ar-
ranged sothat parallel codelooks like serial
code. This is the nice property that Fortran
also had, but it was achieved in C* by alter-
nate means.

Once I have selected the domain of particles,
all of the data that are declared to be around
in that domain (such as x, y, z, mass, vx, vy,
and vz) canbe referred to as if they are scalar
values. So, it is as if you wrote code within a
selection statement that is to act on each
particle independently. In computing this, I
can declare a new variable which temporarily
becomespart of the domain. In the example:

[domain particle]. {
float v2 = vx*vx+vy*vy+vz*vz;

float k = mass*v2*0.5;

if(k>l.0E9) blooey0;

a new automatic variable, v2, is allocated for

each particle. For each particle, I calculate vx

squared plus vy squared plus vz squared and

store that into v2. Then, I can compute the

kinetic energy by multiplying mass by v2 by

0.5. Notice the implicit use of scalar extension

here. If I simply use a mono value here, then

there is implicit replication. I can also use all

kinds of sequential program constructs in

here, such as IF statements. I can use, in fact,

any C control structure within the parallel

code. Now, how all that works out is really

tricky, and I will address that in a few min-

utes. In the preceding example, the function,

blooey, will get called only on behalf of par-

ticles whose energy k exceeds I billion.

So, within a domain, code is parallel. It looks

just like serial code except that if you mention

poly quantities, the effect is to get elemen-

twise operation. Now, if you use mono data in

parallel code, it results in broadcast. This is

how you get X+I to behave as expected, be-

cause in some sense, X is not the name of an

array in this theory of data types. Rather, X is

the name of a scalar that is, however, declared

as a poly value within an array of particles.

So, X is technically not an arraymit is a scalar

value with some _arrayness" hiding outside

having to do with the domain data type. So,

this is how we do the end run around the array

problem.

An interesting consequence of all this is that

we find the reduction operators are already

there in the language in the guise of com-

pound assignment, which is a set of operators

that Fortran does not have. If you use a scalar

value on the left side of an assignment and a

parallel value on the right side, you can get

lots of assignments to happen at once to the

same place. In this example:

mono float total-mass=0;

[domain particle]. {

total_mass +=mass;

}

I have declared a mono variable called

total_mass and initialized it to zero. Then, I

activate all particles and ask each particle to

add its mass to the total_mass. This requires
a new semantic rule which is that in cases

where you have side effects like this that

collide in single locations, you have to have a

rule that says it is okay, and defines what the
result is.

We have chosen to state the rule as simply:

the assignments happen as if in some serial



order. That is one way of resolving the con-
flict. Of course, you don't implement it that
way, you implement it by making a binary
tree, for example, and doing the summation in
logarithmic time (or some other technique).
The net effect from the language point of view
is that all of the masses get added into the
total_mass. Since C provides these built-in
compound assignments for all kinds of opera-
tors, there is multiplication assignment, OR
assignment, AND assignment, etc., and this
gives you pretty much all of the standard
compound operators. C does not have MAS
and MIN operators built into it, sowe added
those into C* purely so that we could get
compound MAX and MIN assignments so
that we could get this reduction effect because
it is souseful.

The fact that arrays were pointers was a
decided disadvantage in trying to get array
features into the language. However, there is
another part of the language where you can,
in fact, turn pointers to great advantage.
Pointers in C are perfectly general. For al-
most any data object, you canmake a pointer
to it, and then pass that pointer and assign
through that pointer or reference through
that pointer. C* simply carries that over di-
rectly. If you think of each particle asresiding
in a different processor, then a consequenceis
in effect that one processor can have pointers
to the memory of another processor. Every
time you do a pointer indirection, that is
potentially interprocessor communication.

In the following example, let's suppose that
every particle has an additional component
that is a pointer to some other particle called
nearest (assuming it will have a pointer to the
particle that is nearest it). We can then do
such things as having every particle compute
the distance (dx)between it (in the x direction)
and its nearest neighbor.

domain particle {
domain particle *nearest;

};

[domain particle].{

float dx=x-nearest->x;

You basically say: _assign to dx my x and

subtract from that value obtained by taking

the pointer to my nearest neighbor, indi-

recting through it, and selecting its x compo-

nent. You do not necessarily b ave to have

pointers to nearest neighbors, you can have

any kinds of pointers you like. This is one of

those cases where identical-looking state-

ments in the language, depending on the

values of those pointers, can have radically

different implementation consequences. If

you have an architecture that supports near-

est-neighbor communications particularly

well, but supports general communications

fairly poorly, then it is not surprising that

nearest-neighbor communication will be

faster than the general case. However, that is

from the point of view of the implementation.

From the point of view of the language, all

pointers are alike.

Also note that if one combines the idea of

using compound assignments to do reduction,

this allows the possibility of doing many-to-

one or many-to-few reductions.

[domain particle].{

float nearmass=0;

nearest->nearmass+=mass;

}

If you have every particle create a new par-

ticle nearmass and initialize to zero, and then

have every particle add its mass into the

10



nearmass of its nearest neighbors, then you

will end up with a complicated pattern. De-

pending on how you precompute the pointers,

you will oi_en end up with complicated pat-

terns of many-to-few reductions.

In C*, all control statements may be used in

parallel code. The simplest statement is the

IF statement where E is a poly value.

if (E) S

if (E) $1 else $2

ish sense of humor on the part of the Lisp

hackers, this data structure is given a strange

name. It is called a "xapping."

A xapping is an unordered set of ordered

pairs. Each of the two elements in the pair

may be any Lisp object. Lisp objects may look

like numbers, atomic symbols (look like iden-

tifiers), and lists (ordered sequences of Lisp

objects). In the case of xappings, we take a

sequence of pairs and write them between
braces:

In particles in positions where E is true, you

execute S, in particles where it is not true, you

don't execute S. And similarly for the if-then-

else statement. So, these work as expected.

Furthermore, the generalized semantic the-

ory gives "while" statements a reasonable

meaning, and even "break," "continue," and

"goto." It is beyond the scope of this talk to
describe how all of that works, but I can refer

you to a Thinking Machines Technical Report

that describes it.

A final observation is that if you don't use

domains at all, then C* code looks like plain

old serial C code. You can take any C code and

run it through the C* compiler, and it is a

valid program. It executes serially and be-

haves like any ordinary C code.

Now, I am going to take a look at CM-Lisp.

This is the highest level and most abstract

language. It is an attempt to take the symbolic

programming language, Lisp, and cast it into

a parallel framework. It has always been the

cultural attitude of Lisp that it tries to ab-

stract a good deal away fronm the details of

the machine hardware and to provide not just

numerical objects to compute on but, in fact,

abstract symbolic constructs. The first-order

strategy is very similar to what was done in

Fortran and C, which is to introduce one new

data type. This then gets operated on in par-

allel. However, the data type has a very differ-

ent nature. In keeping with the perhaps puck-

{sky->blue apple->red grass->green}

A pair is written as the index object, then a

right arrow, then the value object. The pre-

cedingis a xapping of three pairs that map sky

to blue, apple to red, and grass to green. The

indices may be any Lisp objects, but they must

be distinct, and the values may be anything.

[Editors Note: the details on CM-Lisp have

been removed. If you would like further infor-

mation on CM-Lisp, refer to Thinking Ma-

chines Technical Report PL87-6.]

Now, let's do a thematic comparison of the

languages: Fortran, C*, and CM-Lisp. First,

let's look at elementwise parallelism. That is

achieved in Fortran simply by making two

arrays be an operand to, for example, the +

operator (A + B). That does not work in C*

because addition on arrays already means

something else. Instead, you have to write A +

B in the context of parallel code: within a

selection statement using poly data. In the

case of CM-Lisp, A and B are xappings, so

instead of using +, you have to use alpha+.

You have to explicitly say that you want the +

distributed over it. The reason for that differ-

ence is that CM-Lisp, unlike the other two,

allows nesting of symbolic data.

For broadcasting, which is one-to-many repli-

cation, Fortran and C do it by simply having

a built-in rule about scalar extension. In the

ll



case of Fortran, it is when scalar data meet an

array. In the case of C*, it is when mono data

meet poly data, the mono data get replicated.

CM-Lisp has an operator for that. It is the job

of alpha to do that replication. In the case of

many-to-many replication, there are widely

different mechanisms. Fortran can do irregu-

lar communication by using vector-valued

subscripts. A particularly interesting regular

case is accomplished by the SPREAD intrin-

sic. It turns out that both these cases are

accomplished in a single syntactic way in C*,

which is that you compute a pattern of point-

ers and then do pointer arithmetic (effectively

vector-valued subscripting). In the case of

CM-Lisp, regular communication can be ac-

complished with alpha because you can apply

alpha to a xapping to make a xapping of

xappings. Again, the concept of a nested data

stucture actually simplifies things here. You

get irregular patterns by doing alpha aref

where aref is the Lisp subscripting operator.

In the case of reduction, I have broken it down

into many-to-one and many-to-few reductions

and in both the regular and irregular cases,

because there is an interpreting pattern here.

Many-to-one cases and regular many-to-few

cases are both handled in Fortran by different

cases of the SUM intrinsic (depending on

what arguments you give it). To get irregular

many-to-few reductions, you have to use some

complicated form of the FORALL statement.

In C*, all three of them are accomplished in

much the same way by using compound as-

signments. The difference between them

depends simply on what you use on the left

side. If you use a mono lvalue on the left side,

you get a many-to-one reduction (m+=x). If

you use a poly value on the left side particu-

larly involving pointers, you get many-to-few

reductions and regular and irregular compu-

tations look the same (*p+=x). In the case of

CM-Lisp, the data operator handles all three

cases. If you want many-to-one reduction, you

only have to supply one argument. If you want

complicated values, you supply two argu-

ments and you get the xipping effect. A pecu-

liar thing here is the strange pattern where

each of the languages has two cases the same,
but Fortran does not have the same two the

same as the other languages. This points out

a difference in the styles of language design.

Now, let's look at permutations. In the case of

Fortran, there are some built-in intrinsics for

doing regular permutations. In the case

where you have rectangular arrays (which is

what Fortran is good at), there are intrinsics

to do circular shifts along any axis, end-off
shifts that shift in zeroes and discard shifted-

out data, and a matrix transpose operator. In

the case of C*, you just do it with general

mechanisms again by just computing the rele-

vant pointer pattern and hoping that the

compiler will recognize a special case pattern

or that the underlying hardware/software

will deal with that case as well. You can take

these separate cases and bury them in macros

to make them linguistically convenient. In the

case of CM-Lisp, one can also use calculated

indices, such as in C*, but there are also

intrinsics that we built into the language to

handle interesting special cases.

As for conditionals, I am going to contrast the

scalar and parallel case. Fortran uses the IF

statement to do scalar conditionals, but it

uses a separate kind of WHERE statement

that is otherwise syntactically very similar

except that it has restrictions as to what you

can put in the body. I think that is why they

chose a different key word, namely the

WHERE statement. Certain kinds of condi-

tionalization are accomplished with a special

mask=argument in some of the intrinsics. In

the case of C*, the same if statement or the

same conditional expression serves in both

the scalar and parallel cases. It is merely a

matter of whether you use mono or poly data.

In the case of CM-Lisp, again, the if construct

serves for both cases. However, you have to

distinguish whether you want the scalar or
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parallel caseby the explicit useof alpha. That
has to do with the nesting of data structures.

Finally, let's compare the languages by look-
ing at the data structures. Fortran provides
arrays and the elements are scalar. At leastin
the dialect I described, which is Fortran 77
with the 8X array extensions. Fortran 8X also
provides many other kinds of data structure
constructs including record structures. So,for
full 8X, the following restriction does not
apply. For the dialect that I discussed, there
are only scalar elements and the indices are
strictly integers. C* gets its parallelism by
introducing domains and then there is a
funny thing that arrays of domains are spe-
cial. You can select and activate them. Or
rather, you can activate their domains, which
causes the array elements to become active.
Again, the indices are restricted to being inte-
gers. In the case of CM-Lisp, we introduce
xappings, which you can think of asbeingvery
much like arrays except the indices and ele-
ments may be any Lisp objects. This makes it
fit in better with the symbolic computation
nature of Lisp.

So, to wrap up, each of these common themes
having to do with elementwise operation and
replication or reduction showedup in all ofthe
languages. However, they got realized in very
different ways becausethey had to beembed-
ded in such a way as to suit the personality of
the language and the standard cultural way
that things are donein that language. I think
it is important to take that into account when
doing a language design.

I would like to point out somepatterns that I
think will be important in the future. Themes
that I think will becomeincreasingly common
in the future include the parallel prefix opera-
tors. These are what APL calls a "scan opera-
tor." Not only just the simple caseof taking an
entire array and doing parallel prefix, but also
taking an array and breaking it into pieces
and doing parallel prefix. Somework hasbeen
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done in this area by an MIT student, Guy
Blelloch, on models of computation that are
based on doing segmented scans. There are
some fairly powerful ideas on how to build up
algorithms that way. I think that sorting is
going to become increasingly important and
we have to understand better how to use that
in a language context. The ideas of convolu-
tions are also important, including simple
ideas like taking an array, looking up/down/
left/right, adding them up, and dividing by
four, which happens all the time, as well as
more complicated patterns of convolution.
Here, we not only need to understand these
patterns and provide them as facilities, we
needto domore than just provide subroutines
in a library, we need to understand how to
integrate these patterns into the language
designs. They need to fit in smoothly with
everything else that is going on.

I think I've raised more questions than an-
swers in giving this talk, but these are what I
seeasimportant topics for the future of paral-
lel language design.





Generating Movie-Quality Animated Graphics

with Massively Parallel Computers

Gary Demos
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I'll start by posing some challenges to the

audience. I'd like to challenge you to push

the state of the art in scientific computing.

Graphics, as a discipline, or, as a software

problem, really acts very much like many

scientific problems, and tends to stress a lot

of the directions of the general use of the

machine, and the general performance

capabilities.

We found with the CRAY X/MP that the

vector scalar balance was pretty good for

doing graphics. And, scientists, I think,

have found, in general, that it was a fairly

good balance for their codes.

We're beginning to see a lot of scientific and

engineering applications running on mas-

sively parallel systems, and, it's a challenge

to see just how far we can take that. I think

the potential for massively parallel ma-

chines to go way beyond their present

power level is quite large.

Let's talk a little about the topology of

massively parallel machines. It's obvious

that two-dimensional grids are quite useful

for some problems. However, I'm sure a lot

of people here have run into those problems

where you have to do funny things to get the

grid to solve the problem. In many ways,

scientific problems are modeling three-

dimensional space. At least, most of them

are. And, most of them are beginning to

model timeframe problems, as well.

For this you want a 3-D, maybe 4-D--typi-

callynot more than 5-D---_nd of grid. Now,

obviously, having eight directions is more

helpful than four in the sense ofa 3-D grid.
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If you have a hypercube that's got 4,000

nodes, you essentially have 12 wires at each

cell of the hypercube.

A 12-wire hypercube also has, by its attrib-

utes, 12 nearest neighbors. So, if you think

of this as the dimension, it's really some-

thing like 3.5, Now, 23.5 is 12. I'm not sure

whether this is three or four dimensions.

If you think of the cell dividing space as

being a cube, it really has six faces. It

doesn't have four. It doesn't have eight.

Many three-dimensional scientific codes

are based around cell subdivisions.

This brings up the whole issue of how to

subdivide space and map it onto massively

parallel topologies. If you're thinking of a

3-, 4-, or 5-D kind of a space-filling topology,

what you really need is spaces that can be

close packed. And, of the regular polyhe-

dron, in which all the faces are the same,

and all the angles are the same, there aren't

very many such things. And, those that

there are canbe kind of strange. Cubes tend

to be good ones.

Three dimensional shapes that can be close

packed are tetrahedrons. But, ] don't know

really how you solve a tetrahedral composi-

tion of 3-D space. I'm sure there are other

irregular polyhedrons that are made up of

two classes of faces, e.g., a square and a

triangle or, maybe, some asymmetrical

shapes. But, these are very difficult to
construct scientific codes around.

Anyway, I think this is part of the chal-

lenge. Obviously, a general purpose rout-

ing capability is one way to solve the issue.
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But, there are natural topologies in three
dimensions that deal with some of these

issues.

Another problem is local subdivision: if you

have a grid around an aircraft, and you

want to have finer resolution around the

fronts of the wings, it's nice if the grid can

subdivide in those regions without leaving

gaps where pieces are not connected.

One of the big topics for several years has

been SIMD versus MIMD. And, it might

even be possible to think of some hybrids. I

heard some discussed today where each

processing node has some limited comput-

ing capability, but, in general, the whole

thing can turn over as a unit. These things

remain to be investigated.

For graphics problems, the main issue re-

ally is numeric power. And, it's easiest to

deal with that numeric power with floating

point operations. Let's just think in terms

of this scientific problem and being a power-

ful machine and just in terms of floating

point power. I realize there are intercon-

nectivity issues, and other issues.

But, let's just think of it in terms of floating

point for a second. Let's say that we have a

goal of obtaining a machine that was 1,000

times more powerful than an XMP proces-

sor. Now, obviously, that's something that

a lot of people would be excited about. Let's

just figure out what that might mean.

IfI have 4,000 processors, that means that

each processor has to be 25 megaflops.

Well, that's a lot of megaflops. This is, by

the way, taking the basepoint that an XMP

is about 100 megaflops. And, I realize it can

vary anywhere from l0 megaflops to about

200, depending on how your code's written.

But, let's just say it's a 100. So, I'm giving it

a pretty good peak rate there. So, this is--

1,000 times that is about 100 gigaflops. So,

4,000 processors with each processor at 25

megaflopsPyou could do it with 16,000

processors where each processor had 6

megaflops. That might be a little more

possible.

You could do it with 1,000 processors where

each had 100 megaflops. Now, that sounds

hard. You could do it with 64,000 processors

where each one had a megaflop and a half.

I think it's somewhere in this space. Now,

I don't know how to optimize this in trying

to find the peak point, where you'd get the

most bang for your buck, if you will. I don't
think scientific codes care that most of them

have million-node meshes. Certainly,

graphics doesn't care.

If you have a 1,000-x-l,000 screen, that's a

million picture elements. If you want to put

a million polygons on it, that's another

handy million. You get 1,000 frames per

minute, roughly, within an order of mag-

nitude, so, you could do 1 billion things in

parallel and just compute 1 minute's worth.

So, you can go pretty parallel in that sense.

One of the issues facing everybody, of

course, is 32 versus 64 bits. Some of the

scientific community absolutely insists on

64 bit. Other people seem to be willing to

work with 32. This tends to create shop

cultures. Certain shops are 64-bit only.

Other shops are hybrids, or 32 bit, or what-

ever.

Graphics can be done on either, depending

on the algorithm. Most graphics algo-

rithms can be done pretty well with 32 bits

with an occasional 64-bit computation in a

couple of isolated spots. But, I think a

scientific machine really has to have high

performance in the 64-bit range to satisfy

the broad number of users. Because,

clearly, there are a number of machines out
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that are largely parallel. And, each of them
is serving certain niches.

But, if you want a general machine serving
most problems, I think you'd want to think
in terms of 64. That's just my personal bias.
In the work that we did, and, I think, also in
scientific work, the 1-bit granules are not
used. In some sense,they're goodfor other
kinds of simulations than scientific or
graphic type work. So, in some sense, I
thought of that machine asbeing a smaller
number of floating point chips asopposedto
a larger number of 1bit processors.

Of course, some of the problems you en-
counter in programming massively parallel
machines is how to track the state, measure
its performance, and evaluate the available
tools. Some presentations on these issues
were made earlier today. And, something,
I think, is pretty interestingm I think if you
use graphics to display parallel variables
where you have a large number of them and
you canput them in somecodedway on the
screen where you can watch the machine
and similarly use it to display utilization,
router activity, grid activity -- those kinds
of things that it can be used for.

At the other end of the spectrum--not the
high end, but the lower end--when we go
home and play with our personal comput-
ers, or we get something on our desktop for
our office m there's a trend toward rapidly
increasing power. There's really two rea-
sons for this. One is the RISC technology
seems to have pushed the performance of
small machines, and these machines are
starting to becomesomething that's moving
towards our home and our desktop. But,
also floating point power becomes much
cheaper, particularly, pipeline floating
point.

And, it's even possible to get parallelism in
aMacintosh II or a PC. You canput boards
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in there that will accelerate you up to sig-

nificant speeds. And, it won't be very long

before you have the power of a CRAY 1,

which is about 50 megaflops, on your desk-

top for about $10-15,000.

There are some interesting things going on

in our field--revolutionary things. I'm

going to digress a little bit and talk about

our experiences with the CRAY X/MP. We

wrote an algorithm for graphics that ended

up being about 500,000 lines of code, which,

by my measures, is a large code.

The algorithm averaged about 500,000

polygons in a frame. That's a lot of complex-

ity. A polygon is a unit of surface. It's a

piecewise linear spatial way to approxi-

mate 3-D images. We typically approxi-

mate them by their surface because one

typically doesn't see inside of things unless

one is refracting light through crystals or

something. We typically made frames at

2,000-x-2,500 pixels with 36 bits per pixel--

that's 24 megabytes. So, we pushed a lot of

data in each frame.

We made some frames that are 5,000-x-

4,000, or 75 megabytes. We made use of the

100-megabyte-per-second channels. People

are beginning to explore this. Doing graph-

ics has a lot of bandwidth requirements.

Feeding the tube requires a lot of band-

width.

Just to give you a sense of how much com-

puting is involved, in The Last Starfighter,

we did about 30 minutes of film, and we had

to compute on a CRAY-1 for about 6-9

months, and we were backed up with about

2 years' worth of computing.

We brought in the X/MP and then computed

on it for about 6 months. If you just figured

in two processor X/MP time, it was almost 9

months of solid computing--that's a lot of

cycles. And, we were producing about 1.5



hours of imagery per year for an average
frame time of about 2 minutes/frame.

We found that there is a perceptual thresh-
old for interacting with complex pictures of
5 minutes. If you can make your frames in
less than 5 minutes, everyone's productive.
If you take longer than 5 minutes, nobody
makes any progress and the production
grinds to a halt.

We also find in computer graphics that an
issue such as volume visualization, where
you have a big field of 3-D images and you
want to seewhat's going on, that the data
can be very complex. You may be looking
through many layers. And, it requires the
same high levels of computing such as the
kinds of graphics that we've been working
on for entertainment.

We've declared parallel variables on the
CM-2 by creating an operator,which is
really a 1-character prefix on our parallel
variables. We used exclamation points with
the data weprocessedon the CM. So,every
parallel variable (P-VAR) was '%ang" some-
thing or other. We called the readerer the
"bang render," the thing that makes the
pictures. But, anyway, I think it's my vote
that is counter to everything that
everybody's doing to make the parallel
variable jump out at you by having them
look different.

I think it makes the codeeasier. I think the
whole general trend toward having lan-
guages hide the machine's activities is
wrong. I think it's much better to just bring
it up and let you control this machine.
You've got to think in terms of these mas-
sively parallel machines, anyway, or you're
not going to get to square 1. Nobody's going
to throw a normal FORTRAN program on
these machines. Or, if they do, they're not
going to like it.
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Wemade useof*LISP, which is the parallel
LISP dialect for the CM and used the sym-
bolics front end. For me, who had been
programming in FORTRAN for many
years, to change from normal, vectorized
FORTRAN, to parallel LISP was a pretty
radical culture shock, but, I'm alive to tell
you about it.

However, not very many people are willing
to go through this kind of psychological
lobotomy, or whatever it takes to redesign
your brain patterns. Programming the CM
is like solving 3-Dpuzzles. There are people
who are good at it, but, I'm not one of them.
My work cycleon the CRAY was typically as
follows: I would think about something to
code up, e.g., a couple of pages. I would
think about it for a day. I would codeit for
a day. And, I would godebug it for a day. On
the CM, I'd think about it for about 3-4days,
codeit in about 2 hours, and debug it any-
where from half a day to a week. Some of
the problems were very hard to debug be-
cause it was difficult to see the state of the
machine--what it was doing.

You had to build a lot of test casesto find out
what the processors were sending or get-
ting or whatever it may be. Anyway, there
are different coding styles. It's a different
lifestyle, if you will. It's still in the middle
of the night for most of us. But, other than
that, it's a different function.

On the CRAY, we used precision film-re-
cording scanning systems that use cathode
ray tubes. With the CM, we were targeting
mostly commercial production, and weused
"digital video." There's a broadcast indus-
try standard now called "422 Component
Digital Video," for short, it's called CCIR
601. This particular standard is a way of
sending numbers to represent the picture.
It's a vast improvement over analog sig-
nals, where they're always drifting around
onyou. And, there are media that are kind



of interesting peripherals that support this

digital medium. One is a disk system that

holds 100 seconds, and you can random

access it. It's made by a company called

Abekas.

There's also a tape machine that will store

this visual video made by Sony. It's called

a DVR 1000; the format on the tape is called

D1; but, the data are transmitted at 20

megabytes per second--a healthy data

rate. It's over an eight-bit-wide differential

ECL signal level cable. And, this 20-mega-

byte-per-second stuffcan be laid down on a

tape. Well, that's a hell of a tape machine.

Each tape is a little cassette that will hold

either 35 minutes; a slightly larger one will

hold 75 minutes. That's 50 gigabytes! A

little tape of 50 gigabytes transfers at 20

megabytes per second, and has a disk that

goes with it. That was pretty exciting stuff.

Our connection to it was over the Ethernet.

Oh, well, at least we've preconditioned all

the data. So, it ranl00 Kilobytes per second,

or whatever the Ethernet would go. We

were going to hook up a VME, but didn't get

around to it. We also made some use of the

HBTV standard, which is the high defini-

tion video spec. There are people who have

produced systems for it including Phillips

in Europe and Sony and NHK in Japan.

Anyway, it's 1,125 lines. They account for

the lines that scan back that you don't see.

It's really a 1,040-lines visible system.

But, it's not a square screen or even a 5-to-

4 type screen. It's a 1.6-to-1 aspect ratio

which is the old European movie format.

So, it's 1,040 lines-x-l,660 pixels. We made

some use of this. We actually used

nonsquare pixels and used 1,280 lines and
stretched them.

We were not at the optimum performance

on the CM that we would be if we just kept

pounding on our performance and our soft-

ware. On the CRAY, we figured that we'd

put 8 man-years into the algorithm and 16

man-years into optimizing it. We had put

the 5, or whatever, man-years in the CM;

but, we hadn't put the subsequent 10 in the

optimization, so, we had a long way to go.

But, among the things that were---that we

could see to do to improve ourselves is

that we had about 35-percent efficiency

based on the front-end issuing instructions.

It wasn't keeping the CM busy. It wasn't

issuing instructions fast enough. We would

have benefitted a lot from the later CM

operating system release where they have

something they call "variable virtual proc-
essor ratios."

The way that that machine uses its floating

point chips and pipelines, it does not get

very good floating point efficiency in terms

of its peak unless you use hi_n virtual

processor ratios. We had to use a virtual

processor ratio on our code ofl, meaning we

just barely fit with the number of tempo-

rary variables. We have a large number of

temporary variables. But, we could've had
a few variables that would've fit in there

and we could've used large virtual proces-

sor ratios for that and gotten significant

improvement--probably a factor of 2 on our
code.

We also found that we used mostly many-

collision routing, that is to say, lots of people

wanted to get from or send to the same

place. Let's say a processor was a pixel.

And, at some point, every processor's a

polygon. And, it says, okay, I'm going to see

what pixels I touch. And, it's going to start

to scan itself out. As it does, it's going to

send to some other processor that's a pixel.

So, it does that. And, now every processor

puts on a different hat and pretends to be a

pixel. And, it sees who all the polygons are
that touched it.
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So, we made almost no use of our graphics
hardware on the news grid. It was almost

all general routes with lots of collisions. So,

for any of you who are designing machines

and are interested in complex graphics

algorithms, that's our experience, at least
for the kind of algorithms I design.

Others may design other kinds of algo-

rithms. We also used indirect addressing.
That's how you build things on the list that

are different length, where every processor

has a different length list. It was funda-

mental through our design. We also used
some of the more exotic operations that the

CM provides in *LISP---scans, ranks, and

enumerates copy scans and segmented

copy scans, etc.

We made lots of use of them. Everytime

they would say "here's something funny

and it does something funny. Is it useful?"

we'd say"yeah," and we'd stick it over here.

We made lots of use of all that and, it

became important for performance.

Another thing we did was adopt a concept
that has been bouncing around known as

data flow in the industry where you group
pieces of work to be done together. If you're

going to turn off 90 percent of your proces-
sors and only have 10 percent active, that's

not very good use. But, if a whole bunch of
different things need the same--let's say, a

whole bunch of users need a multiplier, but
each one would only be 10 percent active if

you did them separately.

So, you'd collectthem alltogether. You'd do

the multiplying and then, send them all

back. Now, multiply isn'ta big enough unit

ofwork tojustifyallthat sending and col-

lecting,but,we had units ofwork that were

similarlysmall which meant entirelydiffer-

ent things because they were from com-

pletelydifferentparts ofthe code. But, we
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would collect them up, do them all in paral-
lel and send them back. And, that turned

out to gain significant speed.



The Impact of Massively Parallel

Computers on Image Processing

Azriel Rosenfeld

University of Maryland

The use of massively parallel computers for

image analysis was first suggested in a

paper entitled "A Computer Oriented Ap-

proach Toward Spatial Problems," which

appeared in the proceedings of the IRE, ifI

remember correctly aRer 30+ years. It was

suggested that if you took an image and
loaded it into a bit and then connected an

array of processors---one pixel per proces-

sor, perhapsmyou could do an awful lot in a

small number of computational steps using

pixel parallelism. I want to start off from

that baseline and say something about

what kind of things we want to do with

images once we get them loaded into a

massively parallel system, and how hard

some of those things are going to be. We

know how to massively parallelize some

operations; but, we don't necessarily know

where the bottlenecks are. I have my own

prejudices, and II1 comment on them as I go

along.

Let's look at real-time vision. You point a

camera at a scene. You get a video image,

grab a frame, digitize it, and now you have
this massive data set, but the frames keep

coming at you. You're dealing with perhaps

many megabytes per second, depending on
frame rate and size. One of the serious

limitations in our business is that you often

have to do things in real time. These limita-

tions have no meaning, however, if you get

an image every day from somewhere out in

space, and you are willing to take 24 hours
to make some decision about it. For most

systems, we don't have that kind of luxury.

In most real-world applications, for ex-

ample, if you are trying to create eyes for a

CH2649-2/89/0000/0021501.00 © 1988 IEEE
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robot that actually has to move around and

manipulate things in real time, then imple-

menting what the system has to do in real
time at low cost is a challenge.

Let's go into the factory and look at the

industrial machine vision systems that are

being sold. They don't work with massive

parallelism, because massive parallelism is

not something you can put on a chip for a

few thousand dollars so that you can install

them economically. So, they work with the

sort of simple operations that you can per-

form sequentially more or less at frame

rates, which tremendously limits what they

can do. The things that computer vision

researchers were inventing, exploring, and

developing 20-30 years ago, you can now do

in real time on a single-processor system.

Massive parallelism offers the tantalizing

promise of being able to do less trivial

things in real time once the cost of mas-

sively parallel systems comes down. The

axiom is that computer power is getting

cheaper, and this trend will continue. We

are far from being up against a stone wall.

There are experts on hardware here who

will tell you how soon you'll be able to buy a
1,000-x-l,000 mesh-connected system for

$1,000. It'll be awhile, no doubt. But, unless

the economic pressures for doing it go away,

it would surprise me if, by the turn of the

century (plus or minus a few years), we

weren't within shooting distance of that

target, if not already there. This implies

that although we keep coming up with ever
more diabolical ideas about how to torture



data and squeeze drops of wisdom out of it,

anything we can do today will eventually be

done in real time at low cost..This is my

underlying hypothesis.

What types of data do we need to process

when we try to do computer vision? What

stages do we go through from tile time we

get the image into our retina (so to speak)

until the time we are able to do things?

What types of operations do we need to

perform on these types of data, and in what

way can we speed up those operations using

parallelism?

It's fashionable to say nowadays that com-

puter vision has two major goals: construct-

ing a map of the environment, and recogniz-

ing the objects.

The catch for goal I is that the environment

is three-dimensional (3-D), while the cam-

era image is two-dimensional (2-D). To map

the environment, you need surface topogra-

phy. If I pointed a camera at this room,

there's a lot of depth here, lots of objects

occluding one another, and they are very

complex objects.

With regard to goal 2, recognizing the ob-

jects, lets look at the people in this room.

Can I recognize and count them? Can I tell

the men from the women? Can I distinguish

which ones are wearing eyeglasses or

beards? Such recognition tasks are beyond

the state of the art. You might come up with

a technique that recognizes 80--90% of

them, but, that doesn't mean you're doing it

right--and when you blow it, you really

blow it. Maybe the slide projector down the

aisle will show up as a guy wearing a funny

hat because your technique doesn't know

about slide projectors and projector stands.

Recognition is a very hard and open-ended

problem. Naturally, there are simple do-

mains in which we can do topoj_aphic re-
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covery; but, very little of the topographic

recovery stuff has successfully been done

robustly on real data. Much of it gets dem-

onstrated on synthetic examples. Vision

problems are not easy. We're starting with

an image and we want to end up with

certain products, or outputs, one of which is

a depth map. Many people are using range

sensors nowadays instead of TV cameras,

although they're very slow, because they

give you a depth map. Recognition is still a

mess, though, because objects are 3-D. You

only see one side of them. They hide one

another. Objects may not even be precisely

defined. (Give me the precise definition of

the human head or, for that matter, a pre-

cise definition of a beard. Heads and beards

come in many varieties.)

I want to stress the data types involved in

vision. If you are trying to get from the pixel

array to the depth map, which is also a pixel

array (the pixel means something else), the

data types involved are primarily pixel

arrays, and you might actually get away

with pixel parallelism, with what we might

call "retinoptic" processing, involving proc-

esses that look at local patches of the data,

chew them up, and spit them out again in

array form in a way that is now more mean-

ingfuh it's now a depth map instead of an

image.

In this situation, you are basically process-

ing arrays of data; the basic data type is the

array. The kinds of operations you're per-

forming are primarily local operations

where you look at little pieces of the array

and infer the logical topography by massag-

ing them. If this was all we wanted to do, it

would substantiate the contention that the

big bottleneck in doing vision quickly is the

massive local processing of all those pixels

in parallel. Mesh-connected machines like

the Massively Parallel Processor (MPP)

might, in fact, be the basic solution. And,

even though these machines, in their pres-



ent states, still have some limitations,
they're developing and improving all the
time.

When you come to recognition tasks, how-
ever, it's fairly clear that you need other
types of data representations. What's a
human face? It's got eyes, eyebrows, nos-
trils, lips, and so on. In order for it to be a
face, however, the parts have to be in the
right places. So,now we are talking not just
about images as pixel arrays, but about
image parts. We're talking about eyesbeing
almond-shaped, with pointy ends. We're
talking about noses being aquiline--that
even sounds 3-D. We're talking about
mouths being pursed or smiling. We're talk-
ing about image parts--about geometric
properties of those parts, and relations
among the parts.

So, when we want to do recognition, we're
not just talking about pixel arrays; We're
talking about other kinds of data and data
types---other kinds of information about
these data types, and other kinds of proc-
essing of these data types.

A computer vision system may be con-
fronted with a variety of data types. It
certainly starts with array data and, at the
very beginning, a particular numeric ar-
ray-that's the pixel array. It may go from
there to doall kinds of derived arrays. Some
of them may no longer be numeric; someof
them may be symbolic and look like over-
lays. Even in the domain of numeric arrays,
which may not even bescalar valued. These
arrays might represent surface orientation.
They might represent textural informa-
tion, which is painfully gathered on a local
basis in the neighborhood of each pixel. In
short, there are many array-like represen-
tations.

Above and beyond that, wemust eventually
start extracting geometric entities in two

and three dimensions from the pixel array.
Now, we are confronted with how to repre-
sent geometric entities--patches of the
image, patches of surface, or piecesof solid.
These are entities in two dimensions, two-
and-a-half dimensions (surface patches),
and piecesof solid, not all of which you can
see. A vision system must deal with the
representation of that kind of information
and its processing.

Going up to a still higher level of abstrac-
tion, how do you represent this data collec-
tion about pieces of the image and their
properties and relations? The old standby is
that you create somekind of labelled graph
in which you represent the image pieces as
nodes. The graph then tells you how they
are related. That's how you get from the
array to some sort of abstract structure.
The reason for doing this is object recogni-
tion. The description of the object is in
terms of parts and their relations. So,
somebody has to get that kind of informa-
tion out of the image and check it against
the models--the descriptions of what a
generic thing is going to look like. Modeling
is hard. Description is hard. Making them
meet halfway so that you can check one
against the other is hard.

There's an even more abstract data type
that we might call _knowledge." I won't
even try to speculate how easy or hard it is
to do vision in an AI-ish [artificial intelli-
gence-ish] context in which you can reason
about what you are doing. The processesof
extracting parts from an image are not very
AI-ish. The processesof setting up the data
structures are not very AI-ish. People are
attempting to make use of AI-ish control
structures in doing someof the higher level
massaging of the more abstract data types.
Parenthetically, I would contend that if the
AI-ish approach is going to do the vision
community any good, they ought to start
using it, even down at the pixel level. But,
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since I'm not prepared to prove that specu-

lation, let's pass it by.

The real thing I want to call your attention

to is to not assume that the bottleneck is

only at the pixel level. Yes, the data you

begin with in your vision system are pixel

arrays of various sorts, whether the origi-
nal one or all sorts of derived ones. Yes,

those arrays involve fairly massive

amounts of data. For example, 1,O00-x-

1,000 pixel images give rise to arrays of 1

million pixels, and if we have 1. or a few

bytes per pixel, we're talking 1 or a few

million bytes of data. Yes, that's a lot of

data. But massive parallelism is approach-

ing the million level, even if it hasn't quite

gotten there yet. (Maybe youll hear product

announcements at this meeting.) We al-

ready know how to break the bottleneck at

the pixel level for certain types of opera-

tions through massive parallelism, be-

cause, as massive as the parallelism may

be, we're on our way toward it. And, once we

achieve that level, when the parallelism of

the machine is equal to that of the problem,

then we can process every pixel in the image

simultaneously. If all we're trying to do is

some kind of local processing, maybe re-

peated local processing (local means not

very large neighborhood sizes), of the pixel

arrays, massive parallelism of the conven-

tional kind--mesh-connected machinesm

would allow us to do it very fast. Thus, if the

bottleneck occurred at the pixel level, con-

ventional massive parallelism would break

it.

The question is, what about the possible

bottlenecks at the more abstract levels?

Here, an optimist might say that, at these

levels, we're working with fragments of the

image; and how many of them are there?

Perhaps just a few hundred. But how many

bytes does it take to tell us everything we

want to know about one of these fragments?

Not a vast number. Then, why do I insist

that there may be problems up ahead?

Because we may run into a combinatorial

explosion. True, I said that from your mil-

lion-pixel image, all you need do is extract,

say, 1,000 image fragments. What gets you

into trouble is that you pull out these 1,000

fragments in 100 different ways. Anybody

who thinks you can run one canonical seg-

mentation technique on an image and get

the definitive thousand atomic image frag-

ments is wrong. You need to extract the

fragments in many different ways. So, in

fact, they represent possibly overlapping

inconsistent interpretations of pieces of the

image. Then, you need to put those frag-

ments together in combinations. True,

you're almost certainly not considering

arbitrary combinations of the thousand-

image fragments (2-to-the-thousandth-

power combinations); you're probably look-

ing only at certain connected combinations,

and although I'm not prepared to count

them, it's certainly not a fully combinato-

rial problem. But, there are still many

combinations, and that's where the true

bottleneck may lie.

What kinds of operations do we want to

perform on these various data types? There

is a taxonomy; it's a kind of textbook of basic

image processing and analysis techniques

organized by type of operation.

If I'm given a pixel array, I might want to

work on it one pixel at a time. I might want

to do a stretch of the gray scale or a thresh-

olding. I might want to do a huge variety of

local operations. These are a generalization

of point operations, where we're not just

operating on single pixels, but one pixel and

a few other related pixels everywhere in the

image. It's obvious how to do that kind of

24



thing in a massively parallel way, but some
kinds of things get a little less obvious.

Suppose I want to do statistics on the im-
age,perhaps to analyze its texture. How do
you get global statistics on a 1,000 x 1,000
image? Not by local operations. Somehow,
you've got to get all the information to-
gether in one place, soyou can count noses,
soto speak. (How many occurrencesof some
particular local property are there in the
entire image?) The mesh doesn't support
that too well. A 1,000 x 1,000 mesh looks
like its's giving you a millionfold speedup
factor in processing, but that's for local or
point operations. It's giving you only a
1,000-fold speedup in statistical computa-
tion, because you still have a communica-
tion problem.

Other kinds of image transformations pro-
vide other problems. There are geometric
image transformations that perform arbi-
trary warping of our image to correct distor-
tions. There are other kinds of transforma-
tions in which the output is still an image,
but it no longer has even a geometrically
distorted point-by-point correspondence
with the input image. Finally, there is the
large class of segmentation operations that
perform the segment extraction of the
image parts. The input is an array, but the
output no longer is.

Supposewe have managed to pull out of our
million-pixel image 1,000 image fragments,
or something on that order, and we have
somehowrepresented them (without giving
a lecture on representations), so we now
have descriptions that are sufficient to re-
construct eachof those fragments. In other
words, we have a collection of geometric
entities. What sorts of things dowe want to
do with them?

It starts right out as combinatorial in that
we want to assemble them in various ways.
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I may need to take unions of collections of
them. I may need to intersect someof them.
I may need to derive other subsets from
them. I don't think there's a general agree-
ment on the taxonomy on what you may
want to do with image parts. What are the
geometric computations you need to per-
form? And how can they be efficiently per-
formed? What are the good ways of repre-
senting the geometric entities?

Yes, you only have 1,000 entities; but, you
may need to deal with a very large number
of combinations of the entities. And every
time you form a new combination, you may
have to recompute everything, especially
sincethe images are coming along at 30per
second.Whatever it is you do,you may have
to do it again, especially if things changed
rapidly. On the very next frame, you may
have to extract and/or combine fragments,
a different combination every time, and
then compute derived structures, geomet-
ric properties, and decideongeometric rela-
tions of all sorts on the resulting mass of
data.

We have accumulated alot ofideas over the
past decades as to the types of things we
need to do. We have reasonably efficient
algorithms for doing them. We cannow look
at this body of tasks and ask how can we
speed them up? Is massive parallelism
useful when you are trying to handle the
combinatorics of search with the goal of
combining image parts so that you can get
to the next stage of description?

Similar remarks are true at the next level of
abstraction, the graph level, where wehave
thrown away the geometric details. A geo-
metric entity is now represented by agraph
node at the location of the entity. But
graphs are combinatorial objects, too. Even
at the graph level, you get into the combina-
terics of considering collections of nodes,
and the complexity gets at least polyno-



mial. I'm not a graph theorist. I'm not ask-

ing what the taxonomy of computations is

that you want to do on labelled graphs. I'm

only asking what a taxonomy of labeled

graph computations is that a vision person

might want to do.

When you look at vision benchmarks nowa-

days, you find that the creators of the

DARPA vision benchmarks deliberately

stuck their necks out and said'WVhat about

computational geometry and graph algo-

rithms?" The next DARPA architectures

workshop will be held next week, in Avon,

CT, where people will report on a unified

benchmark involving operations at all the

different levels of abstraction.

To summarize: What's the vision problem?

What are we trying to do? Topographic

recovery? Object recognition? What sorts of

data do we need to process? The pixel array?

Derived arrays of all kinds? Geometric ob-

jects, represented in various ways? Still

more abstractly, labeled graph structures?

Beyond that, I don't even want to suggest

anything.

What kind of operations do we want to

perform on these data types? We have a

long list for the array types, a shorter list for

the geometric types, and a still shorter list

for the graph types. I don't claim that the

list is really shorter, but only that I've been

too lazy to think harder and come up with a

convincing, definitive taxonomy of what we

may want to do. Now comes the question,

"What about the speedup of these opera-

tions using various forms of parallelism?"

The pipeline idea yields operation parallel-

ism. No sooner do you finish doing an opera-

tion on the first little piece of your image,

then, treading right on its heels, comes

another processor that starts the next op-

eration on the partial output of the first

operation. By doing this, you're overlaying
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operations; if you can do one operation at

frame rates, then you can do K operations,

not in K times the frame rate, not K times

slower; by overlapping, you can do K opera-

tions practically at frame rates.

The MPP, and the other mesh-connected

parallel systems, provide another ap-

proach, which allows an operation to be

performed in parallel at every pixel. The

tree-structured machines represent some-

thing that you might call orthogonal to the

mesh. It's a different interconnection struc-

ture, but tremendously powerful for certain

purposes. If you want to do statistics opera-

tions--for example, if you want to do histo-

gramming, a tree is great.

A pyramid is basically the cross-product of

the mesh and the tree. It has the advan-

tages of both. I'm not going to give you a pep

talk on pyramids, but, it should be clear

from the program of this meeting, and

almost any meeting these days, that pyra-

mids are currently undergoing a wave of

popularity, which is nice.

Finally, there's a wave of commercial ma-

chines using hypercube achitectures.

Hypercubes---if they're sufficiently mas-

sively parallel--are very advantageous. In

terms of communication flexibility, they

can simulate pyramids very handily.

These architectural ideas have been

around for some decades. The mesh has

been around in a conceptual way since

1958, so it's having a 30th anniversary.

Eventually, a succession was built. People

have been talking about hypercubes for

10-20 years. People have been talking

about pyramids for 1 0-15 years. Using all

these kinds of parallelism--a lot is known

about that. But the vision problem is still a

challenge.



Suppose I was showing slides instead of
these dull black-and-white, alphanumeric
transparencies. Suppose I hit the slide
changer button and up on the screen ap-
peared a slide of an octopus. How long
would it take you to recognize it? A fraction
of a second. Suppose I hit the button, and
the next slide is the Eiffel Tower. Again, in
lfl 0th of a second,you think"Eiffel Tower."
They are familiar objects. A typewriter is
familiar. My Doberman Pinscher (which I
don't have) is familiar. And soon.You never
saw that particular dog before, and maybe
you don't know breeds that well; but, in 1/
10th of a second, you recognize it as a dog.
It's a familiar object. You didn't expect it,
but you recognize it in afraction ofa second.
You have along-term memory in your head.
As a child, you learned at an incredible rate.
It's been estimated that a child learns to
recognize 5,000 objects by the age of 10.
(This is based on counting the entries in a
picture dictionary.) You can name more
than 5,000 objects reliably. You have all
this information stored in your head. And
you can instantly accessit in a fraction of a
second. How much processing could have
goneon in your head from the time the light
hit your retina to the time the word "octo-

pus" came to the surface?

how many neuron firings were there in that

time? It's on the order of hundreds. How do

you vision in the order ofl00 cycles? What

kind of architectures can achieve such per-

formance? How do we program them?

That's the next lecture.

Neurons are slow; they take milliseconds.

There is controversy as to exactly how

neurons do their computations (computa-

tion is the best metaphor we have these

days), but, whatever it is they do, and

however they encode it, and however it is

represented computationally--somehow,

there is something going on in your head

that goes from the light hitting your eye

with an octopus pattern to the word "octo-

pus" coming up in your short-term auditory

memory, and coming out as a word.

When we do that in a few tenths of a second,

uncoached, unprompted, and unexpected,
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ABSTRACT

Partitioning a set of N patterns in a d-dimensional met-

ric space into K clusters - in a way that those in a given
cluster are more similar to each other than the rest -

is a problem of interest in astrophysics, image analysis
K N

and other fields. As there are approximately -E_ possible
ways of partitioning the patterns among K clusters, find-

ing the best solution is beyond exhaustive search when N

is large. We show that this problem in spite of its expo-

nential complexity can be formulated as an optimization

problem for which very good, but not necessarily opti-

mal, solutions can be found by using a neural network.

To do this the network must start from many randomly
selected initial states. The network is simulated on the

MPP (a 128×128 SIMD array machine}, where we use

the massive parallelism not only in solving the differen-

tial equations that govern the evolution of the network,
but also by starting the network from many initial states

at once thus obtaining many solutions in one run. We

obtain speedups of two to three orders of magnitude over

serial implementations and the promise through Analog

VLSI implementations of speedups comensurate with hu-

man perceptual abilities.

Keywords: Combinatorial Optimization, Synchronous
Analog Network, Parallel Simulation, SIMD.

INTRO DUC TIO N

Problems that involve data analysis are becoming in-

creasingly severe in that data sets are becoming very large
and their rate of acquisition is growing rapidly. It is clear

that humans possess immense computational power for

solving certain problems through visualization and that

what is needed is the development of algorithms that have

some of these capabilities.

The value of neural networks - whose development has

been motivated by human beings' computational capabil-

ities - as a computational device is yet to be explored. In

fact, little is known about the reliability and complexity

of these algorithms, and how they scale with the size of

the problem. The work we present in this paper is an

attempt to answer some of these questions. For this, we

will concentrate on the problem of data clustering - a

problem of interest in astrophysics, image analysis and
other fields. The conjecture is that because of the many

connections among neurons, neural networks should be

particularly useful for the class of problems that involve

collective decision making, of which one example is un-

supervised clustering. Here the patterns must decide to-

gether how to partition themselves into subsets according

to a given criterion. The problem considered here, as in

all partitioning problems, is a discrete optimization with

a goodness-of-fit criterion. By embedding this discrete

problem in the continuous space of an analog network
one can perform a downhill search on the energy surface

which is more purposeful and effective than the search

in the discrete space. Until hardware implementation of

analog neural networks in VLSI become available - which

is expected in the next few years [1] - simulation is going
to be an indispensible tool in the study and design of these

systems. Analog networks are intrinsically synchronous

and hence well suited for simulation on massively parallel
SIMD machines.

In this paper, we simulate the neural net we propose for

solving the clustering problem on the MPP [a 128×128

SIMD array machine with 1024 bits of local memory per

processor]. The issue of performance of neural net algo-
rithms on parallel machines is also addressed. Before we

proceed, however, we will discuss the clustering problem
in some detail.
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THE CLUSTERING PROBLEM

By clustering we mean partitioning a set of N patterns

(the patterns are represented as points in a d-dimensional

metric space) into g clusters in a way that those in a
given cluster are more similar to each other than the

K _
rest. As there are approximately _ possible ways of
partitioning the patterns among g clusters [2], the prob-
lem has exponential complexity and finding the best so-

lution is beyond exhaustive search. As is often employed,
we let our criterion for best 8olution be the minimum

square-error. That is, representing the patterns by d-

dimensional points = 1,.... IV}, the best solution
is the one minim_ing X2 _-,N /.(p) _ }_p)2 with re-

---_ _._a_= i _'i

spect to (_plP ---- 1,...,K}. Here cluster p contains the

subset of the points, {_(P)}, and its centroid is given by

_p -- _/N_I F/p) , where Np is the number of points in

the cluster. A partitioning based on such a criterion is

also known as minimum variance partioning. Because of

the complexity of the problem, finding the best solution

may not be possible. This, however, is not a major con-

cern, because in practice usually only a good solution is
sul_cient.

Due to the importance of this problem many meth-

ods have been proposed by various researchers. (See Jain

and Dubes [3] for a survey of the literature.) Many of
these approaches are based on iterative schemes and of-

ten the differences between the suggested algorithms are

quite subtle. The number of clusters K may or may not

be fixed. For a given value of K, the essence of iteratlve

algorithms is as follows.

After the initial partioning of the patterns into K clus-

ters, their centroids, i.e. seed points in the d-dimensional

metric space of the patterns, are computed. Each pattern

is then assigned to the cluster with the nearest seed point
and new centroids are computed. The process is repeated

until the partitioning ceases to change. However, the pro-

cuss of the computation of new centroids can be carried

out in two ways: (i) Keep the centroids fixed until the

distances of a_l patterns to the g centroids are computed

[4]; (il) Update centroids as frequently as one pattern is
found to be closer to the centroid of a cluster other than

the one it is assigned to. In this case, the pattern is imme-

diately reassigned and the centroids of the winning and

the losing clusters are updated [5]. This method is some-

times referred to as K-means. Note that for a parallel

machine, where the distances of the patterns from clus-
ter centroids can be computed simultaneously, the first

approach appears to be more efficient.

The neural net approach that we propose has many
similarities with the iterative scheme described above. As

will be explained later in more details, the major differ-
ence, however, is that the neural net allows a given pat-

ternto belong toseveralclustersuntilthe finaliteration.

That is,at leastduring the execution of the algorithm,

a given pattern belongs to allclusters,though with dif-

ferentweights. The closestconventionalmethod to this

is the one proposed by Gordon and Henderson [61. In
their method, however, the sum of the weights for every

pattern is restricted to one at any given iteration; thus,

it dose not possess the full flexibility of neural networks.

As for the initial cluster centroids, one may take the

first g points of the input data, which is very simple and

inexpensive; or if one suspects the input points are pre-

arranged in some special way, one may choose at random

any K points of the input data [7]. More elaborate and

expensive methods for choosing more promising initial

centroids have been proposed in the literature (see Ref.

[8] and [3]). Such methods, however, are not of interest
to us.

OPTIMIZATION WITH NEURAL NETS

It has been recognised in recent years that artificial

neural networks have computational properties [9,101.

The Hopfield model of neural network, which we use in

thiswork, isparticularlysuitablefor solvingcertainop-

timisationproblems. A neuron isa simple nonlinearpro-

cessorthat isconnected to many (possiblyall)otherneu-

rons in the network; it adds up the signalsit receives

from other neurons and firesa signalaccordingly.The

stateof the network, that is the firingrates or activi-

tiesof the neurons, through interactionswith each other,

change with time but eventuallythe network settlesinto

a steady statewhere the neuronal activitiesremain con-

stant. The energy of the Hopfield network isLyapunov

(i.e.itdoes not increasewith time) and itsminima are

the steady statesof the network. Itisthis property of

neural networks that isused in optimization. The ap-

proach isto cast the problem interms ofan energy func-

tionthat isthen minimized by the corresponding network

as itevolvesspontaneously from some randomly selected

initialstateto statesoflowerenergy.The energy function

has typicallymany minima that representvalidsolutions

to the problem; deeper minima correspond to good solu-

tionsand the deepest minimum to the best solution.

In thispaper we use analog neural nets,because they

outperform digitalnets insolvingoptimizationproblems

[9,11].Many problems of interest,includingthe problem

we addressinthispaper,can be castinterms ofan energy

function,E, that isquadratic in the neuronal activities

and has the form [9],

- T, sV_Vj-__I,V_+ dxg-l(z).
E= 2_=l j=l _=1 r _=1J

Here n is the number of neurons in the network, and
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(0_<_ < 1) is the activity or firing rate of neuron

i. The first term in (1) is the interaction energy among

neurons, and the elements of the connection matrix, T_i =

Tyi = - FW$I_'_,°_Eare completely determined from E. In the

second term/_ is the bias or activity threshold of neuron

i• The third term encourages the network to operate in

the interior of the n dimensional unit cube {0 <_ V_ _<1}
that forms the state space of the system. In this term r

is the self-decay time of the neurons, and g(u), a sigmoid
function, is the gain or transfer function of the neurons

that relates the input u_ to the output V_. A standard

form for g, which we will also use, is

= g(ui)= i(i + tanh _-_--)

1

uo - 1+ e-2"/_o ' (2)

where uo determines the steepness of gain. The neuronal

activities,V_, as well as the input signals,t_,depend on

time t. The evolutionof the network isdetermined by

the n coupled ordinary differentialequations, dujdt =

-OE/a_, which are

dui '_
u, + T, Vi+ I,. (3}

dt r
j=l

We will set r = 1, so that time is measured in units of
r. Note that the bias-term can be eliminated from the

energy and instead incorporated into the gain function if

we define _ ----g(ui - 7I_).

To find a solution {i.e. a minimum), we start the net-
work from a randomly selected state and let it evolve

freely until it reaches a minimum of the function E and

stops. As is usual in dealing with computationally in-

tractable problems, we find not just one but several solu-
tions by starting the network from different initial states,

and then take the best one as the solutio_ which may

or may not be the optimum. Since a neural network con-

verges rapidly to a minimum we can afford to run it many

times thus ensuring that we find at least a very good solu-

tion. Below, we discuss how to construct an appropriate

network for solving this problem.

CONSTRUCTION OF THE ENERGY FUNC-

TION

We want to partition a set of N points in a 2-D plane

into the best K clusters (generalisation to arbitrary di-

mensions is trivial} - best in the sense that sum of the

squares of the distances of the points from their respective

cluster centroids (i.e. sum of "within cluster variances'}
is minimised. We formulate the problem in a manner

that can be solved by a neural network; that is we cast

the problem in terms of an energy function that can be

minimized by the network.

The energy function will consist of two parts: (i} con-

straint terms which make certain a point, at the end of

the search, belongs to one and only one cluster; (ii) the
cost term which is the sum of the residuals and is the

function we actually wish to minimize. The formulation

can best be illustrated through an example• Let us con-

sider the case where we wish to partition N = 10 points

intoK - 3 clusters.A possiblesolution(not necessarily

the best one) would be that,say_points 1,2,6 and 9 be-

long to clusterA, points4 and 5 belong to clusterB, and

points3, 7,8 and 10 belong to clusterC. This particu-

larsolutioncan be representedby the 3)<10 rectangular

array givenin Table 1,where the rows are labeledby the

clustersand the columns are labeledby the points.The

elements ofthismatrix are 0 or I with the interpretation

that "element A1--1" indicatesthat point 1 belongs to

clusterA, "element BI=0" indicatesthat point I does

not belong toclusterB, and so on.

Table I: A possiblesolutionfor partitioningI0 points
into3 clusters.

Cluster Points

1 2 3 4 5 6 7 8 9 I0

A 1 1 0 0 0 1 0 0 1 0

B 0 0 0 1 1 0 0 0 0 0

C 0 0 1 0 0 0 1 1 0 1

If we think of the elements of this matrix as the activities

of neurons (n = K × N neurons altogether}, and denote

them by V_, where p and i refer to the cluster and the

point, respectively, then the constraint part of the energy
function, E, can be expressed as

A _ g K B Jv g

E= Z Z v.,v.,+- -ZIZ ,}',
i=l p=l q_p i-_l p=l

where the coefficientsA and B are positiveconstants.

The A-term has itsminimum value (i.e.sero}ifineach

column (representinga point}atmost one neuron isactive
and the restare off.The B-term has itsminimum value

(alsosero)ifthe sum ofactivitiesineach column equals1.

The two terms togetherenforcethe syntax ofthe solution

given in Table 1.

There isan additionalconstraintthat we should, in

principle,includeinthe energy function:thateach cluster

should containatleastone point•In terms ofthe solution

matrix ofTable 1 itmeans that in each row thereshould

be at leastone fullyactiveneuron. Such a constraintcan
• 1_ iN

be nnposed by Zp=l O(1-_-_,=i V_), where O(z) --0
for z<0 and O(z}=l for z>0 isthe step function.

However, sincethis term isnonanalytic itsinclusionin

the energy functioncreatesproblems and a betterstrat-

egy appears tobe toleaveout thisterm and ratherreject
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those solutions that violate this constraint. In our sim-

ulations of neural networks {several thousand trials) the

solutions never violated this constraint. Therefore, it ap-

pears that the absence of this constraint from the energy

function is of little consequence.

To complete the energy function we must also formulate

the cost term. We denote the square of the distance of

point i from the centroid of cluster p (i.e. the residual)

with Rpi which is given by
= {x,- xp) + - (5)

where (zi, Yi) are the coordinates of point i, and (Xp, Yp)

are the coordinates of the centroid of cluster p. Here we

have chosen the Euclidean distance as the metric; but one
can define any metric one wants. Let us consider again

the solution represented by Table 1. The sum of residuals
or the cost for this solution is

(RAI + RA2 + RAS + RAO) + (RB4 + RBS)

+(Rcs + Re, + Rcs + Rc o}, (6}

which can be written as
K N

p--I i=l

Hence the energy function E, including cost and con-
straint, for this problem can be expressed in the final form

A N g K N g

i-----I p=l q_p i=l p=l

C K N

+ R,,,v,?,, (s)
p_l {----1

where C is also a positive constant. When the constraints

(or the syntax) are satisfied the A-term and the B-term
vanish and the energy function, E, reduces to just the

cost term, therefore deep minima of E correspond to good

solutions, and the deepest minimum to the best solution.

The network dynamics, obtained from -OE/3Ypi, are

K K

= V,,- ,)- +
dt

q@p q--.1

{9)
Note that (8) is only the quadratic part of the energy
function corresponding to the first term in (*), and that

the two terms Ipi and -u_ in (9) come from the second

and third terms in (1), respectively.

To find a solution we assign random values between 0

and 1 to all the a = K x N neuronal activities, V_. Thus

the N points are partitioned into K clusters. Note that

the partitioning is not done in the proper sense that a

point belongs to a particular cluster and to no others;

rather, point i is partitioned among all the K clusters

with varying strengths that are the magnitudes of Vp_,
that is, we interpret Vpl as the strength of hypothesis

that point i belongs to cluster p. Hence the centroid of

cluster p is obtained from the weighted average
N N N N

x. =2=,v.,/2 v.,, v.=2,,,,'.,/E
/=I i=I i=1 i=1

(10)

As the state of the network changes with time the cen-

troids, as well as the residuals R_, also change. Start-
ing from this randomly selected initial state the network

evolves toward states of lower energy according to the

equations of motion (9), until it reaches a minimum en-

ergy state and stops. The downhill motion of the network

on the energy surface is guided toward a proper solution

(one that satisfies the constraints} by the A- and B-terms

and toward solutions of good quality by the C-term. As

the network is searching for a solution the constraints axe
most surely violated since most neurons are partially ac-

tive. Only at the end of the search when a solution is

found the clustering becomes unambiguous. Note that
the energy E also contains other minima that do not cor-

respond to solutions (i.e. violate the syntax); such min-

ima when found by the network are of course rejected as

meaningless.

We remark that the cost term (7) can be written as a

linear function of activities such as RpiVp_ which is bias-
like rather than ir, terac_on-like. However, bias-like terms

are not as effective in breaking the symmetry among the

states that satisfy the syntax, and leave the energy land-

scape more flat. Hence it will not be as easy for the

network to find valid solutions as it frequently becomes
stuck in the middle of the n-dimensional unit cube. This

is confirmed in our simulations, where the rate of success

for finding valid solutions drops significantly when we use
the linear form for the cost,

For simulations we have chosen the following values for

the parameters of the energy function: A = B = 1,

C = 0.9/Ra_o, all Ipi = 1, and the gain function pa-

rameter u0 = 0.1. Scaling parameter C with the average

residual Ravo is necessary to ensure good solutions, be-

cause as the network evolves, the residuals become gen-
erally smaller and the cost term becomes less effective in

driving the network toward good solutions; this rescaLing

of parameter C keeps the cost term of the same order of

magnitude as the syntax terms.

PARALLEL IMPLEMENTATION

We have simulated the behavior of the neural net on

the MPP. To do thiswe firstgenerate a random initial

state{Vpi(t--0)} and then solvethe equationsofmotion

(9)tofindwhich ofthe minima (orsolutions}itconverges

to, Solutionsof ordinary differentialequations,such as
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the equations of motion, lend themselves very nicely to

a massively parallel computational approach. In addi-

tion, since we want to find several solutions starting from

different initial states - as is usual in computationally in-

tractable problems - we run several trials at once on the

MPP. Thus the speedup comes from parallel solution of

the differential equations as well as running several trials
at the same time.

We use the Euler method [121 with a fixed time step/_t

to solvethe differentialequations (9),i.e.we iteratethe

setofn = K )<N equations,
K

+ st) = + 8t{-up/(t) - A Vq,(t)
q#P

K

-B[_-_ P-q,(t)- 11- CR_Vp/(t) + lp/}, (11)

q=l

untilthe system convergestoa stationarystate.The only

stopping criterionwe use iswhen the changes inthe fir-

ing ratesbecome insignificant,i.e.when all[Vp/(t+ _t)-

Vp/(t)[< E,where e ,g_1. After the network converges to

a solution,we must check ffitisa validsolutionthat sat-

isfiesthe syntax, i.e.for every point i we must have one

Vp/= 1 and all the rest Vq_ = 0 for q _ p. In analog net-

works the activity of a neuron can never become exactly
0 or 1 and can only reach close to the limits. Therefore,

if Vp/<_ _70we take Vp/= 0, and if P-p/ > 1 - _1 we take

P-p/ = 1, where r/0 and T/1 are small positive numbers.
In the simulations we have chosen the fo]lowing parame-

ter values: time step _t = 10 -3, convergence parameter

= 10 -4, and the syntax parameters Wo = r/1 = 0.2.

Mapping onto a SIMD parallel processor was accom-

plished by assigning a unique processing element to each

data point. With this requirement, all of the necessary

operations reduce to simple array arithmetic, parallel

sums, row and column broadcasts, and global boolean

tests. All of these are the strong points of a massively
parallel processor such as the MPP. Since the MPP has

16384 processors, fewer data points allow more separate

trials to be run in paralleL Thus, for example, the 128

point case allowed for 128 trialswith differentstarting

conditionsto be run at the same time. The overhead to

the program to keep track ofthe differenttrialsistrivial

sincethe data movement requiredisstraightforwardand

controlledby the programmer. The set of data pointsis

replicatedforeach trialrun in parallel.

Each processorhas storedinitsmemory itscoordinate

valueszi and yi,the neuronal activitiesP-p/,inputsignals

upi,residuesRp/for p = 1,•..,K, convergence indicators

for each neuron, and other ancillaryinformation. The

processingbeginswith the calculationofthe centroidsof

each clusteraccording to (10).This involvesa simple ar-

ray multiplicationofthe zl and !/iby P'p/foreach cluster

p = I,.•-,K. This resultissummed using the cascading

sum technique [13]and dividedby the sum ofP-p/foreach

cluster.These centroidsare broadcast inparallelover the

remainder ofthe array using the MPP micrcoded broad-

cast primitive. This primitive,designed by Rudi Felss

(describedin [14])isvery fastusing only 231 cyclesto

broadcast a row or column - 128 32 bit numbers - to

the remainder of the rows or columns of the 128)<128

array. Then we calculatethe residuesfrom (5) which

involvesmore array arithmetic. The new input signals

up/(t+ 6t) are calculatedfrom (11) and the new activi-

tiesP-p/(t+ 6t) are calculatedfrom the sigmoid function

(2).These are allarray arithmeticoperations.A boolean

mask foreach clusteriscreatedinparalleltorecordwhere

the new activitiesare differentfrom the old activitiesby

more than the convergence parameter _. A logical'or'

(implemented as the ANY function in MPP Pascal) on

the masks determines whether the convergence criteria

has been met for allactivities.This logical'or'directly

translatesinto a hardware instructionon the MPP and

thus allowssimultaneouschecking ofconditionswhich on

a serialprocessorwould have to be done individually.Up-

datingofallneurons foreach trialwas continued,regard-

lessofwhether a particulartrialhad converged,untilall

trialshad converged.Thus unnecessary bookkeeping time
iseliminated.

Thus the speed on the MPP isobtained from, (i)the

mapping which allowsmost operationsto be formulated

in terms of array arithmetic,(il)the movement of data

among the processingelements which can be done with

parallelalgorithms, and (iii)the global boolean tests

which are done by the machine hardware. For the case

of 128 points to be clusteredinto 5 clusters,128 trials

were run simultaneously. This required 19 seconds per

500 iterations.The corresponding CPU time on a VAX

8800 was 2940 seconds (aspeedup ofover 150 times),and

21100 secondson a VAX 11/780 (aspeedup ofabout 1100

times).

EXAMPLES

To study the performance of the neural net we have

testediton some examples. In the firstdata set,thereare

128 pointsdivided among 5 clusterswith within-cluster

Gaussian distributions(Fig.la). Here the 5 clustersare

ratherwell definedand out of the 128 trialsthe neural

net found the optimum clusters128 times. The aver-

age number ofiterationsfor convergence was 4263; since

6t = 10-st, the averageconvergence time isabout 4.3r,

where r is the decay time of a neuron. In VLSI im-

plementations of neural networks that are currentlyin

progress [1],the decay time ofneurons, r,isin the range

10 -6 -- 10 -3 second, hence the convergence time of the

network should be inthe range ofa few micro-secondsto

a few milli-seconds.Note that from numerical solutionof

35



differential equations one can only obtain an estimate of

the actual convergence time, because the number of itera-

tions for convergence depends on the value of the conver-

gence parameter as well as the time step. Obviously if the

convergence parameter is made smaller it will take more

iterations for the network to meet the convergence crite-

rion, resulting in a higher estimate for the convergence

time. On the other hand if the time step is made smaller
by, say, a factor of 10, it will take fewer than 10 times

the number of iterations to converge, thus resulting in a

lower estimate for the convergence time. Fig. 2 shows in

more detail the number of iterations for the convergence
of all the 128 trials.

The conventional method of Foray [4] in 128 trials

found the best clusters only 46 times and various other

solutions 82 times. The average number of iterations for

convergence was 7. Clearly,in thisexample, the neural

net outperforms the conventionalmethod, inthat itfinds

the best solutionmuch more frequently.On the other

hand, the conventionalmethod takesfarfewer iterations

to converge than the neural net. But we should bear in

mind that these are simulations of the neural net, and

that the number of iterations needed for convergence is

not the true measure of the processing time of the net-

work. The convergence time of an actual analog VLSI
network must be measured in r, the characteristic time

of a neuron, which is in the micro to milli-second range?

To test the performance of the network in cases where

clusters are fuzsy, we started from the data points of Fig.
la, randomly selected 10% of the points and distributed

them uniformly throughout the unit square (Fig. lb).

Thus we obtained 5 clusters with uniform background
noise. The neural net in 128 trials found the best clusters

28 times. It failed to find valid solutions statisfying the

syntax 46 times. This large number of failed solutions can

be interpreted as an indication that the clusters are fuzsy,

that there are outliers, and that perhaps the specified

number of clusters, K = 5, is too few. However, even

when the syntax is not satisfied we can extract a valid

solution with the following scheme. For each point i set

the largest V_ to 1 and all the other Vq_ with q _ p
to 0, and interpret this solution as the one favored by

the network, thus we obtain 128 solutions. Conventional

algorithms always find valid solutions and cannot give an

objective indication of the fuzziness of clusters.

Similarly to Fig. lb, we generated other data sets by
increasing the background noise to 25%, 50%, 75%, and

100% (i.e. no clusters). These data are shown in Fig.
lc-f. The results of partitioning the data among 5 clus-

ters obtained, in 128 trials, with the neural net and with

Foray's method are listed in Table 2. The average es-

timated convergence times for the network are given in

units of r. Two points of note in this table are: (i) As the

5 clustersbecome less discernible the network increas-

ingly fails to satisfy the syntax indicating that clusters

are fussy and that 5 clusters are not sufficient. The con-

ventional method, on the other hand, always finds valid

solutions,and although the varietyof solutionsthat it

findsincreases(thisistrue in both methods} which may

be taken as a clue to the fussinessofclustersitisnot as

objectivean indicatoras the failureto satisfythe syntax;

(ii) When there are well defined clusters the neural net

performs better than the conventional techniques which is

reflected in the lower average X 2 (X 2 is the sum of within-
cluster variances) for solutions found by the neural net.

And as clusters become fuHier the quality of solutions

found by both methods become comparable.

Table 2: In this table the resultsobtained by Foray's

conventionalalgorithm are compared with those by the

neural network. The Data referto data points of Fig.
la-f.These are based on 128 trials.

Data Conventional

Iter Best Var Best% Avg Var

a 7 0.62 36 1.23

b 8 1.06 34 1.57

c 8 1.95 12 2.27

d I0 2.94 2 3.14

e I0 3.88 I0 4.11
f 10 4.13 2 4.64

Data
Time Best Var

a 4 0.62

b 7 1.06

c 7 1.95

d 8 3.00

e 6 3.89

f 8 4.46

Neural Net

Best% Avg Var
100 0.62

22 1.24

19 2.03

15 3.04

1 4.11

2 4.71

Synt%
100

64

9

0

1

0

Iter. is the average number of iterations for convergence.
Best Var: isthe varianceof the best solutionfound.

Best%: is the percentage of trialsthat found the best
solution.

Avg Var: isthe average variance ofthe solutionsfound.

Time: is the average estimated time of convergence in

unitsofr.

Synt%: isthe percentage of trialsthat found solutions

satisfyingthe syntax.

In Fig. 3,we have plottedthe trajectoriesofthe cen-

troidsofthe 5 clustersasa functionoftime forallthe 128

trialsforthe data ofFig. la. Itcan be seen thatalthough

the centroidsstartfrom differentplacesindifferenttrials,

they alleventuallyconverge to the same 5 pointswhich

are the truecentroidsofthe 5 clusters.This clearlyshows
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that the network succeeds, in every trial, in finding the [3]
structure in the data. In Fig. 4, we have plotted the cen-

troid trajectories for the data of Fig. lf. The spreading
of trajetories (as contrasted to the contraction of trajec- [4]

tories in Fig. 3) of different trials, shows that where there
is no underlying structure in the data, the network does

not prefer any particular clustering and hence finds many

different solutions. [5]

CONCLUDING REMARKS

Preliminary results for clustering with neural networks

are promising. The neural net appears to outperform con-

ventional iterative techniques, when there are well defined [6]
clusters since it finds better solutions more frequently.
And when clusters are fuzzy, or when the number of clus-

ters we specify is not compatible with the structure of
data, the neural net indicates that it cannot find valid [7]

solutions easily, and that something may be wrong. This

indicator is an objective measure and hence more reliable
than the user supplied bounds and tolerances for conven-
tional techniques. Work on larger data sets is in progress. [8]

The clustering criterion we have used in this paper,
that is minimum sum of within-cluster variances, results [9]

in convex compact clusters. Often clusters are not round

or compact. By adding to the energy function, appropri-
ate terms that favor closeness of a point to its neighbors
(and not just to the cluster centroid), one can design a [10]

network that finds non-convex elongated clusters of vari-

ous shapes. Ill}
f

Simulationsof the neuralne_ on the MPP for the clus-

teringproblem are two to threeordersofmagnitude faster

than simulationson serialmachines such as the VAX 8800

and VAX 11/780. The speedup isdue to parallelsolution

ofthe differentialequations that govern the behavior of [12]
the network, as well as running severaltrialsat the same

time. However, the real benefitof neural nets may lie

inthe futurewhen they can be mapped on analog chips. [13]
There are forecaststhat analog VLSI neuralnets willbe-

come availablein severalyears [I]. These deviceswill

have processingtimes inthe micro to milli-secondrange,

making theirperformance comensurate with human per-

ceptual abilities. [14]
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Fig. 1. 128 points divided among 5 clusters and re-

spectively 0,10,25,50,75,100 % uniform background in

a,b,c,d,e,f.
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Fig. 2. Number of trials not converged versus iteration

for the data in Fig. la. (0 % background) (loop is the

iteration number).
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Fig. 3. Trajectories of the five cluster centroids for all 128

trials for the data in Fig. la. (0 % background). Lower

left corner of Fig. la. corresponds to back top corner in

this figure

Fig. 4. Trajectories of the five cluster centroids for the

data in Fig. lf. (uniform distribution - 100% back-

ground).
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ABSTRACT

A network of fixed-connection-weight neuron-like
elements has been simulated on the massively
Parallel Processor (MPP) in two ways. First, the
square connectivity matrix of a 128 neuron
network was mapped onto the square MPP
processor array. This allowed a highly parallel
simulation in which 128 MPP processors were
active at all times. Next, a 128 by 128 array of
neurons was mapped onto the 16384 MPP
processors. Here the MPP processor limits neuron
connections somewhat but all MPP processors are
active at all times and a large speedup is obtained.
The first simulation, based on the mathematics

(weight matrix), produced a significant speedup but
tended to obscure the second faster simulation

based on mapping the physics (entire physical
description) of the neural network onto the MPP.
The authors experience suggests that alternative
mappings onto the MPP should be sought and
examined carefully.

Keywords: massively parallel processor, neural
network, neural network simulation.

INTRODUCTION

This paper describes two simulations of neural
networks on the Massively Parallel Processor
(MPP). The first simulation seemed to be a natural
fit of the the mathematics involved to the MPP

architecture. It gave a significant speedup but it was
found that only a small percentage of the potential
power of the MPP was being utilized. The second
simulation mapped the physical process under
study to the MPP and led to a much better
utilization of the MPP. In the first implementation
we fell into what we believe may be a common trap,
that of simulating the mathematics as opposed to
the process. We would like to make this trap clear so
that others may recognize it and perhaps avoid it in
the future.

This paper provides a brief description of the MPP
and an outline of the neural model to be simulated.

This is followed by a description and a comparison
of the two simulations implemented on the MPP.

Logically, the MPP is a single instruction stream,
multiple data stream (SlMD) machine that has a
rectangular mesh of 128 by 128 one bit processors.
Each processor has 1024 bits of local memory and
can communicate directly with its four nearest
neighbors, including opposite edge neighbors. This
topology can be used in several ways to simulate the
neural networks described below.

NEURAL NETWORK MODEL

A simple example of the kind of neural network
studied here is shown in Figure I. The neuron
bodies are labeled A, B, and C. Their connections

are labeled p through u. The connection from A to C
says that when A "fires", a signal of strength q is
sent to neuron C. A neuron fires when the sum of its

accumulated activation and its present inputs
exceed its threshold. On firing, the accumulated
activation of a neuron is set to zero.

P

q r

From

A B C

To

A p

B s

C q t r

Figure I, A Simple Neural Network

CH2649-2/89/0000/0039501.00 © 1988 IEEE
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The operation of an N neuron network like that

shown in Figure 1 can be described mathematically
as follows:

Ai(t p) --- activation of neuron i at time tp ( real
number )

WlJ _a strength of connection from jth neuron to the
Ith neuron

( Also, the i,Jth element of the weight matrix W. )

T _ threshold at which any neuron will fire

1 if Aj {t) > TFIAj(t}] _ if Aj(t) < T

Ai(t + 1) =
N

(I- FIAi{t)]) *Ai{t) + _FlAj(t)]wij

j=l

Here the first term says that if a neuron fired on the
last time step its activation is not carried forward
and its contribution to the current activation is

zero; but if it did not fire its previous activation is
carried forward to the new activation. The second
(summation) term indicates the current effects of
the firings of other neurons.

This neuron model has a variety of simplifications.
First, time is discreet. Second, all neuron

thresholds are identical. This constancy is not a
limitation for the effect of different thresholds can

be achieved through adjustment of the weight
matrix elements. Third, the neuron connections are

not adjusted once the simulation begins. Thus, no
"learning" involving change in the elements of W is
involved. This last approximation allows the
behavioral investigation of relatively" large non-
learning networks.

The activation update phase of the simulation of the
models requires the majority of the computation
time. Here the activation vector for the next time
step is generated from the current activation vector
and the weight matrix. On each time step some
elements of the activation vector are above
threshold, and so the associated neurons fire. A
binary firing vector, F, is generated xvith a one in
the elements associated with neurons that fire on
this time step and a zero in the others. Each neuron
that fires on a given time step alters the activation
of the other neurons by the amount in the element
of the weight matrix corresponding to the
connection from the firing neuron to the receiving
neuron.

FIRST SIMULATION

A first look at the problem reveals that the topology
of the MPP is the same as that of a weight matrix. If
each processor served the function of a single
element of the weight matrix then the problem
would be well mapped to the hardware. For this

strategy a 128 neuron system, matching the
column/row size of the MPP, would be simulated.

Each processor has its particular weight stored in
its local memory. Since the activation vector has

128 elements, it can be handled by a single row or
column of the MPP. Activation update steps proceed
as follows. The activation vector is held in the

uppermost row of the MPP. A firing vector is
generated in the top row as each processor in that
row determines if the activation held there is above

threshold. As shown in Figure 2, this firing vector is
passed downward across the entire array so that
each processor in the i'th column can know whether

the i'th neuron is to fire on this time step.

iP P P P P

P P P P P

P P P P P P

P P P P P P
I

P P P P P

P P P P P

Pl

Figure 2, Firing Information Moves Downward

Next all processors in columns that fire pass their
weights to the right while the other columns pass
zeroes. As shown in Figure 3, these weights are all
passed to the rightmost column where they are
summed. This results in a vector in the rlghtmost
column that represents the change in A due to the
firing of the neurons.

L

p_ p P P P P

P P P P P P

P P P P P P

P P P P P P

P P P P PiP

Figure 3, Weights move to the Left
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This vector must be added to the old A vector in the

top row to form the new A. (More correctly, it is
added to the old A vector after the firing neurons in
the old A vector have been reset.) This stage is time
consuming since 256 shifts are needed to move all
the data from column form to row form. The

activations are shifted as shown in Figure 4.

[P

P

P

P

P

P

P P P P

P P P P

P P P P P

P P P P P

P P P P P

P P P P P

Figure 4, Activation Shifts from Left to Top

As described above, 128 processors work on the
problem in parallel at every step except the final
shifting stage. This gives a tremendous speedup over
single processor simulations. Another way of
looking at this performance however, is that at any
given time, about 1% of the MPP is being used while
the remaining 99% is idle. This second view
prompted a search for a better method of
simulation.

SECOND SIMULATION

The second simulation can model a much larger
neuron population and utilizes the MPP more fully,
but it does this at the expense of altering the neural
model slightly. Each processor now represents a
single neuron and stores its own activation level, as
well as the row of the weight matrix containing the
weights from other neurons to itself, in its own
local memory. Due to the 1024 bit memory
limitation of the MPP, there is not room for all

connections to all 16,384 neighbors, and only those
connections to the 24 nearest neighbors are held.
This is not as drastic a change in the model as it
might seem, for in the brain, connections between
nearby neurons are vastly more common that those
between distant neurons. A second change in the
model is that now the neurons have neighbors in
two dimensions rather than only one as in the
previous model. This change also leads to a more
realistic model, as the cerebral cortex is essentially
a two dimensional sheet of neurons.

The activation update procedure is shown in Figure
5. There each processor (neuron) determines if its
activation is above threshold. Each processor then

passes a one bit flag to the processor on its right,
informing that processor as to whether the first
processor is firing. Each processor stores this
information and then passes it upward. The process
repeats and each processor passes the flag to the left.
In this manner, the flag spirals outward around the
processor that generated it until it has reached all
24 of the nearest neighbors. If more then 24
connections are desired, the flag can spiral outward
as far as necessary. Thus, every processor
communicates its firing with its 24 neighbors using
only 24 shifts. Notice that the entire bit plane is
shifted so that all 16,384 processors pass their
firing information together.

P P P P P p

P Pq---P_-P+'--I_ P
p p_--p4--p p p

P P--*p--+p--+p p

P P P P P P

Figure 5, Data Flow in the Second Simulation

After this communication phase, each processor
sums its weights associated _a_th its neighbors that
fired and updates its own activation, completing the
activation update. Every processor is used in every
step, achieving full utilization of the MPP. The size
of the network has been increased by a factor of 128,
the total number of connections has been increased

by a factor of 24, and the similarity of the model to
the real world has been improved.

CONCLUSION

The simulation of neural networks on the MPP

architecture may be done in at least two ways. The
second simulation described above allows
connections between a limited set of neural

neighbors but all of the processors of the MPP are
active at all times and a much larger network can be
simulated. The update step in the second simulation
runs in approximately one fifth the time of that of
the first simulation and processes 24 times as many
connections. This yields a factor of 120 in the
number of connections processed per unit time. The
experience of the authors suggests that the
simulation of neural networks on massively
parallel machines can be done in several ways not
obvious at first glance and that alternatives should
be examined carefully as some may yield higher
computational rates than others. We first attempted
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to match the MPP to the matrix mathematics of the

model. Then we tried to match the physics of the
situation. It is interesting that the mathematical
modeling got in the way here. In a sense, the
hardware of the MPP more closely matches the
brain that the mathematical model originally
chosen.
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ABSTRACT

An implementation of a fully connected artificial neural net-

work using the multi-layered pereeptron model is described.

The neural network is implemented on Martin Marietta's

systolic array processor based on the Geometric Arithmetic

Parallel Processor (GAPP TM) chip. Arrays of GAPP chips

make up a single instruction multiple data (SIMD) class

machine which has fine-grained connections and is fully

programmable. Previous application areas of the GAPP

system are image/signal processing, computer vision, and

knowledge-based processing. The neural network is a rel-

atively new processing model for the GAPP, but one that

readily maps onto the architecture of the overall array proces-

sor. The proof-of-concept neural network was a multi-layered

perceptron model which used the back-propagation learning

paradigm. This initial network had fewer than 100 nodes in

three layers, and was trained to recognize letters of the al-

phabet. Work is progressing towards implementing a massive

artificial network environment (more than 40,000 nodes and

more than 10,000,000 connections) on the GAPP-based ar-

ray processor. Alternate learning techniques are also being

investigated.

Keywords: Neural Networks, Back Propogation, Parallel

Processors, Single-Instruction Multiple-Data (SIMD), Char-

acter Recognition

INTRODUCTION

The Image and Signal Processing Section of Martin Marietta

Electronic Systems is developing artificial neural network im-

plementations in the Geometric Arithmetic Parallel Proces-

sor (GAppTM). The GAPP is a Martin Marietta-developed

systolic array processor, made up of one-bit processing el-

ements, or cells, connected in a two-dimensional nearest-

neighbor mesh. Adhering to the axiom, "the algorithm is

the architecture," GAPP array sise may be directly tailored

to the size of the problem being solved, making possible many

different configurations of GAPP systems. A single instruc-

tion multiple data (SIMD) class machine, previous applies-

tions of the GAPP system were image and signal processing,

associative processing, and knowledge-based processing. The

neural network is a relatively new processing model for the

GAPP, but one that readily maps onto the architecture using

techniques developed from the above mentioned application

areas.

Artificial neural networks attempt to model the human cogni-

tive process in a eomputeL They are massively parallel hier-

archically interconnected networks of simple elements which

interact with the real world similar to the way biological ner-

vous systems do. Neural network models have the great-

est potential in areas where many hypotheses are pursued

in parallel and high computation rates are required, areas

which take full advantage of the GAPP's parallel architec-

ture. One such promising field of application is pattern recog-

nition. Traditional artificial intelligence (AI) algorithms for

pattern recognition are too specialised: they are designed to

deal with information in a single, strict form. For example,

in machine vision there are separate algorithms for boundary,

disparity, curvature, shading, and spatial frequency informa-

tion. Such algorithms typically use different computational

schemes to analyse each type of information, so that fusing

multiple types of information into a single general-purpose

vision algorithm is difficult.

The neural network learning paradigm offers a unique solu-

tion to this problem. Requiring only a general algorithm for

learning, neural networks automatically and dynamically de-
termine what information is salient to a solution.The form

that information must assume is therefore much less rigid

than that required by traditional AI systems, allowing eas-
ier correlation of different levels of information. For exam-

ple, this implementation uses pixel-hvel inputs to a network

which recognises letters.

Our first implementation in the GAPP system has been suc-

cessfully trained on letters of the alphabet. After training,

the implementation allows the user to place various inputs

under a camera and in this way examine the extent to which

the net has generalized the learning of the inputs. Via the

camera, rotated and corrupted versions of the inputs can be

provided to help in identifying some of the salient features

determined by the net.

CH2649-2/89/0000/0043501.00 © 1988 IEEE
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MODEL DESCRIPTION

The network model selected is that of a fully connected,

three-layer feed-forward net containing a total of 91 nodes

and 1728 weighted connections. For ease of initial develop-

ment, the input domain of letters was broken into a 5-by-7

grid in which it is possible to pixelise all 26 letters of the

alphabet. As these 35 cells were selected as the input to the

net, the first layer, or input, layer contains 35 nodes, one per
input pixel. Further, an input can only take on the value zero

or one corresponding to the cell being off or on, respectively.

The third, or output, layer was selected to have 27 nodes, one

for each letter of the alphabet and one to designate "other

than letter" recognition. The second, or hidden, layer was

initially chosen to be 25 nodes based on a rule of thumb

stating that the hidden layer should be roughly 2/3 of the

input or output layers. It was later increased to 27 nodes

after some experimentation on a VAX-based network indi-

cated that using these two additional nodes provided faster

network settling.

While the input nodes can only take on values of zero or one

due to input considerations, the values al both the hidden

and output nodes are positive 10-bit fixed point numbers (10

bits to the right of the decimal point) and range from 0.0
to 0.99902. The decision to use 10 bits was somewhat arbi-

trary, although the decision was influenced by the amount of

available GAPP memory. The output node with the largest
value is selected as the total net output. If two or more

nodes have the same value, they are all selected. Because

the net is expected to output a value greater than sero and

greater than the smallest non-zero value (0.000976), an ad-

ditional constant-valued node was added to the output layer.
The constant-valued node is selected if the value of all other

nodes are less than or equal to it. This node is used to signal
an internal network error condition and is not included in the

count of 91 total nodes. The selected output nodes, including

this special constant-valued node, are then highlighted on the

display which shows each letter of the alphabet.

There are two other special nodes, one on the input layer

and one on the hidden layer. Termed "bias nodes," these

constant-valued nodes supply an offset or bias to the dis-
criminant function at the node layer to which the node con-

nects. These nodes have no incoming connections but do

have weights and connections to the next node layer and for

all practical purposes act as just another node on the layer

(thus appearing as 36 input nodes and 28 hidden nodes). The

value of these nodes is considered to be one (actually 1.0 on

input, 0.99902 on hidden) so that the value of the weights on
connections are the actual bias for the discriminant function.

The net model used is a fully connected net: each node on a

layer is connected to all nodes (excluding the bias nodes) on
the next layer (see Figure 1). Attached to each connection

is a weight which is multiplied by the node value to provide

the value arriving on the connection to the destination node.

Weights in our implementation are assigned 15-bit fixed point

numbers, ranging from -16.0 to +16.9995 (4 bits to the left

of the decimal point, 11 bits to the right). Following the

standard net training techniques, these weights are adjusted

to provide a "trained network." Note that a weight of zero

would map a non-connection.

NETWORK EXECUTION

To exploit the power of the GAPP system, the model was

laid out such that a unique processor cell is assigned to each

nodal interconnect as well as assigning a processor for each

node, thus utilising a total of 1756 processors. The input
node data is duplicated down rows of cells and then summed

across the columns producing the hidden node values. These

are in turn duplicated across columns and summed down the

rows of cells, providing the final node values. This final node

layer also uses one processor per node, utilizing a total of

1756 processors.

The network is executed by following the standard feed-

forward operations. These processing steps are described be-
low.

The value at node k on any layer j is defined as:

N

_k,= f(_ w,_,j_ 1--0)
i=l

(1)

where f() is a limiting non-linear function (see Equation 2);
N is the number of nodes on the previous level (j - 1); w,_

is the weight connecting nodes i and k; zU_l is the value of

node i on the previous level; and 0 is the bias (or value of the

weight on the connection from the bias node to node k).

2.

3,

Place input in input nodes. For training this is a

fixed input with known correct output. For camera input

this entails thresholding the camera's 8-bit data to values
of zero and one, then pixelizing and shifting the data to

the GAPP cells designated as input nodes.

Spread the input across the weights and multiply.

As there is a distinct weight for the connection from each

input node to each hidden node (i.e. 27 weights per

input node), the input node values are spread across an

array of 36 (35 inputs + 1 bias) by 27 GAPP cells. This

distribution allows the process of multiplying the node

values times the weight values to be done in parallel.

Sum the values arriving at each hidden node and

pass through the non-linearity function. The prod-

ucts from step 2 are summed across all input nodes, in-

cluding the bias. All hidden nodes are summed simul-

taneously in the GAPP system. These sums are passed

through a pseudo-sigmoid function [.f(:_) in Equation 2]

to provide the hidden node value. The desired sigmoid

function is f(z) = 1/(1 + e-Z). But for easy implemen-

tation this function was coded as a group of conditionals
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Output nodes
(27 nodes)

Hidden nodes
(27 + 1 bias)

Bias nodes,
no input
connections

Input nodes
(35 + I bias)

Figure 1: Network node connections

which simulate the sigmoid function as follows:

0._a902, ifz > 4-5.0;

o.0oogTs, ifz _< -5.0;

if +1.0 < z <_4-5.0;
f(z) -- z_._,' if -5.0 ( z _ -1.0;

_-_, otherwise.

(2)

4. Spread the hidden node values across the weights

and multiply. Repeat step 2 using the values obtained

in step 3 for the 28 hidden nodes nnd 27 output nodes.

5. Sum and threshold. Repent step 3 using the values

for the 27 output nodes.

6. Determine the nodes with maximum value and

display accordingly. The value nt each output node

is eompnred to the others nnd those with the largest

value are identified. The desired result is that only one

node has the largest value. When this node (or nodes)
is identified, n display is generated in which the letter

corresponding to the node is highlighted.

NETWORK TRAINING

The training algorithm selected is the back propagation tech-

nique which uses n gradient heuristic, enabling n network

to self-orgnnise for improved petformnnce over time. Back

ptopngntion requires a specific training period in which the

correct (or desired) output is known for each potential input

that will be trained. All possible inputs do not need to be

shown, but rnther only n subset of the inputs. The actual sise

nnd contents of this subset is not known nnd is expected to

be domain dependent. Only those outputs that are trained

cnn be expected to be correct.

Back propagation consists of adjusting the weights by n small
amount based on the difference between desired node values

nnd present node values after executing the net for the given

input. The weight adjustment is based on the following equa-
tions:

w,_(t + 1) = wij(t) + T/6i_i (3)

where wij is the weight on the connection from either input

or hidden node i to node j on the next Inyer; *7 is n gain term;

6_ is nn error term given in Equation 4; and :vi is the value

of node i, For the hldden-to-output node level:

a, = _(_ - y,)(d3 - yj) (4)

where yj is the value of output node j and d_ is the desired

value for that output node. Fox the input-to-hidden node
level:

6j = zi(1 -- zj) _ 6kiujk (8)
k

where k is over all nodes in the layers above node j.

In our implementntion, these steps are followed precisely with

the gain term (_7) varinble nt execution time. The best results

have been achieved with a value of 0.0625 (I/16). While

most liternture references gains of 0.3 to 0.5, the gain used

in out implementation is believed to be smaller due to the

increased speed of training, errors in weight adjustment due

to truncntion, nnd lose of significant precision in the use of

fixed point, rather than floating point operations.

The actual steps in training ace:

I. Execute the net. The exact steps given under execu-

tion are performed with the correct output known foe

the input used. The only operations not performed are

determining maximal output node nnd generating the

display.
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2, Calculate titreerror delta (b) on the output layer.

Here the desirednode value isconsideredto be 0.99902

ifthat isthe node which corresponds to the letterbeing

trained,with a valueof 0.0 forallother nodes,

3. Spread the delta and multiply. This is the same

operation as used to execute the net except the spread

operation isin the reversedirection:the deltaisspread

from the output nodes over the previouslyspread hidden

node vMues. These values are then multiplied by the

node values and the gain (rt).

4. Alter hidden layer weights. The product from step

3 is then added to the weights to produce new weights
for the next execution iteration.

5. Compute next layer error delta. The previously

computed delta (step 2) is multiplied by the weights and
summed for all hidden nodes. This sum is then multi-

plied by the hidden node variance, per the back propa-

gation algorithm.

6. Spread the delta and multiply, alter input layer

weights. Repeat steps 3 and 4 using the weights on the

input layer,

After these operations the network has had one iteration of

training for the given input. Typically many iterations are

perfornted for all possible outputs. In this example the train-

ing was performed on the four "perfect" (meaning no corrup-

tions in the data) inputs ofT, A, X, and blank. With some

experimentation the primary features which the net extracted
for three of the four inputs were found to be the cdnter line

for the T, left and right sides for the A, and most anything

else for X. If no input cells were on, or if even any one at

random was on, the blank was considered. Figure 2 shows

the training input to the network and Figure 3 shows some

test case inputs. Note that while the network was trained on

only the inputs shown in Figure 2, the net can still recognise

pieces of the inputs shown in Figure 3. After some analysis of

the weights during training, it was found that all the desired

output nodes were driven high while all other output nodes

were low and remained so. All remaining iterations appeared
to act only to differentiate between the inputs. Further ex-

perimentation and analysis must be done to stud)' what the

values at the hidden nodes represent.

CONCLUSION

We plan to investigate at least two alternative learning strate-

gies to provide more flexible training capabilities: Grossberg

and Carpenter's Adaptive Resonance Theory (Ref. [31) and

Genetic Algorithms as described by Booker, Goldberg, and

Holland (Ref. [1]). The Adaptive Resonance Theory self-

organises stable pattern recognition codes in response to an

arbitrary input environment. This theory is based on mul-

tiple interacting memory systems to monitor and adaptively

react to the novelty of events without an external teacher.

Genetic Algorithms, which model gene pools, have been pro-

posed mainly for pattern classification. They are based on

replacing weak classifiers by recombining comp-,,..¢_ from

strong classifiers, similar to Darwin's theory of natural selec-
tion.

In summary, the artificial neural network is a promising pro-

ceasing paradigm which may be used to enhance existing AI

techniques. As mentioned previously, future research activ-

ity in neural networks at Martin Marietta will examine alter-

nate learning strategies and architectural topologies which

are "GAPP-able". We will pursue applications specifically i.

the areas of image understanding and spatial reasoning, and,

in general, expert systems which learn. Witt_ our past expe-

rience in pattern recognition and feature detection, coupled

with our proprietary GAPP architecture, we believe that we

can produce neural network systems that are well suited to

real- world problems.

Figure 2: Training inputs Figure 3: Test inputs
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Abstract

We consider several means of exploring the error function of

a multi-layer, feedforward neural network. In particular, we

look at hyperplane configurations over time, and the gen-

eralization of the network function to a regie,_ of the input

space. Using this approach, we analyze th, _esults of sev-

eral experiments run on the massively parallel Connection

Machine computer, as well as other reported results and ob-

servations.

Keywords: Neural Networks, Error Function, Layered Feed-

forward Network, Connection Machine, Hyperplanes, Geo-

metric Analysis of Neural Networks.

1 Introduction

Feedforward neural networks can "learn" surprisingly com-

plex input/output mappings using simple gradient-descent

algorithms which minimize an error function whose variables

are the network weights. These networks are an attractive

computational paradigm not only for their adaptation capa-

bilities, but also because they have natural parallel imple-

mentations.

However, even massively parallel implementations of neu-

ral networks may require extremely long training times. We

are hoping to reduce training times by incorporating into

the learning algorithm knowledge of both the structure of

the problem to be learned and the learning network topol-

ogy. To this end, we are investigating various means of char-

acterizing the shape of the error function in weight space,

for the case of a feedforward layered network and the sum-

of-squared-differences error function. We have also found it

useful to look at the movement in input space of hyperplanes

corresponding to the weights on links to hidden units, over

the course of training with the classical back-propagation al-

gorithm. (This representation of network state is referred to

below as the hyperplane configuration.) There is often struc-

ture inherent in a network's architecture and in a problem

(or training set) which is reflected in the error function and

in the hyperplane configurations over time. An understand-

ing of this structural information can help to better deter-

mine parameters such as size, connectivity, and initial weight

values of the learning network, and can contribute to the de-

sign of faster learning algorithms and input preprocessing

stages. Our analysis also allows us to provide explanations

for empirically observed phenomena, such as "flat spots" in

the energy surface, and improvements in performance with

extra hidden units.

In Section 2 we describe the implementation of the back-

propagation network training algorithm on the Connection

Machine. Section 3 presents results of a scaling experiment,

in which we study the effect on learning time of the number

of hidden units. We also present results of an experiment

on adjusting the length of the initial random weight vectors.

Section 4 discusses our explorations of the shape of the en-

ergy function in weight space, and developes the hyperplane

configuration. In Section 5 we apply the hyperplane analysis

to explain our experiments and other empirically observed

phenomena. Section 6 suggests several methods for obtain-

ing speedup in training times based on our analyses, and

summarizes the paper.

2 Connection Machine Implemen-

tation of Back-Propagation

To run our experiments, we wrote an optimized Connec-

tion Machine version of the back-propagation learning al-

gorithm for multilayer feedforward neural networks. (We do

not describe that algorithm here; see reference [4 I. The node

function for the units is assumed to be the sigmoid func-

tion varying between 0 and 1.) The Connection Machine's

massive parallelism is well suited for neural network imple-

mentations. For most of the problems we experimented with,

the Connection Machine allowed us to completely parallelize

the network, with one processor allocated to each node and

each weight.
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Figure 1. Implementation of neural network on the Connection

Machine: snapshots during fecd-forward of activity from one

layer to the next. Squares at left (1,2,3,4) represent node pro-

cessors in layer i. Circles to their right represent forward-link

processors from layer i to layer i + 1. Squares at right (a,b,c,d)

are node processors for layer i + 1. Circles preceding squares

are backward-link processors from layer i to layer i + 1. In

the first snapshot, activities at the layer i node processors are

forward scanned into their forward-link processors. In the sec-

ond snapshot, these activities are scaled by thc weights in each

forward-link processor. Third, the link values are routed from

the forward-link to the backward-link processors. Fourth, a for-

ward scan is used to sum link values into the layer i + 1 nodes,

where the sigmoid function is applied to obtain layer i + 1 ac-

tivities.

The Connection Machine is a powerful fine-grained par-

allel machine having between 4000 and 16000 processors. It

is a slngle-instruction multiple-data (SIMD) machine. Each
of the processors is a simple 1-bit processor with 4000 bits

of memory (the CM-2 has more memory and floating point

operations). There are two modes of communication among

the processors. In the first, the processors are connected by

a mesh of wires into a two-dimensional grid network (the

NEWS network, so-cailed because the connections are in the

four cardinal directions), allowing rapid direct communica-

tion between neighboring processors. The second communi-

cation mode is the router, which allows messages to be sent

from any processor to any other processor in the machine.

The back-propagation algorithm that we implemented on

the Connection Machine takes advantage of the fast parallel

scan operation [1]. One processor is assigned to each node

in the neural network. Each node processor is preceded by

a linear string of "backward-link" processors, each of which

stores information corresponding to a link from a node in

the previous layer. Each node processor is also followed by

a set of "forward-link" processors, each corresponding to a

link to a node in the next layer. The purpose of this linear

arrangement is to 'allow use of the fast scanning operation

to pass information along the linear string of node and link

processors.

Forward propagation starts with the inputs being loaded

into the first layer node processors. Then a forward scan op-

eration sends the activities from these nodes into their asso-

ciated forward-link processors. Each forward-link processor

multiplies this activity by its weight value, and the rout-

ing network of the Connection Machine is used to send this

value to the corresponding backward-link processor in the

next layer of processing nodes. The final step in the loop is

another forward scan which adds the values of the backward-

link processors into the node processor for the second layer.

Then each node processor in this layer computes the sigmoid

output function and we start again on the next layer with a

forward scan (Figure 1).

Back-propagation of error works in a similar way, using

the backward scan operation instead of the forward scan. Er-

rors instead of activities are transmitted backward through

the network, and weight values at the node processors are

updated.

3 Some Experimental Results

The problems we are investigating include the parity func-

tion of n inputs and classification of n-dimensional vectors

over real-valued intervals: /_ _ {0, 1}. The parity function

is useful because it scales in an obvious way, and because

it is the most complex Boolean mapping to learn. Many

of our experiments used two-input XOR as the input; al-

though occasionally maligned as being somehow unrepresen-

tative of problems to which neural networks ought to be

applied, we note that it is in fact very useful as the simplest
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binaryproblemwhichrequiresahiddenlayerinanetwork.
Theproblemofclassifyingreal-valuedvectorsproblemsince
therehasbeenlessworkwithreal-valuedinputsthanwith
binary-vMuedinputs,althoughmanypotentialapplications
involveanalogdata.

3.1 Learning Time as a Function of Hid-

den Layer Size

One critical question in the design of a neural network is the

number of units in the hidden layers. There is often a min-

imum hidden layer size below which the network is not ca-

pable of representing certain input-output mappings. Even

above this minimum size, however, it may still be difficult

for the network to learn. By running experiments, we have

confirmed reported results that adding hidden units reduces

the learning time. The speed of our parallel implementa-

tion allowed us to run enough experiments to get reasonable

statistics on this phenomenon.

In all of the experiments described in this paper we used

a network with one hidden layer. The input layer had two

units and the output layer had one unit, while the numbeJ

of units in the hidden layer was varied. We used the XOR

problem as the mapping to be learned by the network. The

learning algorithm employed was back-propagation, with a

learning rate of 1.0 and the momentum term set to 0.0. The

initial weights of the connections in the network were ran-

domly initialized to values in the range -1.0 to 1.0. In each

run, the stopping criterion adopted was that the error must

be less than or equal to 0.02. The learning time of a network

is then defined as the minimum number of passes through

the backpropagation algorithm that are necessary to bring

the error of the network to 0.02 or less. (We make the as-

sumption that results on learning times obtained for one set

of parameters scale simply for other values of these parame-

ters. Setting the momentum term to 0 was useful in that it

allowed us to interpret our results as reflecting the true shape

of the energy function in weight space.) In our experiments

we varied the bidden layer size from 2 to 128 units.

Table 1 summarizes our results on the scalability of the

hidden layer size. It confirmes reported results that adding

hidden units reduces the learning time of a network.

The relationship between the learning time and the size

of the llidden layer resembles a hyperbolic curve (Figure 2),

and so we looked for a linear correspondence between the

learning time and the inverse of the size of the hidden layer

for a particular network. Figure 3 shows a plot of learning

time as a function of the inverse of the size of the hidden

layer. A linear regression was performed using the data for 2

to 48 hidden units in order to obtain an equation relating the

number of hidden units and the learning time. (As discussed

in section 5, this model breaks down for a large number of

hidden units because of overshoot effects.) The equation

obtained was:

hidden units trials

2 60

3 60

4 60

5 60

6 60

7 60

8 60

9 60

10 60

12 40

16 40

20 40

24 40

32 40

48 40

64 40

96 40

128 40

Table I. Learning time vs. number

968 5= 254

802 5= 144

719 5= 128

665 5= 114

618 ± 93

597 5= 85

580 5= 59

544 5= 55

545 ± 57

504 ± 56

484 4- 55

467 + 44

453 5= 36

452 5= 34

432 5= 34

389 + 24

318 5= 33

373 5= 61

of hidden units.

A

t = _- + B, where

A = 1140,

B = 420,

t = learning time,

h = number of units in hidden layer.

The model described by the equation above was tested

with our previous results, as described in the Table 2. The

values for the learning time that were predicted from the

model equation fell within 3.3 % of the mean value obtained

for each case.

hidden units

2

4

5

6

7

8

9

10

12

16

20

24

32

48

predicted

990

800

705

648

610

583

563

547

534

515

491

477

468

456

444

Table _. Fit of model to

actual t error

968 + 2.3 %

802 - 0.2 %

719 - 1.9 %

665 - 2.6 %

618 - 1.3 %

597 - 2.3 %

580 - 2.9 %

544 - 0.6 %

545 - 2.0 %

504 + 2.2

484 + 1.4 %

467 + 2.1%

453 + 3.3 %

452 + 0.9 %

432 + 2.8 %

data.
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Figure 2: Graph of learning time as a function of the number of hidden units on the XOR problem.
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Figure 3: Graph of learning time as a function of the inverse of the number of hidden units on the XOR

problem.

Further, the model was tested with new experimental

data obtained independently of that from Tables 1 and 2.

The experiment was performed in the same manner, but dif-

ferent values for the number of units in the hidden layer were

used. The results are summarized in Table 3. The model was

again able to predict the le_rnin$ time for all new cases with

an error variation not greater than 5 %.

hidden units predicted t + tr ] actual t error

15 496 [ 496 0.0 %
30 458 441 + 3.8 %

45 445 440 + 1.1%

Table 3. Fit of model to new data.
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3.2 Learning time as a function of initial

weight vector length

Weight values are usually initialized to "small" random val-
ues. We have found that the length of this initial weight vec-

tor is important and has a strong effect on measured learning
time results, at least for the XOR problem with two hidden

units. For all of our experiments, initial weights were cho-
sen by randomly choosing a point in the unit-radius hyper-

sphere according to a uniform probability distribution, and
then normalizing the length of the weight vector to a user-

specified length. (To achieve a uniform distribution over the
unlt-radius hypersphere, we chose points in the unit hyper-
cube by choosing each coordinate independently from a uni-

form distribution, and then rejected points which were not

within the unit hypersphere. While this method works well

for a small problem like XOR which has a nine-dimensional
weight space, it becomes impractical for much larger prob-

lems because too many of the randomly chosen points are
rejected before a "hit".)

The learning algorithm used was batch back-propagation
with a learning rate of 0.25 and a momentum of 0.9. The

algorithm terminated with a "success" if the error was re-
duced to less than 0.125. Learning time for successful trials
was measured in epochs, or passes through the entire train-

ing set. The algorithm terminated with a "failure" if it had
not succeeded after 10,000 epochs.

Graph A in Figure 4 shows that for XOR, the proba-
bility of back-propagation terminating successfully does de-

pend on initial random weight vector length. Eight initial
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Figure 5: tIyperplane configurations in learning the XOR problem with two hidden units. Snapshots at

epochs 50, 250, 500, and 750.

random weight vector lengths were chosen and these values

appear on the WVL axis. For each length, 100 random initial

weight vectors were generated and run through our learning

algorithm. The percentage of these hundred runs which ter-

minated successfully is plotted and is seen to decrease with

increasing WVL.

Graph B in Figure 5 shows that average learning time

does depend on initial weight vector length. Eight initial

random weight vector lengths were chosen and these values

appear on the WVL axis. For each length, 100 random initial

weight vectors were generated and run through our learning

algorithm. The average number of learning sweeps needed

for the trials which terminated successfully is plotted, and

shows that learning time increases if the length of the initial

random weight vector is too small, as well as if it is too big.

4 Exploring the Error Function in

Weight Space

We have considered several ways of looking at the error func-

tion in weight space. The error function is defined as the sum

of the squares of the differences for each input in the train-

ing set of the desired output and the actual network output.

For the two-input, two-hidden-unit XOR problem, we nu-

merically explored the energy function in weight space, and

derived the error equation analytically (for these results, see

the forthcoming AI working paper [2]). We ran many back-

propagation experiments. We watched tile evolution over

time of the hyperplanes representing the hidden units, and

we performed a geometric analysis of final weight configu-

rations. We found it very useful in practice to overlay the

hyperplanes on a color image representing the function com-

puted by the network (with a range of colors from blue to

red representing values from 0.0 to 1.0). We now develope

the hyperplane configuration approach.

Consider a sigmoid unit in a feedforward neural network,

which computes the function

1

f(x) - a - e-"

where z is the weighted sum of inputs to the unit. The unit

will output a value of .5 whenever its weighted inputs sum to

0. Given weights on the input links, then, the locus in input

space of values which will produce a 0 input to tile node is a

hyperplane. In the case of two inputs, this is a line. For bi-

nary output problems, a network that has learned to output

correct responses .to training set elements has a hyperplane

configuration in which hyperplanes separate training inputs

which have different outputs.

We plotted snapshots of the movement of these lines in

input space over the course of learning. Figure 5 is an exam-

pie of training a 2-hidden-unit network on the XOR problem.

The four training set elements are represented in the input

space by the four circles. The filled circles at (1,0) and (0,1)

have a desired output of 1, and the open circles at (0,0) and

(1,1) have a desired output of 0. The final solution, with the

parallel lines separating the two classes of inputs, is in one

of only two possible configurations (the other configuration

has the parallel lines cutting the training examples the other

way).

Figures 6 and 7 illustrate snapshots during the training

of a 3-hidden-unit network on XOR. The final configuration

in Figure 6 is similar to that of a 2-hidden-unit network; a

glance at the output weights for each hidden unit reveals

that the "extra" hyperplane has weight much smaller than

the other two. On the other hand, the final configuration in

Figure 7 is structurally dissimilar from that of a 2-hidden-

unit network: a star of lines is formed instead of two parallel

lines. All three of the hidden units are important in the

network, and the magnitudes of the weights between them

and the output node are approximately equal.

We can characterize the final configurations of the hy-

perplanes into informal equivalence classes. For example,

the 2-hidden-unit solution with parallel lines is one equiva-

lence class (the two possible orientations are considered to

be in the same equivalence class, by symmetry). The star

configuration is another equivalence class. Thus we found

that increasing the complexity of the learning network not

only allowed for variations of existing final configurations,

but also added new structural equivalence classes. We are
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currently working on the problem of describing the regions of

attraction in weight- or hyperplane-space for each of the final

configurations. In particular, we noticed that there are long

learning times corresponding to initial configurations which

lie on the boundary of these regions of attraction, indicating

that it takes some time to make the decision about which

direction in which to go.

The motion of the hyperplanes during the course of learn-

ing (as well as the color map of the network function in in-

put space) shows a lot about the shape of the error function.

Slow movement of hyperplanes corresponds to low deriva-

tives in the error function. Fast and often oscillatory move-

ments of the hyperplanes indicate rapidly changing areas of

the error function; the oscillation is due to overshoot of a

local energy minimum along the direction of the gradient at

a point.

5 Explaining Empirical Observations

The hyperplane configuration approach has provided answers

or clues for various observed phenomena, as well as pointing

out new questions we had not previously asked. We were par-

ticularly interested in such phenomena as speedup in learn-

ing with increased number of hidden units, "fiat spots" in

the error function, the initial shrinking of the weight vec-

tor, symmetry-breaking and hidden unit differentiation, and

the success of the heuristic of removing hidden units after

learning has been partially completed. By watching the hy-

perplanes as learning progressed, we were particularly struck

by certain oscillatory effects, fast vs. slow movements, and

analogies with attractive and repulsive forces.

Let's start by considering the experiments in which we

varied the number of units in the hidden la)rer. We found

a steady decrease in the learning time, up to a point, after

which the learning time began to rise again. By looking at

the hyperplanes and the color graph of the network function

in input space, we could see that one of the explanations for

decreasing learning time was that more final configurations

were available to the network, and it had more freedom in

choosing weight values with more hidden units and redun-

dancy. For only two hidden units, the values of the weights

could not vary much at all before violating the required er-

ror bound. Another thing we noticed was that the effective

step size increased dramatically as the dimensionality of the

weight space increased: the step size in the gradient descent

algorithm is used by each weight in adjusting itself, so the

more weights there are, the larger the total step size. There-

fore, we were seeing a lot of oscillation in the large networks

because there was a lot of overshoot of local minima in the

direction of the gradient.

On many of our training sessions, we noticed that the

length of the weight vector would often change rapidly over

a brief period right away, and this would be accompanied

by a rapid reduction in the error. After this there would be

a 1cycling off of both signals. This was easy to understand

when we looked at the plot of the network function over the

input space: the first thing that happens is that the output

layer weights are adjusted so as to bring the output function

of the network to be approximately .5 everywhere. Usually

the hyperplanes do not intersect the unit hypercube that

is defined by the binary training vectors, because they are

chosen at random. Then the hyperplanes would be slowly

dragged in toward the unit hypercube; the farther away they

were from the cube the slower they would move. Thus the

initial location of the hyperplanes is a key factor in learning

time.

Another interesting aspect was symmetry-breaking and

hidden unit differentiation. We observed several cases where

one or more of the hyperplanes was in a location near a "deci-

sion point". On one side of this point, the hyperplane would

go in one direction, and on the other side of this point, it

would be pulled in a different direction. Hyperplane move-

ment near this decision point was generally quite slow. There

were also times when more than one hyperplane was serv-

ing the same function (located in a similar place), and one

was needed elsewhere. It would take a long time for the two

hyperplanes to differentiate.

If two networks have been trained successfully on a prob-

lem, the smaller one tends to generalize better. However, the

smaller networks also tend to become trapped in unaccept-

able local minima more readily during the training phase.

Therefore researchers have investigated the possibility of re-

moving hidden units after learning has been partially com-

pleted. Our conclusion is that this heuristic works well only

under certain conditions, wherein "redundant" hidden units

are chosen for elimination. Often useless or redundant units

have smaller weight vector magnitudes, so this is a good

heuristic.

We also did some experiments with larger-size problem

such as parity'of n inputs and more complex classifications

of two real-valued inputs. We found that the learning time of

the networks tended to correspond to the number of hyper-

planes that were needed to separate the inputs in different

classes, and we used this as an informal definition of the

complexity of the problem.

6 Speeding Up the Learning Algo-

rithm and Future Work

Several approaches to obtaining speedup in training times

have suggested themselves from our experiments. One is the

choice of initial weights. By starting with the hyperplanes

near the unit hypercube and separated from each other, we

very much decreased the learning times. Various compu-

tational geometry algorithms are also attractive for deter-

mining initial hyperplane configurations; depending on the

complexity of these algorithms as a function of input dimen-
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sionalityandtrainingsetsize,they might even become a re-

placement for back-propagation network training methods.

For large training sets, we would like to consider alternatives

such as those suggested by Stephen Omohundro [3].

We also implemented a steepest descent algorithm, and

the more efficient Fletcher-PoweU algorithm for determining

the next direction in which to change the weights combined

with a quadratic interpolation for optimum step size. This

algorithm is parallelizable and achieves learning rates at least

as good, and usually better, than others reported in the lit-

erature.

We are currently working on characterizing the regions

of attraction of the final hyperplane configurations. In ad-

dition to studying the hyperplane configurations experimen-

tally, we hope to make a theoretical statement about the

hyperplane configurations of final solutions obtained by the

back-propagation learning algorithm. We may be able to de-

rive analytically the configurations which correspond to local

minima of the error function in weight space. We are also

interested in considering the movement of the hyperplanes

in terms of forces between them and the training set inputs,

as well as among hyperplanes themselves.

We would like to look at the behavior of other learning

algorithms in hyperplane configurations. For example, we

are particularly curious to try it on David Rumelhart's new

scheme which adds terms to the error function that reduce

the size of the network dynamically during learning.
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ABSTRACT: Rent's Rule is an empirical relationship stating

that the number of pins on a chip increases as the number of
gates on the chip increases. In massively parallel systems,
every extra pin is multiplied by the number of processors.

This causes a rapid increase in system complexity, cost, and
failure rate. The key to more efficient massively parallel sys-
tems is finding a way around Rent's Rule. By studying the

effects of re-implementing a system of fixed complexity using
different integration levels, we have found that Rent's rule
does not apply to systems which place program memory on
the same chip as the processor. This suggests that a focus for

massively parallel systems might be to use processing ele-
ments simple enough to completely fit on a single chip, rather
than faster but more complex processors that use external

memory devices.

Keywords: Rent's Rule, integration level, system complexity.

INTRODUCTION

Rent's Rule (ReE 1) is an empirical relationship between the

number of gates and the number of I/O pins a single chip.
The relationship is given by:

R
I0 = AS * G

In this equation, IO is the number of input/output pins on the
chip. AS is the complexity of a single logic gate on the chip
as measured by the number of inputs for the gate. G is the

number of logic gates on the chip. R is the Rent Exponent,
which is a circuit-dependent "magic" number between 0 and
1,which is often near 0.5.

The trend in VLS1 processor design has been: given the
availability of more silicon real estate, put more sophisti-

cated functions or wider data paths into a single chip. Thus,
memory chips have progressed from 256K bits to 1M bits to
4M bits. Also, microprocessors have evolved from 8 bits
wide to 16 bits to 32 bits. These chips all obey the Rent's

Rule prediction of a logarithmic increase in the number of

pins as the number of gates on the chip increases. This in-
crease in the number of pins has important implications for
the builders of massively parallel systems.

THE COST OF TOO MANY PINS

Since the innovation of standardized integrated circuits we
have progressed from the introduction of the 14-pin dual in-
line package (DIP) to common use of pin grid array packages
(PGAs) with hundreds of pins. The addition of extra pins to
a chip has some obvious as well as hidden costs.

The most obvious cost is the manufacturing cost of the chip
package itself. Small DIPs are very inexpensive to manufac-

ture since they use stamped metal pins. As chips require
more pins, DIPs become impractical, and packages such as
leadless chip carriers (LCCs) are used. Each contact on an
LCC costs more than a DIP pin, because it must be more
precisely manufactured and placed around four sides of the
package. At the high end of the spectrum, PGAs use

precision-machined round pins that are precisely placed in a
matrix on the back of the chip. It is not unusual for each pin
of a PGA to be several times more expensive than an entire

DIP package. Thus, there is a very steeply increasing cost
curve for the entire chip as the number of pins is increased.

The direct cost of the chip package only begins to describe

the costs of adding pins, however. At the on-chip level, every
pin must have an on-chip pad. This pad consumes valuable
silicon real estate. But, more importantly, each pad con-
sumes power. As geometries become smaller, the amount of

power used by a chip to drive its output pins can dwarf power
consumption for on-chip logic. The problem is especially
severe with CMOS technology, which is coming into favor for
high density circuits.

At the system level, the footprint of the package on the
printed circuit board increases as the number of pins on the
package increases, costing valuable printed circuit board real

estate. Increased printed circuit board sizes result in bigger
cabinets and, ultimately, more boards with expensive and
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59



slow interconnect structures. Dense pin arrangements such
as those found on PGAs further aggravate the problem by re-
quiring expensive multi-layer boards.

Many indirect costs are associated with chips that have large
pin counts. These costs include the use of very expensive

automated chip testers when they are manufactured. Also,
every extra pin in a finished computer reduces the over-all
system reliability, since interconnect failure is a frequent sys-
tem failure mode. (Ref. 2)

In a parallel computer, these pin costs are multiplied by the
amount of parallelism in the design. Since the premise be-
hind a massively parallel system is that more processors are
better, all massively parallel designs will ultimately be
limited in processing power by the number of processors that

can be afforded within a given space/power/cost budget. The
number of pins in each processing element within the system
can therefore directly affect the ultimate computational
power of a massively parallel processor.

BREAKING THE RULE

One should not infer from the previous discussion that the

use of VLSI chips with large pinouts is bad. These chips,
while expensive, are less expensive than the total system cost
of using a large number of less complex chips instead. The
question is: can we do better?

Rent's Rule predicts that increased VLSI chip complexity
will lead to an inexorable increase in pin count. A key to
making massively parallel systems faster and more cost-ef-
fective is to find a way to break out of Rent's empirical

relationship. One way to accomplish this goal is to find an
implicit assumption in the relationship that can be altered.

There is an historic relationship between chip complexity

and overall system complexity. As chips have become more
dense, computer systems have not only become more highly
integrated, but have also become more complex. Adding
more complexity to a system makes sense in a uniprocessor
environment, where the added complexity squeezes the most

possible performance from the machine. Rent's Rule ap-
plies to computer systems as they have been built over the
years, so it accounts for this implicit assumption. But what if
we violate that assumption, and hold system complexity as a
constant?

The answer to this question may be found by conducting an
experiment that holds system complexity as a constant for
varying ir,tegration levels. In order to do this, we built a

hierarchical description of a 16-bit microprocessor system
(Ref. 3) starting at the gate level. All circuit functions were

ultimately reduced to combinations of 2-input NAND gates
for simplicity. Then, we did a redesign of the system using
six different integration levels ranging from SSI (all 2-input

NAND gates) to high density VLSI (entire system on a single
chip)• Each integration level was chosen to correspond to a
reasonable method for partitioning the system components.
Figure 1 shows a graph of chip complexity versus pin count
for the various implementations, as well as the curve for a

Rent exponent of 0.38. There are more than six data points
in this graph, since most implementations had several chips
in the design. RAM chips are not shown as they obey a Rent
curve with a different slope that clutters the diagram• Power

supply pins are not accounted for since they vary with im-
plementation technology.

Integration Levels 1 and 2,which correspond to SSI and MSI
components, obey a classic Rent's Rule curve with an ex-

ponent value of approximately 0.38. Integration Level 4,
which corresponds to a 3-chip system, also falls neatly on this
curve. Integration Level 5, which corresponds to a standard
micro-processor 2-chip system (processor chip and memory
chip) is somewhat off the curve, but is still a reasonable fit.
Integration Level 3 turned out to be an awkward level of in-

tegration, which forced a very poor partitioning of the sys-

tem, resulting in a very high pin count for one of the chips•

The really interesting point on the graph is Integration Level
6. This design is nowhere near the curve! Integration Level
6 corresponds to a single-chip system, which incorporates

program memory and the processing logic on the same chip.
This implementation appears to break Rent's Rule.

INTERPRETING THE RESULTS

Figure 2 shows a curve that helps us interpret the results of

the experiment. If we ignore Integration Level 3 as a "bad
data point", then what is really happening is that the designs
obey Rent's rule quite well through Integration Level 4.
Then, as we reach very high levels of system integration, the
number of pins on the chips begins to decrease. If the entire
system is on a single chip, only a few pins for system I/O are
needed• While the microprocessor seems to be near the
break in the curve, the break is not really noticeable until the
system-on-a-chip approach is taken.

The results, once one thinks about the situation, are rather

straightforward. A system-on-a-chip needs off-chip inter-
connection only for I/O, so it needs very few pins. Why hasn't

this concept been exploited then? The reason is that it is of
limited use in the uniprocessor world• Most high-perfor-
mance uniprocessors are too complex to allow enough room
for on-chip memory.

The situation in a massively parallel processor environment
is quite different than in a uniprocessor environment. Since
massive parallelism is cost effective only in applications

which can achieve roughly linear speed improvements as
processors are added, N processors that perform at 1/Nth the
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speedof a given uniprocessor are roughly equal in process-
ing power to that same uniprocessor.

The approach that is supported by these findings is one of

building relatively simple processor/memory systems that
can fit on a single chip. Since these chips will be much less
expensive to manufacture and use in a system, more proces-
sors can be included in a system.

There are several methods of implementing this strategy.
One method is to simplify a given processor implementation

as much as possible, probably sacrificing speed-enhancing
hardware features for overall system size. With current tech-
nology (1 to 2 micron CMOS), this approach can lead to

simple 16-bit processing elements with small program
memories. Of course, appropriate software techniques to

keep code size small are vitally important. This approach is
probably the most attractive for MIMD machines.

Another possible method is to reduce the word-size of each

processing element. The ultimate extension of this
philosophy is bit-serial machines which can, in fact, have mul-
tiple processing/memory elements per chip. This approach
is obviously well-suited to SIMD machines.

CONCLUSIONS

In the near term, the challenge to achieving the maximum

level of processing element integration is to find design styles
and programming methodologies that can fit enough
functionality onto available chip real estate to go beyond the

Rent's Rule breaking point. Current architectures which

may be able to do this include: bit-serial processors, which
can pack several processors with memory onto a single chip;
8-bit microcontrollers, which are probably not powerful
enough to be of interest in their currently available form; and
stack-oriented processors, with their small program memory

size requirements. In the future, chip sizes may increase
enough to allow RISC processors to have a full-sized on-chip
cache and slow serial interfaces to their program memories.

CISC processors may eventually reach this point as well, but
only if they are frozen at a particular complexity level.

Some parallel processor architectures, especially SIMD ar-
chitectures, are clearly already embracing the philosophy of
simple computational elements that can fit on a single chip.
What we have explored are some of the theoretical under-

pinnings of this approach, and why it makes sense for mas-
sively parallel architectures.
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ABSTRACT

Many problems can be described in terms of directed graphs that con-

tain a large number of vertices where simple computations occur using

data from adjacent vertices. A method is given for parallelising such

problems on an SIMD machine model that uses only nearest neighbor

connections for communication, and has no facility for local indirect

addressing. Each vertex of the graph will be assigned to a processor

in the machine. Rules for a labeling are introduced that support the

use of a simple algorithm for movement of data along the edges of the

graph. Additional algorithms are defined for addition and deletion of

edges. Modifying or adding a new edge takes the same time as parallel

traversal. This combination of architecture and algorithms defines a

system that is relatively simple to build and can do fast graph process-

ing. All edges can be traversed in paralhl in time O(T), where T is

empiricaUy proportional to the average path length in the embedding

times the average degree of the graph. Additionally we present an ex-

tension to the above method which allows for enhanced performance

by allowing some broadcasting capabilities.

Keywords: routing algorithm, SIMD architecture, parallel processing,

graph embedding, intereonnection network

INTRODUCTION

There are many problems that can be formulated as directed graphs.

Such probhms include circuit simulation_ semantic networks and to-

pography. Typically the real-world versions of these problems contain

100,000 vertices or more, and while the computations that occur at

each vertex are simple, the size of the problems makes them compu-

tationally intensive. A natural way to paranelise these problems is a

paradigm in which each processor is assigned a vertex in the graph,

and there is some mechanism for realising the arcs. This fine grained

approach suggests the use of SIMD architectures, which can be built

with many thousands of processors.

The problem with using SIMD architectures is that often they do

not easily support generalized message passing schemes. This paper

presents a method of embedding graphs in a class of SIMD architectures

by using a special space-time labeling that supports message delivery

and incremental addition of paths. The algorithms for this system are

presented in (Refs. 16, 17). Basic concepts of the system will be re-

viewed, followed by an important generalisation of the original method.

To maximise the number of processors which can be built, we choose

the simplest hardware definition necessary to solve graph oriented prob-

lems. The machine model used is SIMD: there is a controller and a

large number of slave processors which can execute the same instruction

stream simultaneously. The processors have exclusively local memory,

and they have no facilities for indirect addressing. The processors must

be connected in a topology with the following requirements: (1) there

must be some path between any two processors; (2) every neighbor

link must be bi-directional, i.e. if A is a neighbor of B, then B must

be a neighbor of A; and (3) the neighbor relations between processors

"THIS WORK WAS SUPPORTED BY THE NATIONAL AERONAUTICS

AND SPACE ADMINISTRATION UNDER NASA CONTRACT NO. NASI-18107

WHILE THE AUTHOR WAS IN RESIDENCE AT ICASE.

must have a consistent invertible labeling. A more precise definition

of the labeling requirements can be found in (Ref. 16). It suffices that

most networks (Ref. 4) including grid, hypercube, cube connected cy-

cles (Ref. 13), shuffle exchange (Ref. 14), and mesh of trees (Ref. 7)

are admissible under the scheme. Additional requirements are that the

processors be able to read from or write to their neighbors' memories,

and that at least one of the processors acts as a serial port between the

processors and the controller.

The Massively Parallel Processor (MPP) built by Goodyear

Aerospace is an SIMD architecture with single bit processors arranged

in a 128 by 128 processor grid (Ref. 2). The MPP is not the perfect

machine for this algorithm since it is limited by its diameter being
v/N, but nevertheless is a good candidate.* A parallel machine design

that fits our model well is the Boolean Vector Machine (BVM) being

built at Duke University which is an SIMD machine that uses the cube

connected cycles interconnection scheme (Ref. 13).

The Connection Machine, produced by Thinking Machines Corpo-

ration, is an SIMD architecture with 64K processors, each with 4K

bits of memory, and complex routing hardware that supports arbitrary

communication (Ref. 5). While a hardware router may be a preferred

method for solving graph problems, many applications do not require

this arbitrary communication facility and would profit by replacing the

equivalent silicon area with more processors and using software for com-

munication. By choosing a software alternative, problems that do not

need generalised communication are more economical and graph ori-

ented problems are still viable. Independent of the argument of whether

one should or should not build an SIMD architecture with routing hard-

ware, the fact remains that architectures such as the MPP are being

built that do not have routing hardware, and routing software extends

their usability.

THE METHOD

In this section we present the concept of conflict-free space-time la-

beling, henceforth referred to as CFST-labeling. Using this labeling
scheme, we present a simple algorithm for data movement and an al-

gorithm for generating CFST-labeling of a graph incrementally.

It is necessary to distinguish between the graph problem being at-
tacked and the computer model being used. The graph being embedded

will be referred to using standard graph terminology with regards to

vertex, edge, and degree. The machine elements are called processors

and wires. Each vertex will be assigned to a different processor. Each

edge in the graph will be realised by a path in the physical network

which is a list of consecutive wires joining adjacent processors. Each

wire specification that is part of a path is referred to as a link.

Traversing all the edges of the embedded graph in parallel will take

more than one step since messages cannot be sent instantaneously but

rather must be passed along through successive neighbors. Traversing

all edges in parallel, referred to as the delivery phase, will be consid-

ered an uninterruptible operation that takes T steps. In addition to

the spatial characterization of a path, a path will also be character-

ized by a relative temporal offset within the delivery phase. Rules are

provided governing paths. Algorithms are presented to create paths

"See (Ref. 3} for an implementation of sorting on the MPP
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incrementally and to transfer a collection of messages through paths

simultaneously.

We will begin by defining the data structures which will be resident

at each processor.

ALLOCATED .... boolean fla 8 indicates that processor

is assi_d a graph vertex

VERTEX_LABEL --- label of graph vertex

HAS_NEIGHBOR[I..neighbor_limit] --- fla s indicates

existence of wires

SLOTS[1..T] OF edge path information

START .......... new edge starts here

DIRECTION ...... direction to send

(1. , neighbor_limit, FREE}

END ........... edge ends here

ARC LABEL ..... label of edge

The ALLOCATED and VERTEX_LABEL fields indicate that the pro-

cessor has been assigned a vertex in the graph. The HAS-NEIGHBOR

field is used to indicate whether a physical wire exists in the particular

direction {e.g. in a flat grid, edge processors only have 3 neighbors, and

corner processors 2, while internal processors have 4); for a completely

regular topology it is superfluous. The SLOTS data structure is the key

to the routing system. It is used in the delivery algorithm to instruct

the processor where to send a message and in the labeling algorithm to

insure that paths are constructed so that no collisions will occur. The

SLOTS array is used to tell the processors what they should do on each

relative time position within the delivery phase.

One of the characteristics of this algorithm is that a fixed path is

chosen to connect two processors and once chosen it is never changed.

For example, consider the grid in Figure 1.

Figure 1.

If there is an edge between vertices in A and H, there are several pos-

sible paths: East-East-South, East-South-East, and South-East-East.

Only one of these paths will be chosen between A and H, and that same

path will always be used. For each edge, the corresponding path is not

only fixed in space (i.e. the set of wires is constant), but is also fixed in

time (the initial delay before the message starts down the path is con-

stant). Once the starting time for the path has been fixed, it is never

changed. Paths do not have to start on time I, but can be scheduled to

start at some relative offset within the delivery phase. Since there are

no facilities for buffering, a message must proceed continuously along

the specified directions without delay. For instance, if the path is of

length 3 and it starts at time 1, then it will arrive at time 4; if it starts

at time 2, it will be guaranteed to arrive at time 5. Further, it is nec-

essary to place the paths so that no collisions occur; that is, no two

paths can be at the same processor at the same instant in time. The

rules for paths that fulfill these requirements are listed below.

• At most one link can enter a processor at a given time, and at

most one link can leave a processor at a given time. It is possible

to have both one coming and one going at the same time. Note

that this does not mean that a processor can have only one link;

it means that it can have only one link during a particular step in

the delivery phase. It can have as many as T links going through

it {since a delivery phase is length T by definition}.

• Any path between two processors (u,v) representing an edge must

consist of links at consecutive time steps. For example, if the path

from processor u to processor v is {u,f,g,h,v}, then if the link from

u-f is assigned time 1, f-g must use time 2, g-h time 3, and h-v time

4. Likewise if u-f occurs at time 5, then llnk h-v will occur at time

8.

When these rules are used to form paths, the SLOTS structure can be

used to mark the paths. Each path goes through neighboring processors

at successive time steps. For each of these time steps the DIRECTION

field of the SLOTS structure is marked, telling the processor which

direction it should pass a message if it receives it on that time slot.

SLOTS serves both to instruct the processors how to send messages

and to indicate that a processor is busy at a certain time slot so that

when new paths are constructed it can be guaranteed that they won't

conflict with current paths.

Consider the following example. Suppose we are given the directed

graph with vertices A,B,C,D and edges A ---* C, B --4 C, B _ D, and

D ---, A (Figure 2), and that vertices A,B,C, and D have been assigned

to successive processors in a linear array. (A linear array is not a good

network for this scheme but convenient for demonstration.) Initially

all slots are free. We proceed to construct a CFST-labeling, placing

each edge in the order it appears in the list above.

Figure 2.

A,B,C,D are successive members in a linear array

1---2---3---4

A---B---C---D

1. A ---*C can be completed with the map East-East, so SlotsIAH1 ]

= E, Slots[B][2]=E, End[CI[2]=TRUE.

2. B ---*C can be done with the map East; it can start at time 1,

since Slots[B][1] and End[C][1] are free.

3. B --* D goes through C then to D; its map is East-East. B is

occupied at time 1 and 2. It is free at time 3, so Slots[BH3]=E ,

Slots[C][4l=Z, EndlDl[4]= TRUE.

4. D --4 A must go through C,B,A. using map West-West-West. D is

free on time 1, and C is free on time 2, but B is occupied on time 3.

The path can start from D on time 2. Slots[DH2]=W , Slots[C][3]=

W, Slots[B][4]= W, End[A][4I=TRUE.

Every processor acts as a conduit for its neighbors' messages. No

processor knows any message's source or destination, but each processor

knows what it must do to establish the local connections.

Given that the paths satisfy the CFST-labeling rules, message de-

livery for graph problems is simple. The paths have been constructed

so that there will be no collisions, and each path link uses consecutive

time slots. The end of a path is specified by setting a separate bit that

is tested after each message is received. A separate start bit in SLOT[k I

indicates that a path starts at time k. The start bit is needed because

the SLOTS array just tells the processors where to send a message,

regardless of how that message arrived **. The start array indicates

when a message originates, as opposed to arriving from a neighbor.

The following algorithm is basic to the routing system.

"'Both the START and the STOP bits can be encoded as part of the DIRECTION
field in SLOTS, but the presented method is simpler to explain and allows for more
el_cient execution.
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for £ - time 1 to T

FOI_U_L processors

/* if an edge starts or passes through at this time */

if SLOT[i].START i 1 or active - 1

for jffil to neighbor-limit

begin

if SLOT[i].direction= j

write message bit to

in-box of neighbor j;

set active - O;
end

FORALL processor that Just received a message
if end[i]

move in-box to message-destination;
else

move in-box to out-box;

set active bit - 1;

This code follows the method described above. The time slotsare

looped through, and the messages are passed in the appropriate direc-

tionsas specifiedin the SLOTS array. Two bits,in-box and out-box,

are used for message buffering.

The time complexity of data movement isO(T x neighbor_limit}.

Since the number of neighbors is assumed to be a small constant for

each network, the complexity isOIT ). This suggests that networks

with fewer neighbors have advantages. For instance,the hypercube

network has logN neighbors, and the cube connected cycles network

has 3 neighbors. Empirical results(Ref.17) shows that whilehypercube

uses a smallerT, CCC actuallyhas a fasteroveralldeliverytime.

Setting up Message Paths

One of the goals in developing this system was to have a method for

adding new edges quickly. Paths are added so that they don't conflict

with any old path. Once a path is placed it will not be re-routed by

the basic placement algorithm; it will always start at the same spot at

the same time. The basic idea of the method for placing a connection

is to start from the source processor and in parallel examine all pos-

sible paths outward from it that do not conflict with pre-established

paths. As the trial paths are flooding the system, they are recorded

in temporary storage. At the end of this deluge of trial paths, if the

destination processor has been reached, then a real path exists. Using

the stored information a path can be backtraced and recorded. This

is similar to the Lee-Moore routing algorithm (Refs. 6, 8} for finding a

path in a system.

Suppose that the connection {u,v) is to be added. First it is assumed

that processors for u and v have already been determined, otherwise

(for now} assume a random allocation from a pool of free processors.

It is necessary to find a path between u and v that does not conflict

with any of the existing paths. The method for doing this is a type of

flooding. A breadth-first search will be performed in parallel starting

at the source processor. A record is kept of the trial paths resulting

from this search. The paths must adhere to the CFST labeling rules, so

a trial path must not conflict with paths that are already established.

For instance, suppose a trial path starts at time 1 and moves to a

neighboring processor, but that neighbor is already busy at time 1

(as can be seen by examining the DIRECTION-SLOT.) Since a path

that would go through this neighbor at this time is not legal, the trial

path would commit suicide, that is, it stops propagating itself. If the

processor slot for time 2 was free, the trial path would attempt to

propagate itself to that processor's neighbors at time 3.

Trial paths are recorded in a structure called TRIALSLOTS. A trial

path knows if the next time slot is occupied by referring to the SLOTS

data structure. If the destination processor is reached by a path, it

will be a path that does not violate the rules. Therefore we can trace

backwards from the destination processor using the markings in TRI-

ALSLOTS and transfer this good path to the actual SLOTS structure.

PERFORMANCE

Adding an edge (assuming one can be added), deleting any set of

edges, or traversingallthe edges in parallel,allhave time complexity

O(T x neighbor_limit). If it isassumed that neighborJimit is a small

constant then the complexity is O(T). Since T is related both to the

time and space needed, it is a crucial factor in determining the value of

the algorithms presented. Some analytic bounds on T were presented

in (Ref. 16), but it is difficult to get a tight bound on T for general in-

terconnection networks and dynamically changing graphs. For the case

where the graph is known a priori an upper bound of O(log_N) can

be achieved on a hypercube. This is obtained by applying a result by

Nassimi and Sahni (Ref. 10) in which they present a method for data

broadcasting in SIMD computers which conforms to the CFST-labeling
rules.

Of major interestis the on-llnecase, where edges are added and

deleted dynamically. A simulator was constructed to examine the be-

havior of the algorithms. Besides the simulated data, the algorithms

mentioned were actually implemented for the Connection Machine.

The data presented by the simulator isconsistentwith that produced

by the real machine. The major result is that the size of T appears

proportional to the average degree of the graph times the average path

length in the embedding.

This is a highly significant result. If it is assumed that the av-

erage number of connections and the neighbor-limit are bounded by

small constants then the time for a parallel traversal operation, is,

the worst case, O(diameter). This indicates that the algorithm per-

forms optimally for routing random communication graphs, since a

random graph can have connections between processors that are dia-
metrically opposed. If it assumed that the diameter is O(logN) then

CT isO(logN).

This bound indicatesthat the methods presented here are compet-

itivewith existingmethods for paralleltraversalin SIMD architec-

tures. Some methods for SIMD parallelcommunication were men-

tioned in the introduction.Permutations can be done in O(logN) time

(Refs.9, 10). Sorting can be done in essentiallyO(log2N) time, us-

ing (Ref.12) or Butcher (Ref. I) combined with Thompson (Ref.15).

These methods are restrictedto permutations and sorting. One of

the advantages of the method presented here is the abilityto deal

with graphs that are more general. Using the previous methods,

if the connections specifieda complete permutation, and addition-

ally some processor also wanted to connect to two other processors,

three entirepermutations must be performed because the complexity

is diameter x max_number_of_connections. In our system some items
can have more connections than others without substantiallyincreas-

ing T. This resultisachieved because the complexity of thismethod is

based on the diameter x AVERAGE_number_of_connections, rather
than the maximum number. The method used here also has the ad-

vantage that new connections can be added easily, unlike the other

methods which require the entire set-up to be re-computed.

A further advantage of this method is the ability to exploit locality.

Since the heuristic for T is dependent on the average path length,

situations where the embedding can be arranged so that processors

connect to those in some neighborhood will produce smaller values of

T.

BRANCHING PATHS

There are many variations of this basic method that can be exploited.

Among these are heuristics for picking shortest paths, assignment of

node to processor, and choosing paths so as to avoid congestion. A

discussion of these methods can be found in (Ref. 16).

A significant and important extension of the general CFST label-

ing rules involves a generaligation that we refer to as branchin 9 paths.

Branching paths is actually a form of broadcasting. Rather than having

each arc represented by a different path, arcs starting from the same

vertex can be combined for greater efficiency. However, this gain comes
at the loss of two features.
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The first is an obscure feature. In the basic CFST method presented,

the system is identically free of conflicts whether it is run forwards or

backwards. That is, rather than have an algorithm that starts at step 1

in the delivery cycle and initiates messages with the START bit marked,

it is possible to write a send backwards algorithm which, using the same

SLOTS structure, will start at time T initiating those links that STOP

at the processors, and work backwards to time 1, reversing all the

links, until the values get to the source. If one wished to implement a

bi-directional graph rather than a directed graph, instead of actually

putting in two sets of wires {from each pair u ---, v and then v --* u),

one could just put in one set of wires, pass the values in the forward

directions, then reverse it and pass the values back again.

The second and greater issue involves the nature of the messages that

are passed along the arcs. If the application requires that a different

message be passed along each arc, then it will not be possible to use this

combining method. However, if all connecting processors are passed the

same value, or the same value modified by a different constant, then

this variation is viable. Many applications, including circuit simulation
and neural networks fall into this class.

In the standard method, each arc in the original graph becomes a

path in the embedding.

Figure 3.

For example, Figure 3 shows a graph inwhich one vertex isconnected

to all others. Mapped onto a linear arry,each arc becomes a path

(Figure 4).

Figure 4.

The branching path method adheres to the CFST labeling rules_ but

alters the premise that each arc in the original graph is represented by

a separate path. Instead, the set of arcs associated with each vertex

can be represented by a set of branching paths. A branching path has

two characteristics that differ from a standard path between two nodes.

The first is that a path can _drop off"= values at intermediate nodes in

the path. For example, Figure 5 shows that a single path can be used

to deliver messages to all intermediate vertices. Essentially, processors

along the same route can share the path.

Figure 5.

In addition to path sharing, the other ability is to allow paths to branch

out, or broadcast to their neighbors. For example, Figure 6 shows a

grid in which processor A is connected to B and C. This is represented

with one branching path.

I  i÷1
[ 2 il

Figure 6.

More formally, as before, each vertex in the original graph is mapped
to a processor in the network topology. The set of arcs associated

with each vertex will be represented as a set of directed acyclic graphs

(DAG). For each arc (u,_), there must be a DAG, D, whose root is

u which has v as either a leaf node, or an internal node. For any leaf

node w in the graph D with root u, (u,w) must be a an arc in the

original graph. Further, in the family of DAGs which represent the

arcs originating from the root u, each arc in the original graph can be

represented only once. That is, if a graph has root u and leaf w, then

no other graph with root u can have leaf w. Likewise, any internal
node that is a destination must be marked to indicate that it is not

just an intermediate node in the route, but rather a drop-off point. If a

graph with root u has a specially marked internal node v representing

arc (u, v)_ then no other graph with root u can have v has a specially

marked node, although v can appear without a marking. As in the

original method, each arc is only represented once, although paths can

go through other nodes that are not part of their message destination.

For example, in figure 6, A connects to B and C. Suppose that A
were also connected to W. In this case W would have to be marked to

indicate it not just an intermediate node in the graph. Further, if A

were to connect to Q, this could be represented by a separate graph as

a path going through W. But, W could only be a destination vertex in

one of the two graphs.

Another aspect of this definition involves the nature of the messages.

If all vertices that u connects to receive the same value message then
the definition mentioned above is fine. If all receive the same value

message multiplied by a different constant, it is also fine, because each

constant can be stored at the destination node, so all connecting arcs

will be passed the same value, and multiplication will occur at the time

of delivery. However, if connecting values are truly different, then no

two arcs (u,v), (u, w) that have different arc weights can be represented

by the same DAG. Hence_ in the original case, where we assumed that

each arc receives a different dynamic value, each arc would have to be

represented by a separate DAG, which would be a DAG with only one

leaf, which is our definition of a path. So the original method is simply
a subset of this method.

Having defined this family of graphs that represent the arcs in the

new embedding, we proceed to label them according to an extension to

the CFST labeling rules. The first rule, non-exclusion, originally said

that at most one connection can enter a processor at a given time and

at most one can leave.Now we allow more than one to leaveprovided

that the connection isdefined as part of the same DAG. The second

rule,of contiguous time, stillholds. When a path splitsinto two or

more branches, each of the connections proceeds at the same time, as

illustratedpreviouslyin Figure 6.

A small clarification:strictlyspeaking_ the branching paths do not

have to be DAGS, that is,they don't have to be acyclic. That is,

when a connection reaches a processor,itdoes so at some time i,and

itispossible for the path to loop back on itself,which willoccur at

some latertime 3".While usuallysuch loops are inefficient,sometimes

they are used to avoidjams in the system, and further,they can occur

naturallyas part of the algorithms which findspaths. In terms of the

staticalgorithm,a way to avoid the conceptual messiness of cycles is

Algorithm Updates

The algorithms change surprisingly Little. The algorithm for delivering

the messages doesn't change at all The loop which checks for the

marked directionand passesthe value inthe appropriate directionmay
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simply see, for instance, that the North bit is on, and so passes it north,

and then checks that the West bit is on, and passes likewise within the

same time step. Since, because of the SIMD nature of the machine, it

is already necessary to loop through the different directions, no extra

work is done.

The algorithm for finding a new path requires a small modifica-

tion. In the original method, paths propagate from the source through

neighboring processors which are not already busy. To encorporate the

branching path method, during the spreading method all connections

which start from the source are activated, as they would be during the

normal delivery cycle, and these active processors are included as part

of the path spreading. That is, if a processor would normally be active

at time i if it were sending a message from the source as part of its

normal delivery cycle, then on time i + 1 it will attempt to propagate

a new path to its neighbors. If the shortest path heuristic is used/Ref.

17), so that each trial path has a length associated with it, then a new

path that is formed as a branch or continuation off an old path starts

at length 0 from that branch point, rather than starting at length 0

from the source. For problems that do not require unique values to

be passed and that have multiple connections per vertex, these minor

changes allow for a much more efficient message delivery system.

Analysis

The basic comments on analysis are the same as for the original case.

A message delivery cycle still takes O{T}, where T is the number of

slots, but by using the branching paths, T can be much smaller. As an

example, we take the case of a fully connected graph embedded in a

linear array. We know that the lower bound on T is the cutwidth of the

resulting embedding (Ref. 17). When embedding the fully connected

graph in a line using the original method, the maximum cutwidth is

0(N2), and in the branching path method it is O(N). Hence, in this

case the savings between the two methods is substantial. While this is

an unusual example, it gives an idea of the advantages. Some empirical

results on the on-line random graph examples, of the type done in (Ref.

17), tend to show an improvement eta factor of 2 to 3 over the original

method. These results are preliminary and haven't been statistically

validated.

CONCLUSION

Some simple algorithms have been presented which allow arbitrary

graphs to be embedded in SIMD architectures having a variety of

topologies. The time for performing a parallel traversal and for adding

a new connection appears to be proportional to the average path length

in the embedding, times the average number of arcs in the graph being

embedded. Since the average path length is no more than the diam-

eter of the network, the method is competitive with existing methods

for SIMD routing, with significant advantages for graphs that can ex-

ploit locality. Additional advantages are that there are no a priori

requirements for the form of the data, the topological requirements are

extremely general, and new arcs can be added without reconfiguring

the entire system. The simplicity of the implementation and the flex-

ibility of the method suggest that it could be an important tool for

using SIMD architectures as graph processing machines.
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AN ANALYSIS OF DISJOINT PATH PROPERTIES IN DATA MANIPULATOR NETWORKS

Wayne G. Nation Howard Jay Siegel

ABSTRACT
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A critical component of a supercomputer based on mas-

sively parallel processing is the interconnection network

that provides communications among the system's pro-

cessors and memories. The data manipulator network

family is a class of multistage interconnection networks
based on the PM2I interconnection functions. One

interesting property of the data manipulator network

family is the existence of multiple paths through the

network for most source/destination pairs. The condi-

tion which must be present to have disjoint paths

through the network for a given source/destination pair

is shown, where disjoint paths are multiple paths with

no links in common. For source/destination pairs which

have no disjoint paths, a single fault can prevent com-

munication between that source/destination pair. It is

proven that the maximum number of disjoint paths for

any source/destination pair is two and a method for

finding the routing tags that specify these paths is given.

The effect of a fault in a given stage of the network on

the number of source/destination pairs that can be con-
nected is also discussed.

Keywords: ADM, IADM, gamma network, data mani-

pulator, redundant path networks, interconnection net-

works, parallel processing, supercomputers.

1. INTRODUCTION

Large-scale parallel processing is one approach to the

design of supercomputers. The interconnection network

in a massively parallel computer system is a critical

component. The network provides communications

among the processors and memories of the system. One

family of networks that has been proposed for use in

such systems is the data manipulator family.

The data manipulator network family is a class of mul-

tistage interconnection networks based on the PM2I

interconnection functions [11]. In some cases, data

manipulator networks have a single path from a source

This research was supported by the Supercomputing

Research Center, Lanham, MD, where H.J. Siegel was on leave

when most of this research was done.
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S to a destination D while in other cases multiple paths

exist; i.e., the number of paths between a given S and D

may vary from one S/D pair to the next. Having a vari-

able number of paths impacts the network throughput,

permuting ability, and routing tag control. These issues

are under study 12-7, 9-11, 13-161.

Properties of disjoint paths between a given S and D in

data manipulator networks are examined here. Disjoint

paths are multiple paths from a given S to D which have
no links in common. The condition that must be

present to have disjoint paths through the network for a

given S and D pair is presented. To avoid any fault in a

path from S to D there must exist another disjoint path

for the same S and D. If a fault develops in one of these

disjoint paths, it can be avoided by choosing to use the

other disjoint path. It is shown that disjoint paths are

available for only half of the possible S and D pairs.

This indicates the fault tolerance limitations of the data

manipulator network family. Furthermore, it is proven

that the maximum number of disjoint paths for any S/D

pair is two. A method for finding the routing tags that

specify these paths is given. The effect of a fault in a

given stage of the network on the number of S/D pairs
that can be connected is also discussed.

Section 2 introduces the data manipulator network and

some of its variations that are in the literature. In Sec-

tion 3, two routing tag schemes for specifying paths

through these networks are described. Properties of dis-

joint paths in this network class are presented in Section

4. Finally, Section 5 is a general discussion of these
results.
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2. THE DATA MANIPULATOR NETWORK

FAMILY

The data manipulator network family includes the data

manipulator I2], the Augmented Data Manipulator

(ADM) I12], the Inverse Augmented Data Manipulator

(IADM) [6], and the gamma [8] multistage interconnec-

tion networks. The data manipulator [2] (Figure 1) con-

sists of m stages (N = 2m). Each stage is a column of N

switches. There is also an (m+l)-st column of network

output ports. The stages are ordered from rn-1 to 0. At

stage i switch j can pass data to switch j + 2 i modulo N

of stage i-1 (i.e._ PM2+i), switch j of stage i-1 (i.e.,

straight), or j - 21 modulo N of stage i-1 (i.e., PM2_i).
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Figure 1: The data manipulator or Augmented Data

Manipulator (ADM) network for N = 8.
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Figure 2: The Inverse Augmented Data Manipulator

(IADM) or gamma network for N = 8.

A switch has three input links and three output links.

Each switch can pass data from one of its input links to

any onc of its output links for a "one-to-one" setting.

Data can also be passed from one of a switch's input

links to two or three of its output links for a "broadcast"

setting.

_ ;_,

7O

The Augmented Data Manipulator (ADM) is a data

manipulator network constructed so that each switch

can be set independently. The Inverse Augmented Data

Manipulator (IADM) (Figure 2) is similar to the ADM

except the stage ordering is reversed (stage 0 is the input

stage). It is called the "Inverse" ADM because for any

data permutation the ADM can do in one pass through

the network, the IADM can do the inverse of that per-

mutation 111]. The gamma network is a data manipula-

tor network which has reverse stage ordering and indivi-

dual switch control. The gamma network uses a 3x3

crossbar in each switch. This allows a gamma switch to

perform several one-to-one settings at once; i.e., all of

the switch inputs can each be connected to a unique

switch output concurrently.

To route data from an input (source) S to an output

(destination) D, the data must traverse links whose sum

modulo N is (D--S) modulo N. As an example, for an

ADM network with N = 8, the links traversed for S -- 1

and D = 6 are: +22 (+22 link in stage 2), +0 (straight

link in stage 1), +20 (+20 link in stage 0). The sum of
the traversed links is +22+ 0 + 20= 5. Four other

paths exist that route data from 1 to 6:+22, +21, -20;

and straight, -21, -2 o (-x = (N--x) modulo N. Assum-

ing that the network is implemented with both +2 m-1

and --2 m-1 links at stage m-1 (even though

(+2 m-1 =-2 m-l) modulo N), then two more paths

between 1 and 6 are: -22, straight, +20; and -22, +21,

-2 °. In general, if S _ D, there are multiple paths from
S toD.

The ADM and IADM will be used to represent the data

manipulator family. Because the discussion focuses on

disjoint paths for individual S/D pairs, the gamma

network's added capability from the 3x3 crossbar switch

makes no difference. Thus, all properties derived for the

IADM also apply to the gamma network.

The presentation to this point has assumed the networks

to be unidirectionally connecting N processor/memory

pairs, where processor/memory pair i is connected to

both input port i and output port i of the network,

0 -_< i < N. However, the results of this paper apply to

bidirectional implementations of the networks as well,

where the networks can connect processors at the input

side with memory modules at the output side and mes-

sages are routed in both directions.

8. ROUTING PATHS THROUGH THE ADM

AND IADM

To specify an arbitrary path in an ADM network, a full

routing tag, F = f2m-1-"f0, can be used [6]. A stage i

switch examines bits fi and frn+i. If fi is zero, that stage

i switch uses the straight link (the value of frn+i is

ignored). If fi is a one then the switch will use the +2 i

link if frn+i is a zero and the -2 i llnk if fm+i is a one.

For example, for an N =16 A_),M network, the tag



F = 00111011 will route from 1 to 6 on the path -+-23,

straight, -21, -2 °. The tag scheme using a full routing

tag requires a 2m bit tag but can be used to specify any

arbitrary path through the network.

A natural routing tag uses only one bit to specify the

sign of the non-straight links used in the path, thus all

the non-straight links traversed are of the same sign [6].

An m+l bit routing tag T is formed by computing the

signed magnitude difference between the destination and

the source: T ---- tm...t 0 = D-S. The sign bit is tin,

where t m =0 indicates positive or zero (i.e., D >_- S),

and t m =1 indicates negative (i.e., D < S). Bits

tin_ 1...t o equal _ the absolute value of D-S, the magni-

tude of the difference. The natural routing tag is inter-

preted in the same way as the full routing tag, except t m

is used as the sign bit at every stage. For any natural

tag T for S to D (S _ D) an alternative routing tag from

S to D can be computed that uses links of the opposite

sign by taking the two's complement of T [6]. For exam-

ple, for N=8, S--l, and D =6, T----0101, and the

two's complement of T = T' = 1011. This is shown in

Figure 3.

o "- -, 0 0

T ....... T,'" T T

i T\Y y o

N 3 _ 3 13 3 U

p __ __ T
4 4 i4 4 P

U

T -_- 5----_-.,.. 5' UT

T T T

/

STAGE 2 1 0

Figure 3: An N = 8 ADM network showing the two

disjoint paths from S = 1 to D = 6. The solid

iine shows the positive dominant path

specified by T = 0101. The dashed llne shows

the negative dominant path specified by

T' = 1011.

A positive dominant routing tag is a natural routing tag

with tm = 0, while a negative dominant tag has t m = 1.

The positive dominant path is the path specified by the

positive dominant tag and the negative dominant path is

specified by the negative dominant tag. The two's com-

plement of one sign dominant tag from S to D produces

the sign dominant tag from S to D of opposite domi-

nance.

A typical assumption made when studying the fault

tolerance of multistage networks is that the network

input switches and network output switches are not

faulty (so that data can enter and leave the network),
and the r(:st of the network is what must be made fault

tolerant [1]. This simplifying, although somewhat

unrealistic, assumption is adopted here also. It is shown

that even with this assumption, the data manipulator

has very limited fault tolerance.

4. DISJOINT PATH PROPERTIES OF THE

DATA MANIPULATOR FAMILY

This section presents certain disjoint path properties of

the data manipulator network family. In stage m-l,
the +2 m-1 and -2 m-1 links from each switch are

equivalent; i.e., +2 m-l= -2 m-I modulo N. Thus, a

Data Manipulator network could be implemented with a

single link for each ___2m-1 connection or separate links

for each +2 ra-1 and -2 m-1 connection. The results pro-

ven here are valid in either situation unless specified oth-

erwise.

Theorem 1 and Corollary 1 show that, for any combina-

tion of S and D, 6 (_D-SD is odd if and only if the two

paths formed by the sign dominant routing tags are dis-

joint. Theorem 2 and Corollary 2 show that all paths

for a given S/D pair pass through no more than two

switches in each stage (excluding I/O ports). While this

has been conjectured before, it is formally proven here.
It is stated in Theorem 3 that for j > 0, 2 j is the highest

power of two for which 8 is a multiple if and only if the

sign dominant paths share straight links and switches in

stages 0 to j-1. Theorem 4 proves that if there exists a

path from S to D that uses straight links in stages 0 to j,

then all paths from S to D use straight links in stages 0

to j. Corollary 3 (a generalization of Theorem 3) states
that for j _ 0, 2 j is the highest power of two for which

is a multiple if and only if all paths from S to D share

straight links in stages 0 to j-1. The results of the

above are combined in Corollary 4 to prove that exactly

two disjoint paths exist for S/D pairs if and only if (_ is

odd, while no disjoint paths exist if 5 is even. The sec-

tion concludes with the derivation of an expression for

the number of S/D connections that are not possible

given a straight link fault in any of the network stages

(Theorem 5). The notation tx/y will be used to represent

the string of bits txtx_ 1 ... ty+lty, x _ y.

Theorem 1: Consider an ADM network for arbitrary

N. _ is odd for a given S/D pair if and only if the two

sign dominant tags form two link-disjoint as well as

swltch-disjoint paths through the network (excluding

input and output switches).

Proof:

Part 1: _ odd --* disjoint paths.

It is sufficient to prove that the two paths are switch-

disjoint, for if the two paths do not share a switch in

stage i then they cannot share a link leaving that stage.

Without loss of generality, assume D >_- S. Consider the

positive dominant routing tag T from source S to desti-
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nation D. Because _ is odd, T has the form T -- tin/11.

The negative dominant tag (T' = two's complement of

T) is therefore T' -- tin/11. Because of this relationship,
when the negative dominant path takes the --2 i link in

stage i (1 __< i _--<m-l), the positive dominant path will

take the straight link in stage i. Likewise, when the

positive dominant path takes the +2 i link in stage i

(1 _-< i _--<m-l), the negative dominant path will take

the straight link in stage i. Consider the ADM for arbi-

trary N. Because t o = 1, the switch Pi that the positive

dominant path passes through in stage i

(0 -_< i = m-2), where the path is followed from the

destination D to the source, is given by:

Pi = tj(2 J) ---- - - tj(2j) moduloN.

(When i =__0, P0 = D-1.) Similarly, because t'0 = 1

and t' k =t k, 1 =< k _--<m-l, the switch N i that the

negative dominant path passes through in stage i

(0 =< i =< m-2) is given by:

[o ][ ]Ni = + t'j(2 j) = D-4- 1-F _tj(2 j) moduloN.
j j-1

(When i ffi 0, No = D+I.) If the paths ever meet at a

switch in stage i, then the distance (difference) between

Pi and N i will be zero at that stage. This part of the

proof is completed if

[Ni-PilmoduloN#O foralli O__< i_-< m--2.

Using the above equations;

Ni - Pi]

tj(2 j + _tj (2 j moduloN
- jffil

i

=2 + _2 j moduloN
j-1

= ( 2i+l ) modulo N # 0

for 0 _ i___< m--2.

Thus, the paths never meet at a switch (excluding the

input switch (stage m-l) and output port), and this

part of the proof is complete.

Part 2:. disjoint paths --_ 6 odd.

Due to the two's complement property of T and T',

to =t'0. If t0=t'0 =0 then the paths would not be

disjoint (both would go straight in stage 0, connecting to

the same network port). Therefore, if the paths are dis-

joint to = t'0 = 1, with the positive dominant path tak-

ing the +2 ° link in stage 0 and the negative dominant

path taking the -2 0 link in stage 0. In order for

t o = t' 0 = 1, _ = tm_t/0 must be odd. Thus, if T and T'

specify disjoint paths, 8 must be odd.
[]

An example of the disjoint paths for an N = 8 ADM for

S = 1 and D = 6 is shown in Figure 3.

Corollary 1: Theorem 1 is true for the IADM network.

Proof_

Part 1:6 odd --* disjoint paths.

The proof for the IADM is similar to the proof for the

ADM with some factors that account for the different

stage ordering. In particular, for the IADM, the paths

meet at the stage 0 switch (the input switch) and the

output port. To calculate Pi and N i (for

1 _<-- i =< m--l), the paths are followed from the source

S to the destination, where:

[Pi = S + 1 + tj(2 j modulo N
J

Ni = S -- 1 tj(2 J modulo N.

Therefore,

[Pi-Ni]=(2i)moduloN¢0 for l_--<i_--< m-1.

Thus, the paths never meet at a switch (excluding the

input switch (stage 0) and the output port).

Part _.. disjoint paths ---* _ odd.

The proof follows from Theorem 1, proof of Part 2.
[]

Theorem 2: In the ADM network, all paths for a given

S/D pair pass through no more than two switches in

each stage.

Proof: All possible paths emanating from the destina-

tion D back through stages 0, 1, ..., j pass through the

set of stage j switches Aj, where:

Aj ={D _kmoduloN :0= < k= < (2J+1-1) [

An example of Aj for an N = 16 ADM network with

j =1 and D = 1 is shown in Figure 4. All elements of

Aj represent 2J+2--1 consecutive switches modulo N in

stage j (i.e., switches 0 and N-1 are consecutive). All

possible paths emanating from the source S through

stages m-l, m-2, ..., j+l enter a set of stage j switches

Bj, where:
{

Bj = t S __ k×2 j+l modulo N : 0 < k =< 2m-2-J t
?

An example of Bj for an N = 16 ADM network with

j =1 and S =10 is shown in Figure 5. Due to the

modulo N arithmetic, S + k×2 j+l = S - k×2 j+l for

k = 2 m-2-j. Each element of Bj is at least 2 j+l switches

apart from any other switch of Bj. A distance measure,

d(x,y), is defined as the shortest distance between two

switching elements x and y of a stage; i.e.,

d(x,y) = min(Ix-y_ N- _-y_.

So, V x,y (x # y) E Bj, d(x,y) > 2j+l.
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Figure 4: An N = 16 ADM network showing links used

by all possible paths from stage 1 to D = 1.

All stage 1 switches not in A 1 are blacked out.

Similarly for elements of Aj, V x,y (x _ y) E Aj,
d(x,y) _--<2j+2-2. By definition, a stage j switch is on the

path from S to D if and only if it is an element of both

Aj and Bj. The intersection of Aj and Bj (A/ N Bj)

must contain at least one element; otherwise, the net-
work could not make a connection between S and D

(which is known to be possible). It is a direct result of

Theorem 1 that 3 S,D such that Aj n Bj =2 for
0_ j _ m-2.

Proof by contradiction is used to show that it is not pos-

sible for Aj n Bj to contain three or more elements

(i.e., the size of Aj ('_ Bj is either one or two). Assume

3 x,y,z E Aj A Bj such thatx_y_z. Consider the

elements x and y. 2j+l _--< d(x,y) _ 2J+2-2. Also,

because x,y E Bj, d(x,y) = k × 2j+l modulo N, for some

k in the range 0 _ k _--<2m-2-j. Hence, to obey the

bounds constraints on d(x,y), k must equal 1, which

implies d(x_yl = 2j+l. Because z E Aj I B_, 2i+l _--<

d(x,z) =< T*_--2 and 2 j+l =< d(y,z) _=_< 'J*'--_._ Simi-

larly, d(x,z) = d(y,z) = 2j+l. This leads to a contradic-

tion since d(x,z) = d(y,z) = d(x,y) = 2 j+l only if x = z or

y = z. Thus, the proof is complete.
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Figure 5: An N --- lg ADM network showing links used

by all possible paths from S = 10 to stage 1.

All stage 1 switches not in B 1 are blacked out.

Corollary 2: Theorem 2 is true for the IADM network.

Proof. The proof for the IADM is similar to the proof
for the ADM with some factors that account for the

different stage ordering. In particular, for the IADM, all

paths emanating from the source S through stages 0, 1,

..., j pass through the set of stage j switches Aj, where:

Aj =t S ___kmoduloN :0 _-< k _--< /2 j-l) :

Elements of Aj represent 2J+l-1 consecutive switches

modulo N in stage j. Thus,

V x,y(x#y) EAj, d(x,y) _--__2 j+l-2.

All possible paths emanating from the destination D

hack through stages m-l, m-2, ..., j+l enter a set of

stage j switches Bj, where:

Bj ={D +__kx2JmoduloN :0_--< k =< 2m-l-J t.

Each element of B i is at least 2j switches apart from any

other switch of Bj. Thus,

V x,y (x _ y) E Sj, d(x,y) >_-- 2j.

Proof by contradiction is used to show that it is not pos-

sible for Aj n Bj to contain three or more elements

(i.e., the size of Aj _ Bj is either one or two). Assume
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3 x,y,zCAj N Bi suchthatx#y#z. Considerthe
dements x and y. 2j =< d(x,y) _ 2j+l-2. Also, because

x,y E B j, d(x,y)= k × 2J modulo N, for some k in the
range 0 ---_<k =< 2m-l-j. Hence, to obey the bounds con-

straints on d(x,y), k must equal 1, which implies d(x,y)

=2 j. Because z EAj (') Bj, 2j < d(x,z) "< 2J+1-2 and

2j =< d(y,z) =< 2J+1-2. Similarly, d(x,z) d(y,z) = 2j.

This leads to a contradiction since d(x,z) = d(y,z) =

d(x,y) =2 ) only if x=z or y=z. Thus, the proof is

complete.
O

As long as _ is odd for a given S/D pair there are always

two disjoint paths where the two paths are specified by

the two sign dominant tags for that _. When _ is even, it

can be shown that the paths formed by the sign dom-

inant tags share a link in stage 0 and are thus non-

disjoint. This fact can be extended to state that if 6 is a

multiple of 2j the paths formed by the sign dominant

routing tags will share links in stages 0, 1, ..., j-1 (i.e.,

the two sign dominant paths follow the same path in j

of the m stages). A proof of this statement follows in
Theorem 3.

Theorem 3: In a data manipulator class network, for

j > 0, 2j is the highest power of two for which 6 is a

multiple if and only if the two sign dominant paths

formed for S/D pairs with the given 5 share straight

links (and switches) in stages 0 through j-1 and are dis-

joint in stages j to m--1.

Proof: In the special ease of j = m--l, it is necessary to
assume that the +2 m-I and -2 m-1 links are distinct in

order to have disjoint paths in stage m-1.

Part 1: _ multiple of 2j ---* sign dominant paths share

straight links in stages 0 to j-1.

If 2j is the highest power of two for which _ is a multi-

ple, then the j+l lower order bits of _ can be written as

_j/0 = 10J, where 0j means a string of j 'O's. Next con-

sider the tags T and T' for the given _. From Section 3,

tin-l/0 = _. Because the j+l lower bits of T are

tj/0 = 10 j, the j+l lower bits of T' are also 10 j (a pro-

perty of two's complement numbers). In this case both

sign dominant paths use straight links in stages 0, 1, ...,

j-1 and ___2j links in stage j. Depending on the stage

ordering of the network under consideration, stage 0 is

either at the input of the network (for the IADM) or at

the output of the network (for the ADM). In either

case, the sign dominant paths must meet at the input

and output ports of the networks considered. For the

ADM, because the two sign dominant paths meet at the

network output ports and use straight links in the last j

stages, the two paths must share links (and switches) in

those j stages of the network. For the IADM, because

the two sign dominant paths meet at the network input

switches and use straight links in the first j stages, the

two paths must share links (and switches) in those j

stages of the network. If 5--0, tin_l/0 = 0 m and thus

only straight links are used in traversing the network,

forcing the two sign dominant paths to share links and

switches in every stage of the network.

Due to the properties of two's complement numbers, if

T = tm/j+ll0 j, then T' = tin/j+ 110 j. Therefore, _as was

shown in the proof of Theorem 1, when t' k = tk, the

two sign dominant paths do not share a link in stage k,

j < k < m--l.= =

Part _. sign dominant paths share straight links in

stages 0 to j--1 ---* _ is a multiple of 2j.

Because both sign dominant paths use straight links in

stages 0 to j-1 and are disjoint in stages j to m-l,

tj/0 = t'j/0 = 10 j. Thus, _j/0 = 10J, and 2J is the highest
power of two for which _ = X m-(j+l) 10 j is a multiple.

[]

An example of this theorem for an N = 16 ADM net-

work with S = 7 and D = 11 (6 = 4) is given in Figure 6.
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Figure 6: An N = 16 ADM showing the sign dominant

paths for S =7 and D =11 (_=4). The

highest power of two for which _ is a multiple

is j = 2. Thus, the sign dominant paths share

links in two stages (stages 0 and 1).
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Theorem4: For the data manipulator network family,

if there exists a path from S to D that uses straight links

in stages j to 0, all paths from S to D use straight links

in stages j to 0.

Proof: In general,
m--1

D =S + _fi2 i wherefi E {-1,0,+1 }.
i=O

Because there exists a path from S to D with stages j to

0 set to straight, fi =0for0 _ i _-< j. Thus,

rP.--1

D=S+ Eli 2i.
i=j+l

This implies si = d i for 0 _-< i _-< j. If it can be shown

that si = di for 0 = i < j implies the switches on all

paths from S to D must be set to straight in stages j to

0, then the proof is complete.

This will be proven by contradiction. Assume that for

0 _--<k _< j, stage k is the lowest numbered stage with a

switch on a path from S to D which is set to a non-

straight state. Because stages 0 to k-1 are set to

straight, they cannot affect dk, and stages k+l to m-1

affect bits dk+l to din_l, but cannot affect d k. Therefore,

the non-straight state of the switch in stage k forces

dk = Sk- Thus, the assumption that stage k,

0 _-< k _--<j, is set to a non-straight state implies

Sk #dk, which contradicts si =di for 0 _ i _ j.

Therefore, the assumption is false and the proof is com-

plete.
[]

Corollary 3: In data manipulator class networks, for

j > 0, 2j is the highest power of two for which _ is a

multiple if and only if all paths from S to D share

straight links (and switches) in stages 0 through j-1 and

there exist disjoint paths in stages j to m-1.

Proof: The proof follows from Theorems 3 and 4.
[]

Corollary 4" For the data manipulator family of net-

works: (1) there are exactly two disjoint paths between a

given S/D pair if and only if _ is odd, and (2) for _ even,

there are no disjoint paths.

Proof:

Proof o/ (1): Theorem I and associated Corollary 1

prove that the 6 for S/D pairs isodd if and only if dis-

joint paths exist for those S/D pairs. Theorem 2 and

associated Corollary 2 state that no more than two

switching elements are used in any stage for paths

between S and D. Therefore, there are exactly two dis-

joint paths between a given S/D pair if and only if _ is
odd.

Proof of (2): Follows from Theorem 3.
[]

It has been shown previously [6] that any faulty non-

straight link can be avoided by a reroute technique

involving the two sign dominant paths. It is possible

now to derive an expression for the number of S/D pairs

in a data manipulator network that are blocked given a

straight llnk fault in stage j. A faulty straight link can-

not be avoided by any reroute technique if both sign

dominant paths must both use that link (or switch).

Theorem 5 presents a way of calculating the number of

S/D pairs that cannot communicate given a straight link

fault at switch P in stage j of an ADM network. Furth-

ermore, Theorem 5 goes on to show a way of enumerat-

ing these S/D pairs that cannot communicate due to

that fault.

Theorem 5: For the data manipulator network family,

a straight link fault in stage j at switch P = Pro-l/0 will
prevent 2r_ (J÷ll S/D pairs from communicating. The

S,/D pairs that are blocked are of the form

S = Sm_l/jP j 1/0 (i.e., all inputs which agree with P in

the lower order j bit positions) and D = P.

Proof:

Case i: S/D pairs where the faulty straight link is not

used by either the positive or negative dominant path

(or both). These S/D pairs can stillcommunicate.

Case 2: S/D pairs where both the positive and negative

dominant paths share the faulty straight link at stage j.

This implies tj = tJj = O, which implies

tj/0 = tlj/0 = 0J+l due to the properties of two's comple-
ment numbers. Thus, the positive and negative dom-

inant paths share straight links in stages j to 0. Because

there exists a path that uses straight links in stages 0 to

j, all paths must use the same straight links in stages 0

to j (Theorem 4). Thus, if a faulty straight link is found

in stage j then all S/D pairs whose sign dominant paths
share this link cannot communicate. Consider the ADM

network. If the faulty straight link is at switch P, then

the destination of all S/D pairs that are blocked is also

P. For these S/D pairs, 3j/0 = 0j+t. The set of possible

sources is all sources which agree with P in the low order

j+l bit positions; i.e., D = P, _ = [D-S L and _j/0 = 0j+l

imply Pj/0 = sj/0. This set of sources takes the form

Sm_t/j+lPj/0 where Sm_l/j+ 1 can take on any of 2 m-(j+l)

values. Therefore, the S/D pairs that are blocked by the

fault are the 2TM (j+l) pairs of the form S ----Sm_l/j+lPj/0

and D = P. The proof for the IADM network is similar

with the result that 2 m-(j+l) S/D pairs of the form

S =P and D =dm_l/j+lPj/0 (where dm-l/j+l can take

on any value) are blocked by a straight link fault in

stage j at switch P.
[]

5. SUMMARY

Several important properties of the data manipulator

family of networks have been presented. Specifically,

the difference (_,([D-S D between the source port number

S and the destination port number D is odd if and only

if there exist two disjoint paths from S to D (Theorem 1

with associated Corollary 1). These two paths are the
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sign dominant paths specified by the sign dominant

routing tags. Using this, a fault in one of the disjoint

paths can be avoided by choosing the other sign dom-

inant path. Theorem 2 (with associated Corollary 2)

states that no more than two switching elements are

used in each stage for all paths between a given S and

D. For j :> 0, the sign dominant paths share straight

links and switches in stages 0 to j-1 and are disjoint in

stages j to m--1 if and only if 2j is the highest power of

two for which _ is a multiple (Theorem 3). Theorem 4

proves that if there exists a path from S to D that uses

straight links in stages 0 to j, then all paths from S to D

must use those same straight links in stages 0 to j.

Corollary 3 generalizes Theorem 3 by showing that for

j :> 0 all paths from S to D share straight links in stages

0 to j-1 if and only if _ is a multiple of 2j. The above

results are combined to prove that exactly two disjoint

paths exist for S/D pairs if and only if _ is odd, while no

disjoint paths exist if _ is even (Corollary 4). This pro-

perty limits the data manipulator family when consider-

ing their use as fault tolerant networks. Lastl$, given a

straight link fault in stage j, there are 2m-(j+l} enumer-

able S/D pairs that are blocked due to that fault

(Theorem 5).

Thus, various properties of disjoint paths for the data

manipulator family have been shown. Studies of net-

work characteristics, such as this, should aid system

designers in choosing networks appropriate for their

needs.
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DATA STRUCTURES FOR ASSOCIATIVE SUPERCOMPUTERS I

J. L. Potter

Kent State University

Kent, Ohio 44242

ABSTRACT

The parallel associative supercomputer model

uses associative data structures and

parallel associative searches to eliminate

the need for complex address computation.

This paper describes the simplicity of

programming associative supercomputers and

expands conventional associative data

references into a generalized associative

data structure reference mechanism which

encompasses the arrays, data structures and

data typing constructs of conventional

languages.

Keywords: Associative computing, Massive

Parallelism, Parallel Data Structures

INTRODUCTION

Associative Supercomputing

Associative supercomputing is a model of

computation, where each datum has its own

dedicated processor. It is a single

instruction, multiple data (SIMD) model with

a cellular memory, an exclusive read/write

and a restricted concurrent read capability.

In a cellular memory each cell contains

memory, a dedicated processor and at most

one association of data. Only one word in

a cell may be accessed at a time. All

cells may be accessed concurrently. The

exclusive read/write capability means that

each memory cell can be accessed by only

one processor at a time. The concurrent

read restriction means that only one memory

word from a single memory cell may be read

concurrently by all processors. The

restricted concurrent read capability is

equivalent to a global broadcast capability.

Associative computing exploits massive fine

grain parallelism in a natural way.

Massively parallel associative computers

such as the MPP 2 with 16k processors and the

Connection Machine 3 have been built. These

computers eliminate the need for time

IThis research was supported in part

by ONR grant N00014-85-k0010.

sharing a single central processing unit

with a multitude of data elements thus

avoiding the classic memory - CPU

bottleneck. Associative computing uses

massive parallel searching in place of

address calculation, reducing programming

complexity. This paper describes a method

for implementing data structures in the ASP

language based on the associative computing

model. See Potter [1987].

Background

The concept of associativity has been

present in computer science for many years.

For example, Jacks [1971] and Findler

[1979]. The most prevalent realization is

associative triples in AI. The standard

definition of an association is an ordered

triple of object, attribute and value. Many

similar definitions for associations have

been formulated. See, for example, Simon

[1970] and Savitt [1967]. The association

list and ASSOC function in the LISP language

are of course associative concepts simulated

in software on conventional sequential

hardware.

Kohonen [1978] rejected the standard

definitions of associativity as needing to

be defined in a more general fashion (p.

5). He proposed a model of association in

which a collection of triples forms an

associative memory and an entire triple is

retrieved when any portion of it is used to

query the memory.

Kohonen's model is expanded in associative

computing. Triples of data are replaced by

associations of any number of items. An

arbitrary number of different kinds of

associations may be stored in memory. Thus

in associative programming, sets of

collections of items form an associative

memory and an entire record of items (i.e.

an association) is selected when any subset

2Manufactured by Loral Aerospace

Division, Akron, Ohio.

3Manufactured by Thinking Machines

Inc., Cambridge, Mass.

CH2649-2/89/0000/0077501.00 © 1988 IEEE
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of its items are used to query the memory.

When an association in memory is so

selected, it is not moved to a central

processor, but is processed in situ.

Associative computers were first developed

at Goodyear Aerospace in the early

1970s. See Batcher [1977]. Foster's book

[1976] describes the basic components of

elementary associative computers.

Associative computers should not be confused

with content addressable (associative)

memories (CAMs). CAMs do not have in situ

processing. They retrieve data for delivery

to a cpu just as conventional memories do.

They are limited in use due to their

relatively high cost.

Inherent in associative programming is the

concept that each association has its own

dedicated processor and that computation is

effected by repeatedly selecting

associations to be processed and retrieved.

To date, no formal mechanism has been

developed for associative languages to

enable the specification of the equivalent

of data structures in conventional

languages. In the past data structures had

to be implemented at the assembly language

level. For example, Potter [1983], Reed

[1985] and Potter [1985]. This paper

expands on the concepts used for assembly

language data structures, buildinq a

completely general hierarchy of data

structures which can be used in any higher

order language.

ASSOCIATIVE PROGRAMMING

Background

The impact of associative programming can be

best explained by

analyzing the

fundamental components

of a program. A program

contains two major

types of information,

the procedural

component and the

identification

component. The

procedural part

specifies the

operations to be

performed and the order

in which they are to be

executed. The

identification

component of a program

selects the data to be

operated on by the

procedural component.

The identification

component uses the

data's address within a

memory (i.e. its position in the program's

data structure) to select it.

The positional information content of a

program's data structure is established by

two mappings. The first mapping is between

the problem data and the logical data

structure used by the algorithm. The

second mapping is between the logical data

structure and the physical organization of

the computer's memory. A third mapping is

required to map the physical organization

into a time sliced sequence of scalar data

elements. These mappings are established

by the programmer and are often the most

crucial aspect of program

development. Figure 1 illustrates the

mapping sequence which is incorporated into

the addressing function component of

conventional programs.

In the simplest conceptualization, a

different addressing function is required

for fetching each individual piece of data

required by an algorithm. However, these

simple addressing functions are combined

into larger more comprehensive and complex

functions using looping and address

modification (indexing) techniques. The

loop construct, for example, is used

extensively to time share the CPU among the

many identical records of a file. An

important aspect of selecting a data

structure for a sequential computer is to

pick one which allows the addressing

functions to be efficiently folded so that

the loop construct can be used.

Associative computers reduce the complexity

of addressing functions without recursion

and without limiting the logical data

structure, thus they are easier to program

PROBLEM logical LOGICAL

DATA ........ >DATA

physical PHYSICAL time CPU

......... >DATA ....... >DATA

mapping STRUCTURE mapping STRUCTURE sharing STRUCTURE

(153) 1115 I 3 t( ) ---+---+---
(426) 41216

MATRIX TWO ONE SEQUENTIAL

DIMENSIONAL DIMENSIONAL SCALARS

1

5

3

4

2

___

1,5,3,4,2,

Figure 1 - A Conventional Program Message
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PROBLEMlogical LOGICAL

DATA .......... >DATA

mapping STRUCTURE

MATRIX TWO

DIMENSIONAL

(i s 3) I i i 5 i 3( ) ---+---+---
(426) 41216

STRUCTURE PROBLEM

CODE DATA

i,ii i

1,2

1,3

2,1

2,2

2,3

5

3

4

2

6

Figure 2 - Associative Data Mapping

than conventional computers. First,

every data record has its own dedicated

processor. Thus, the need for a "time

sharing" factor in the address function is

eliminated. Second, the physical mapping

component of the address function is

replaced by parallel (associative)

searching. Finally, as described later,

the logical mapping relationship is stored

associatively as Structure Codes with the

data elements ellminating the need for run

time address calculations.

For example, in Figure 2, the logical

portion of the address function consisting

of the matrix row and column indices are

stored with the data elements as structure

codes. Since the data structure codes are

dependent only on the logical mapping, the

programming task is reduced to i) directing

the computer in the sequential execution of

the fundamental steps of the algorithm and

2) the manipulation of the logical data

structure codes. The artifacts of time

sharing the CPU and the physical sequential

organization of memory are eliminated.

as PASCAL use data typing to map

non-numerical address values into

numerical ones at compile time.
The association data structure in

associative programming handles

all three types of data

organizations.

When the implicit address

functions of conventional

languages are stated explicitly in

a content addressable computer,

the explicit address function

values state specifically the

positions of the object in the

data structure space generated by

the address function. For this

reason, the individual explicit

address function values are

referred to as structure codes.

Thus in Figure 3, "age" and "size"

are the structure codes for "50"

and "large" respectively. The

structure codes are discussed as if they

were a unique type of data item. In

reality they are not. The_ are just like

the other data items in an associative

object in that they can be searched for

and manipulated by all ASP associative

programming statements. Structure codes are

unique only in that they contain structural

information on how one problem data element

relates logically to the other problem data

elements.

Data Structures as Extended Associations

The associative concept is most commonly

introduced in terms of attribute value

pairs. All conventional data organizations

techniques can be viewed as extensions of

the attribute value pair concept.

Specifically, an array can be thought of as

an attribute value pair with a compound

attribute consisting of a constant portion,

the array name, with variable modifiers, the

indices, as shown in Figure 4. The

"dimension" of the array determines the

number of modifiers.

ASSOCIATIVE DATA STRUCTURES

The data structures, arrays and data types

of conventional languages can all be mapped

onto the general concept of associations.

In data structures, the address function is

a constant consisting of a path name. The

path name is constant because of the

requirement in conventional computers that

the address be determined at compile time.

Unlike data structures, variables can be

used in the address function of arrays

because the declared regular structure

allows run time address calculation. Run

time calculation requires that indices be

numerical. However, certain languages such

On the other hand, a "data structure," as

shown in Figure 5, is an attribute value

structure data

code element

attribute value

age 50

size large

color blue

patient jones

Figure 3 - A Simple Scalar Structure
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attributelmodifierlImodifier21value
......... + ......... 4 +

A J I I J 13

A [ I , J ]= 3

Figure 4 - Compound Attribute

pair with a compound value. The fields of

the data structure constitute the multiple

values. Thus arrays and data structures can

both be viewed as generalizations of

attribute value pairs. In fact, all multi-

attribute, multi-valued data objects can be

viewed as extended associations.

Simultaneous Multiple Data Organizations

In an associative memory there is no hard

distinction between the attribute and the

value portion of an attribute value pair.

That is, the same datum can be retrieved by

searching for the matching attribute or the

matching value. For example (color $) and

($ blue) would both select (color blue).

Thus in effect, either the attribute portion

or the value portion can be defined as the

constant portion of an address function.

It is only by convention that the attribute

portion is considered the address function.

By extension to associative triples, any

one component of the triple can be

considered to be the address function with

the other two components being the compound

value, as shown in Figure 6. Moreover, any

combination of two components can be

considered to be a compound address function

with the third component a simple value.

In general, if there are n components in an

object there are:

n-i

\ n

/ c
--- k

k=l

sets of address functions.

In an associative computer, all of these

address functions are available to the

programmer simultaneously. There is no a

priori reason to select one set of address

functions and its inherent data

organization over any other. Therefore, all

can be used at the programmers discretion,

intermingled in any way without any need

for reordering. Multiple simultaneous data

organizations are impossible in conventional

and parallel sequential computers, since

the data structures must be sorted to be

struct emp {

int emp#;

int birth_year;

int birth_day;

);

attributelsubvaluelIsubvalue2 Isubvalue3
+ I _.........

emp I emp# Ibirth_yearlbirth_day

Figure 5 - An Associative Data Structure

efficiently accessed and they can be

organized only one way at a time.

Frequently auxiliary data structures such as

linked lists are employed to overcome this

limitation of conventional computers.

Structure Codes for Generalized Array Data

Structures

Arrays are the canonical forms of data

structures. As shown in Figure 7, their

address functions form a natural hierarchy

of complexity. Scalars are zero dimensional

arrays. They are represented by the class

of address functions consisting only of

constants. The class of address functions

for one dimensional arrays consist of

constants plus one variable. Two

dimensional arrays have two-variable

address functions, etc. The most common

example of address functions for arrays, are

the row-major and column-major ordering

functions generated automatically for

indexed arrays by most high order languages

such as FORTRAN, PASCAL and C.

One dimensional arrays can be stored using

a straight forward extension of scalar

structure codes. The structure code

consists of the object name (the constant

portion of the address function) and the

position of the value in the construct (the

variable portion of the address function).

The variable component for one dimensional

arrays is simply the ordinal position of

the data element in the array. Thus, for

example, the one dimensiona object A = (i 5

4 3 2) would have the structure code shown

in Figure 8.

The structure code for two dimensional

arrays is a natural extension of one

dimensional arrays as shown in Figure 9 .

The extension of structure codes to higher

dimensional arrays is obvious. The

composition and manipulation of these

canonical array structure codes to make

structure codes for complex compound data

structures is considered next.
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add. laddress addres

funct, compound value compound Ifunction value compound value functi

...... + ......... + ........... + ......... + ........... + ........ + .....

sofa I color red sofa I color red sofa color red

table I size big table I size big table size bigchair weight heavy chair weight heavy chair weight heavy

a - Object

Address Function

b - Attribute

Address Function

c. - Value

Address Function

s h o w n

in Figure 9

is modified

to include

" r o w

position. "

The constant

address "B i"

is shared by
two values

representing

the vector

(5 3) and "BFigure 6 - Multiple Data Orginazation

ADDRESS FUN TYPE IEXAMPLE IDATA STRUCTURE
.................. + ............ + ..............

constant I a I scalar

constant+x I la(xl) I 1 dimensional

constant+x1+x 2
c°nstant+x1+--+Xn _(xl,x2) _ dimensional(Xl,''+Xn) dimensional

Figure 7 - A Hierarchy of Addre,& Functions

One dimensional arrays are logical data

structures which are natural for use with

several common problem data structures such

as vectors, lists and strings. Two

dimensional arrays are logical data

structures which are natural for dealing

with matrices and imagery. The mapping

from these problem data structures to the

logical data structure is the identity

mapping. Consequently, for ease of reading,

where no confusion can arise, the terms

vector and matrix will be used

interchangeably for one dimensional and two

dimensional arrays respectively.

Associative Data Structure References

It is not uncommon to consider matrices as

collections of vectors. Thus if the

constant portion of the structure code

structure code data

element

constant variable

part part
........ + ................

object element value

name position

A 1 1

A 2 5

A 3 4

A 4 3

A 5 2

Figure 8 - A One Dimensional Array

2 l!

represents (7

6 ) .

Similarly, if the constant portion

is modified to include "column

position" instead of "row position,"

"B I" represents (5 7) I and "B 2"

represents (3 6) -I.

An important property of structure

codes is the ability to reorganize

them as illustrated above. The " "

operator will be used to indicate

the basic code grouping and can be

thought of as a concatenation

operator. The symbol, "$", is used as a

place holder. Thus the code B.I.$

represents the vector (5 3), B.$.2

represents ( 3 6) I , etc.

DATA STRUCTURE CODE MANIPULATION

The concept of combining data structures to

form new data structures at run time is

common in some languages such a LISP. For

example, lists can be grouped together to

form lists of lists, etc. This can be done

because of the generalized method of data

storage for lists. However, in conventional

languages, this capability is not easily

extended to other types of data structures

such as arrays. In associative computing,

it is possible to create new data

structures from existing data structures at

run time for all types of data

organizations. That is, structures such as

structure code Idata

constant variable I element
part part

........ + .... + .... + .......

object row Icol value

name position
........ + .... + .............

B 1 1 5

B 1 2 3

B 2 1 7

B 2 2 6

B=(5 3)

(7 6)

Figure 9 - A Two Dimensional Array
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arrays of arrays of lists of arrays can be
generated, decomposedand manipulatedwith
ease.
In order to describe howthe structure codes
for two arbitrary data structures can be
combinedto generate the structure codes
for a combined data structure, several
definitions are necessary. Let DS be a

• J

data structure of dimension r wzth address

function Aj. Then Aj = aj0.ajl..ajr are
the r+l components of the structure code.

By convention, the 0th component is the

constant portion which is the name of the

data structure Let A (m) stand for the• j
structure code of A for the mth element of

DS.. Let 01 denoteJthe constant value 0,

02Jdenote 0.0, 03 denote 0.0.0, etc. Then O n

denotes the constant zero structure code

for a function with n components.

Similarly, let An(x) denote the first (left

most) n components of a structure code. The

depth of a component is equivalent to the

number of components to its left.

Then if DS L is the complex data structure

obtained by inserting data structure DS k

with dimension s, as the mth element of DSj
with dimension r, at depth d, the address

function A t for DSI has dimension d+s, and

is given by

A L(x) = Aj(x) .0 _s'r for x != m

d

A[(X) = Aj(X).Ak(y ) for x = m,

for all y in DS k

The data structure insertion operation is

denoted by:

receiving_data_structurell

[element,depth]inserted_data_structure.

If a complex structure is to be built by a

number of insertions, they may occur in any

order, i.e. if m I != m2, then

(ALI I [ml,dl] Ak) I I [m2,d2] A :

(AL II[m2,d2] Aj) II Iml,dl] Ak"

Figure i0 gives an example. DS a is an

"empty" vector with address function Ap =

(i 2). DS b and DS¢ are both matrices wlth

the same address function Ab=Ac=(l.l, 1.2,

2.1, 2.2). The composition A=(A a II[i,i]

Ac) 1112,1] A b is shown. Clearly,

arbitrarily complex hierarchical data

structures can be composed from the basic

canonical forms.

Figure 12 shows the conventional nested loop

statements required by a conventional

language (C, Fortran, Pascal, etc.) to

perform the same operation. Note that the

data must be physically moved (resorted)so

that the physical memory layout maps

IAa IValue

---+--+---

DSa 1 nil DSa=(nil nil)

DSa 2 nil

IAb 1Value

___+_--+ .....

DSb 1.2 14 DSb=(7 14)

nSb 2.1 3 (3 8)

DSb 8

IAc IValue
___+___+ .....

DSc 1.2 15 DSc=(9 15)

DSc 2.1 6 (6 2)

DSc 2

OA_E VEC MAT

VAL

POS R IC

.... +___+___+___

A 2 1 1 7

A 2 1214

A 2 2 1 3

A 2 2 2 8

A 1 1 1 9

A 1 1215

A 1 2 1 6

A

((9 15) (v 14))
((6 2) (3 8))

Figure 10 - A Vector of Matrices

OBJECT VECTOR VECTOR VECTOR

NAME POSITION POSITION POSITION VALUE

...... + ........ + ........ + ........ + .....

LIST 1 0 0 THIS

LIST 2 1 0 IS

LIST 2 2 1 A

LIST 2 2 2 LIST

LIST = (THIS (IS (A LIST)))

Figure 11 - A List

correctly onto the logical layout. This

requires that the number of items in all

arrays be known at run time. In

associative programming languages which use

structure codes, the address function is

modified as specified by the address

composition function above. The number of

data items is immaterial and the intent of

the data reorganization is clear. The new

address function is not hidden inside a

number of loops which need to be untangled.

The structure code mechanism is completely

general. Lists, for example, are simply a

special case of data structures. They are

"vectors" whose elements are atoms or other

lists. Address function composition can be

applied to list structure codes to generate

the structure codes for any complex nested
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for (i=l, i<2, i++)

for (j=l, 9<2, j++)

( a[2,i,j] = b[i,j];

a[l,i,9] = c[i,9];

}

Figure 12 - Conventional Data

Reorganization

list. Figure ii illustrates the structure

codes for a list. Since as described

S = "A STRING"

OBJECT ]NAME POSITION VALUE

+ +

S 1 A

S 2

S 3 S

S 4 T

S 5 R

S 6 I

S 7 N

S 8 G

S 9 null

Figure 13 - A String

above, arrays and data structures are both

just generalizations of associations, the

application of this technique to data

structures is straight forward although not

as intuitive.

Synonymous Data Structures

In some applications, it is desirable to

view data structures in two or more ways.

For example, a string can be thought of as

a single variable containing a list of

characters or as an array of characters. As

can be seen in Figure 13, this dual approach

to referencing strings is a natural artifact

of using associative addressing techniques.

The string as a whole can be accessed by

the structure code S.$ while the nth

character in the string can be accessed by

S.n. Note that this capability is due to

the parallel associative implementation of

structure codes and does not require

multiple variable declarations or

equivalences.

Associative Stack and Queues

Other commonly used data structures, such

as, stacks, queues, and linked storage can

also be handled in the associative model.

Stacks and queues are simply variable length

vectors. A stack push is accomplished by

adding a new (larger) ordinal position to

TIME

TAG VALUE
.... + .....

0 i0

not used

2 15

4 20

3 35

1 i00

TIME

TAG VALUE

0 i0

5 17

2 15

4 20

3 35

1 I00

before after

push 17

associative stack

TIME

TAG VALUE

0 I0

not used

2 15

not used

3 35

1 i00

after

pop->20

17

20 20

35 35 35

15 15 15

I00 i00 i00

i0 i0 I0

before after after

push 17 pop->20

conventional stack

TIME

TAG VALUE
.... + .....

0 i0

not used

2 15

4 20

3 35

1 i00

TIME

TAG VALUE

0 i0

5 17

2 15

4 20

3 35

1 i00

before after

queue 17

TIME

TAG VALUE

not used

not used

2 15

4 20

3 35

1 i00

after

next->10

associative queue

Figure 14 - Associative Stacks and Queues

17

20 20

35 35 20

15 15 35

i00 i00 15

i0 i0 i00

before after after

queue 17 next->iC

conventional queue

the vector. A pop

is simply the

selection of the

largest ordinal

position of the

vector and the

return of its

associated value.

Queues and linked

lists can likewise

be easily

implemented. See

Figure 14.

The time tag

column is shown

intentionally out

of order to

illustrate that

ordering is

immaterial. In

reality the nature

of stack and queue

operation is to

order items

naturally and as a

result, the time

tags would

normally be in

sequential order.

In addition, the

time tags are

shown to be
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sequential integers, in reality, they may

be any ordered sequence of unique values -

numeric, alphabetic or alphanumeric

(Alphabetic and alphanumeric codes would be

retrieved in ASCII sorted order).

It should be emphasized that lists, queues

and stacks are artifacts of conventional

sequential programming, and that in an

associative programming environment the need
for these structures is eliminated.

CONCLUSIONS

This paper has presented a unified approach

for representing arbitrarily complex data

structures in content addressable memories

and associative computers. This approach to

data structures in associative computers

has the advantages of i) automatically

extracting fine grain parallelism, 2)

eliminating much of the complexity of the

non-algorithmic address computation in

program development, 3) allowing multiple

data structures to be associated with each

datum, 4) allowing the data structures

themselves to be modified, and 5) allowing

information exchange between vastly

different program languages such as LISP,

PROLOG, OPS5, FORTRAN and PASCAL.

Some areas for future research are:

i) defining arithmetic operations on complex

data structures as a natural extension of

element by element arithmetic of vectors

and matrices, 2) the utilization of multiple

distinct structure codes in the same datum.

In general, there can be a different

structure code for every logical

hierarchical data structure to which the

datum belongs. This aspect may be

particularly useful for semantic networks

and frames in AI applications, 3) the

development of universal operators for the

manipulations of structure codes. For

example, the operator "root" will generate

the structure code for the root of a tree

from the structure code of any of its nodes

(See Potter,1985). and 4) the

investigation of mathematical properties of

addressing functions and structures codes.
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Abstract

Three parallel implementations of the simplex algorithm on three

different parallel architectures, are presented and compared. Each

machine is the representative of one class of parallel computers.

Performance comparisons and the major difficulties encountered

by the user of these machines are given.

The potential for parallel programming of the array proces-

sors is investigated with the MPP machine. The multiprocessor

systems with asynchronous shared memory are studied by imple-

menting the simplex algorithm on the Encore machine in both

the process creation by fork 0 and tasking environment. The

class of supercomputers represented by the Alliant FX-8 "mini-

supercomputer" where a Fortran compiler can parallelize and

vectorize DO loops is considered.

Keywords: array processor, parallel programming, performance,

simplex algorithm, multiprocessor, vectorization.

1 The Simplex Algorithm

The simplex algorithm was developed by Dantzig[DANT63] for

finding the solution of a linear programming problem. Its sim-

plicity and elegance made it the essential numeric tool for solving

optimizing linear problems. Therefore, it was (and still is) the

object of intense study [VAJD60], [FICK61], [BORGS0]. Our

paper is a contribution toward efficient implementations of the

simplex algorithm on parallel processors available today. The

general form of a linear programming problem can be expressed

as follows:

Mazimize the linear function f : clzl + c2x_ + ... +

cain where cl, c2,...ca are given real numbers called

costs and xl,x2,... ,zn are unknowns subject to the

linear restrictions

allZl -f- a12x2 "4-... + alixi q-... q- alnX n < bl

a21xl A- a22x2 -{-... Jr- a2ixi -t-... q- a2nzn < b 2

ajlXl + aj2x2 + • • . + ajixl + ... + ajnzn <_ bj

amlXl + arn2X$ + . . ."4- amixi q- . . . + amnZn <_ bm

andzi>_ 0, i= 1,2,...n, whereaiiER, i= 1,2,...,n,j=

1,2,... ,m.

The standard simplex algorithm [BUND84] consists of a se-

quence of iterations that for a given solution X ° = (z °, z ° .... , x°n)

of the linear programming problem improves f until the opti-

mum solution is obtained (if one exists, otherwise the absence of

a solution is specified). Let X i be the solution before iteration i.

A new solution X I+1 is constructed at iteration i from X"_"with

the property that f(X i+x) _> f(Xi). The construction of X i+1

from X i is performed by the following sequence of operations:

1. Find the variable xc which generates the best contribution

to the value of f if introduced in the solution. The index c

of this variable is given by the maximum coefficient of the

function f at this iteration.

2. Find the variable of .vl that needs to be replaced by zc.

The index of this variable is given by the smallest number

bi/aie,j = 1,2 .... ,m, for ai_ > 0. Let it be br/are.

3. Transform the matrix of the initial problem by a Gaussian

elimination using element arc as a pivot, i.e., perform the

operation Vj, i, j _ r, i :_ c, aj_ := ajl - ar_ajc/a,c.

Computationally the algorithm can be presented as in figure 1.

Start

Read matrix

Set the initial solution

I Find rain cl, el < 0Let c be its index

I Find min bi/a_c , aj_ > 0Let r be its index

¥j,i,j # r,i # c doaji := ajl -- ariaje/are

Figure 1: Flow of control

CH2649-2/89/0000/0085501.00 © 1988 IEEE
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In order to use this algorithm to solve a linear programming

problem the set of m linear inequalities defining the problem is

first converted into a set of m linear equations by introducing

at most m slack variables and by changing the sign of all free

terms such that bj _> 0, j = 1, 2,... ,m. The optimizing function

/ is then added as line 0 of the linear system of equations thus

obtained in the form C - / = 0 where C is its optimal value

(originally 0), i.e., -clxt - c2z2 - ... - cnxn = O. The initial

feasible solution is then obtained by introducing m new variables

whose coefficients in the function f are set to zero. The matrix

of this system with the free terms in column 0 is organized as the

two dimensional array called simplez tableau:

a00 a01 . .. a0i . . . a0n a0n+l • . . a0n+m

al0 all . .. ali • . . aln aln+l . , . aln+ra

ajo ajl . . • aji ... air, a./n+ 1 . • • ajn+m

amO aml ... ami ... amn amn+l ... amn+m

The simplex tableau is automatically constructed by the proce-

dure reading the simplex matrix.

Using the simplex tableau defined above, the simplex algo-

rithm can be formulated as the following sequence of steps:

1. Find the pivot column, i.e., perform the computation:

-1, ifT[O,i]>_Ofori=l,2,...,n+m;
C= c >_ 1, if T[O,c] = min(T[O,i]), T[0, i]<0,

i= 1,2,...,nTm.

If C = -1, the optimum solution was found. Otherwise

step 2 follows.

2. Find the pivot line, i.e., perform the computation:

-1, ifT[j,C] < 0 for j= 1,2,...,m;
L = r _> 1, ifT[r,C] = min(T[j,O]/T[j,C]),

T[j,C] > 0,j = 1,2 ..... m.

If L = -1 there is no solution. Otherwise step 3 follows.

3. Transform the simplex tableau by the formula:

for i=O, 1,...,n +m, i ¢ C do

for j= 0,1 ..... m, j¢ L do

W[j,i] := T[j,i] - T[L,i]*T_j,C]/T[L,C];

Clearly parallelism can only be found within each of these

three steps. In order to obtain maximum speed, the granularity

of parallelization needs to be controlled by the user according to

the architecture of the machine. This is done by allowing the user

to define the unit of parallelization as being a contiguous block

of H lines and K columns of the simplex tableau. The number

g of contiguous blocks T[H,K] (i.e., parallel jobs) in which the

simplex tableau T can be partitioned is determined by:

p = [(n ÷ m)/g] 4- sg(rest((n + m)/g))

q = [m/H] + sgCrestCm/H)), N = p* q.

The constants H and K that determine p,q are dependent on the

type of hardware and its computation power.

2 Implementation on the MPP

The MPP machine[NASA88] is an array processor that operates

under the control of a conventional VAX-11/780 front-end (figure

2) and consists of three main units:

1. Array Processing Unit, APU, a two dimensional 128 × 128

mesh with wrap around connections between processing

elements in the same row or column denoted by PE(i,i),

i,j = 0,1,..., 127. Each PE(ij) is 1-bit processor contain-

ing 1,024 bits of random access memory denoted here by

PEM(ij)[0..1023].

2. Array Control Unit, ACU, which executes scalar operations

and controls the operations performed by the APU. The

ACU, figure 2, is actually composed of three units:

• Main Control Unit, MCU, which is the local memory

of the MPP used to store an MPP program and its

scalar data.

• I/O Control Unit, IOCU, which controls the flow of

data in and out of the APU, in particular data trans-

fers between the APU and STM.

• Processing Element Control Unit, PECU, which con-

trols the execution of the array operations in the MPP

program.

3. Staging Memory, STM, which is a large storage unit of 32

megabytes connected to the APU via a fast 128 bit data

path. It is used to buffer data due to limited memory ca-

pacity of the APU.

r vAx.ll/T8o

ACU

Figure 2: MPP Diagram

An MPP program is a sequential program which contains ar-

ray operations, I/O operations and scalar operations. The special

feature of the ACU is that all of its three control units can op-

erate simultaneously to allow overlapping of the three types of

operations found in an MPP application program.

The software support for parallel processing implemented on

the MPP allows a user to develop a program using parallel ar-

rays and operations on parallel arrays as computation units. A

parallel array is an abstraction for the APU, i.e., an array of

size 128 x 128 of a given type (integer, real, or boolean). An ar-

ray operation (i.e., having parallel arrays as operands) is simul-

taneously performed by every PE(i,i) of the APU, each PE(ij),

i,j = 0, 1,..., 127 acting in a lock step fashion on the correspond-

ing memory components of the parallel array operands stored in

its memory area.

The Pascal language has been extended with new constructs

supporting array processing and implemented on the MPP under

the name MPP Pascal.

MPP Pascal supports all the Pascal data types. In addi-

tion it has been extended with the parallel array as a predefined

data type supporting arithmetical and logical operations and the

stager array as a predefined data type supporting information ex-

change between APU and STM. Additional language constructs
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operating on parallelarrays are provided in MPP Pascal allowing

parallel array management in a high levelfashion such as: maz,

rain, sum, prod, shift, rotate, transpose, rowbroad, eolbroad, in-

sert, eztract.

A parallel array may not be indexed directly. This is why

to perform an array operation using selected PE-s of the APU,

MPP Pascal provides the special where masking statement:

where < mask > do < $1 > otherwise < $2 >.

The mask is a boolean expression that evaluates to a parallel

array of type boolean mapped on a bit-plane. Each element (ij)
in this bit-plane specifiesa processor PE(i.i) ofthe APU enabling

(mask(i,j)=l) or disabling (mask(i j):0) its execution.

The operations of information exchange between front-end,

array memory and stager memory are shown on figure 3.

The stager memory is treated as an extended array memory

of 512 parallel arrays of reals or integers. The unit of transfer is

a parallel array.

The synchronization operations waitq, which idlesthe MCU

until the PECU has finished, waitio which idles the MCU until

the completion of the I/O transfer initiated by the IOCU occurs,

allow the three components of the MPP to operate concurrently.

scalar expansion

extract [- "l
insert .A.PU

memory
.__ v__ L .... J I

rvAx-lx/Tso? '- ' Y MCU ? I
' memory _ memory ' trmnsfef I

I_ t C _1 L Jset r .... , ,_ I

l put ", STM

L .... .I

Figure 3: MPP Data flow

A typical MPP application program consists of two parts: an

MPP part that runs in the MPP control unit (MPP Pascal), and

a host part (Fortran, C, Pascal) that runs on the host. The MPP

part isusually the "main" program consisting of data transfers

and large scale array computations. The host part generates

data filesto be read in by the MPP main program and serves

as a driver for the MPP program. The communication between

MPP part and host part is performed by a tool called CAD.

Each part iscompiled separately on the host and resulting object

modules are linked together to produce a program image that can

be directly loaded into the MPP for execution. This discussion

will be illustratedfurther with the MPP simplex implementation.

In order to execute a program the user invokes itsexecutable

image through the CAD user interface. Access to the MPP is

done on a first come first served basis. Thus, the interaction

between the host part and the main part of an MPP program

during its execution observes a master-slave relationship.

2.1 Simplex Algorithm on MPP

The structure of array memory and stager memory determines

the parallelization strategy of the simplex algorithm. It con-

sistsof splittingthe simplex tableau in as many contiguous sub-

tableaux T[128,128] as possible.

The implementation of the simplex algorithm on the MPP

consists of two programs, a program running on VAX called Pre-

pare_data and a program running on the MPP called Simplez.

The program Prepare_data written in Fortran performs as fol-
lows.

I. Read the dimensions m,n of the simplex tableau main-

tained as a VAX fileand determine constants p,q by the
rules:

p = [(n -{- m)/128] + eg(rest((n + m)/128))

q = [m/128] + sg(rest(m/128))

2. Reorganize the simplex tableau T{0..m,0..n+m] as an array

of parallel arrays stored on VAX file F2 in the following

format:

P(I,1) P(1,2)... e(1,p)

e(2,1) P(2,2) ... e(2,p)

P(q, 1) P(q,2) ... P(q,p)

P(i, J3 = T[(i- 1)q..(i- 1)q + 127, (j - 1)p..(j- 1)p + 127].

3. Use CAD to invoke Simplez, and to wait for itsexecution.

The program Simplez is an MPP Pascal program. It uses the

following type declarations:

type

ParAr23 = parallel array[1..23,0..127,0..127] of real;

ParArl = parallel array[0..127,0..127] of real;

ParArInt = parallel array[0..127,0..127] of integer;

ParArBol= parallel array[0..127,0..127] of boolean;

StArl = stager array[0..127,0..127] of real;

StAr512 = stager array[1..512,0..127,0..127] of real;

program Simplez(input,output,row_index,col_index,T 1 ,T2);

%include 'type.dat'

_include 'procedures.dat'

var

T1 : text; T2 : file of StArl; A : ParAr23;

T : StAr512; C_ind, R_ind, Pivcol, Pivrow : integer;

K1, K2, Flag : integer; DONE, IMPOSSIBLE : boolean;

begin

F,eroarr;

DONE := false;

IMPOSSIBLE := false;

Load(T1,T2,T,A,Flag);

If(Flag <> O) then

repeat

if (Flag = 23) then

begin

PivCol(A,C_ind,Pivcol,K2);

If (C.Jnd <> -1) then

begin

PivRow(A,R..ind,Pivrow,C_ind,PivcoI,K 1 ,K2);

If (Rind <> -1) then

Update(A,RJnd,Pivrow,C_ind,Pivcol,K 1 ,K2);

else NoSolution := true;

end

else Done := tree;

end
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if (Flag = 512) then

begin

StPivCol(T,C.Jnd,Pivcol,K2);

if (C,jnd <> -I) then

begin

StPivRow(T,R,jnd,Pivrow,CJnd,Pivcol,KI,K2);

if (Rind <> -I) then

StUpdate(T,R-jnd,Pivrow,C,jnd,Pivcol,K 1,K2);

else NoSolution :: true;

end

else Done :: true;

end

until (Done or NoSolution)

end.

The Load procedure recomputes the constants K1 and K2

by the rules shown above and reads the file F2 into the array

memory or stager memory depending upon its size. Therefore,

the simplex on the MPP operates in two modes distinguished by

the variable Flag. When Flag <_ 23 the entire simplex tableau is

stored in the array memory and Pi_Col, PivRow, Update are then

used. When £3 < Flag <_ 51_ the simplex tableau is stored in

the stager memory and parallel arrays need to be swapped-in and

swapped-oat in order to be processed and updated. The proce-

dures StPivCol, StPivRow, StUpdate similar to PivCol, PivRow,

Update need to be used in that case.

Let us suppose for sake of clarity that the simplex tableau

is small enough to be entirely mapped onto one parallel array

A{1,,]. Each entry (i,j) in the tableau is thus mapped onto its

own processor PE(ij). Once pivot column and row have been de-

termined, the tableau updating can be carried out simultaneously

by all PE-s in one array operation. To perform this updating each

PE(ij) needs to access three tableau items, (i,j), (piv_row,j)

and (i,piv_col). The last two tableau items are not accessible

by PE(i_) and data communication and exchange between pro-

cessors PE(ij), PE(piv_row, j) and PE(i, ply_col) is necessary.

This isperformed by creating two new parallelarrays (BrPC and

BrPR) both constructed by using 8hiltand broadcast array func-

tions as carried out by the Update procedure. PE(ij) now has

access to the three corresponding tableau items and the tableau

updating is performed by All,,]:= All,, ]-BrPR x BrPC, fig-

ure 4. When the tableau maps over more than one parallel array

in the array memory, this data broadcasting scheme is applied

iteratively to each parallel array.

A[1,,]

Brp 
ARRAY .... BrPR

Figure 4: Simplex tableau updating operation

2.2 Performance Measurements

Performance measurements of the simplex implementation dis-

cussed above are given in the table 1. The lines of the table are

labeled by the number of iterations required to find the solution

while the columns are labeled by the number of parallel arrays

required to store the simplex tableau. The time in seconds taken

by the MPP to solve a problem of the size the number of parallel

arrays recorded in the column j and performing the number of

iterations recorded in the line i is recorded in the table entry (i j).

I II 11 41 9] 16[ 25 I 36] 49 I 64 I

3 0.003 0.006 0.011 0.016 0.43 0.57 0.73 0.91

6 0.006 0.013 0.022 0.033 0.84 1.10 1.40 1.80

44 0.047 0.102 0.173 0.260 6.13 8.18 10.0 12.0

Table 1: Performance measurements on MPP

3 Implementation on Multimax

A new class of computers [GORD87] called Multimax emerges

as multiprocessor computers using as components microproces-

sors that have the speed and functionality of mid-range super-

computers. The Encore Multimax is a modular system designed

as a component of the Encore Computing Continuum[ENC087],

which provides a true multiprocessing and distributed environ-

ment. The Encore Continuum uses tightly coupled multipro-

cessing, distributed, and intelligent control of I/O devices and

clustering of Multimax systems. A multimax cluster incorpo-

rates from 2 to 20 32-bit processors each provided with 32K byte

cache of fast static RAM, 4 to 32 Mbytes of fast shared memory

and configurable I/O devices.

The Multimax support for parallel program development and

execution consists of a library of functions that extend the col-

lection of system calls supported by Unix 1 and allow the user to

create parallel processes in a program, schedule them for execu-

tion while sharing resources, and control their interaction. A user

can take advantage of these functions creating and managing a

process environment or a tasking environment.

3.1 Simplex with Process Environment

The process environment is provided by the fork() system call

that allows a program to create processes in the user program.

The function MakeProcs was designed by us in order to allow the

simplex user to create a variable number of processes.

Process interaction isdone by all processes having access at

the variable declared shared. There are two classes of system

calls in the parallel library allowing the user to declare shared

objects:

1. When shared memory is staticallymanaged the user pro-

ceeds as follows:

• Declare a C-language data structure, say data and/or

a pointer to it,say datapt.

• Call the function share() in the parallel library to

make data, datapt shared under the form

datapt = share(0, sizeof(data));

LUnix is a trademark of Bell Labs
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2. When shared memory is dynamically managed then the

user proceeds as follows:

• Provides the memory area to be manipulated dynam-

ically by the program using the call

alloc = share..malloc_init(size);

which returns a pointer to an area of memory of size

Usize".

• Manage dynamically the memory pointed to by alloc

using callsof the form

datapt = share.znalloc(sizeof(data));

share_free(datapt);

Process synchronization isdone by using the lock data types

supported by the Encore Multimax[RUS88]:

• Lock: is a binary semaphore supporting the operations

spin_init(lock, flag), spin_create(_ag), spin_unlock(lock),

spin_condlock(lock), where flag shows the state of the lock.

• Barrier: allows a fixed number of processes to synchronize

at a given point in a program. It supports the operations

barrier_create(count, state), barrier_init(lock, count, state),

barrier(lock) where count is the number of processes that

need to arrive at the barrier before itopens.

• Semaphore: is general semaphore supporting the opera-

tions semaphore_init(Iock, state), semaphore_create(state),

semaphore_wait(lock), semaphore_,ignal(lock).

• Event: provides a barrier at which a variable number

of processes can wait having two states, event_posted and

event_cleared. It supports the functions event_create(state),

event_init(lock, state), event_post(lock), event_clear(lock),

event_wait(lock).

The lock parameter is a pointer to an object of type the type

supporting the function using it, state is SPIN._BLOCK, PRO-

CESS_BLOCK, TASK_BLOCK, showing the mechanism imple-

menting wait, count is an integer and flag is PAR_LOCKED or

PAR_UNLOCKED.

The lock variables used in a program need to be created in

shared memory. All operations supported by the lock data types

specified above are atomic. In addition, the parallel library pro-

vides the function timer_initO and timer_get(} which allow the

timing of the program execution.

The structure of a parallel program under process environ-

ment is illustrated by the following sketch of the simplex imple-

mentation.

#include <stdio.h>

#include <parallel.h>

#define cols 1200

#define lines 1200

struct shared_area

{
double pivot, a[lines][lines+cols];

int m, n, H, K, Procs, Jobs, JobCount;

int C, L, p, q, ColCount, RowCount;

BARRIER barr;

LOCK lock;

} *slob;

int IdProc = 0;

main (int argc, char *argv[])

{
int i, State = SPIN_BLOCK;

slob = share (0, sizeof(*glob));

/* Read matrix, parameters, and initialize data */

spin_init(&giob- >lock, PAR_UNLOCKED);

barrier.Jnit(&glob- >barr, &glob- >Procs, State);

IdProc = MakeProcs(&glob- >Procs-1);

Start: PivCol(&glob- >K,&glob- >C);

barrier(&glob- >barr);

if (&glob- >C < 0) { PrintSolution0; exit()}

PivRow(&glob- >H,&glob- >L);

if (IdProc == 0)

&glob- >JobCount = 0;

barrier(&glob- > barr);

TransformL(&glob- >L, &glob- >K);

barrier(&glob- >barr);

if (&glob- >L < 0) { NoSolution0; exit()}

i = Monitor(&glob- >JobCount);

while (i < &slob - >Jobs)

{
Update(i/p, i%p, &slob- >H, &glob- >K);

i = monitor(&glob- >JobCount);

}
barrier(&glob- >barr);

TransformC(&glob- >C, &slob- >H);

barrier(&glob- >barr);

goto Start;

)

The functions PivColO, PivRowO, Update(}, TransformL(},

TransformC(}, and Monitor(} implement the three steps of the

simplex algorithm, perform matrix transformations and ensure

computation consistency, respectively.

3.2 Simplex with Tasking Environment

Since process creation is a very costly operation, the tasking

mechanism was developed to support parallel program develop-

ment on the Encore Multimax. A task is a function provided

with its own stack and thus capable of being executed in parallel

with other tasks. A parallel program using the tasking environ-

ment consists of a collection of tasks that can be executed in

parallel. There is a special task called master that starts the ex-

ecution of the program initiating other tasks. Each task in turn

can start other tasks. The tasking environment of a program is

thus defined by the memory size Mere used to allocate stacks for

the tasks, the number of processes Procs that run tasks in par-

allel and the master task, Master. The tasking environment of a

program and the start of the master task are set up with a call

to the function task_init

task..init(Mem, Procs, Master, Stack, Argc, Arg0,...,Argn);

The starting of a task specified by a function Func in the tasking

environment (by master task and/or by other tasks) is performed

by the call

task_start(Func, Stack, Argc, ArgO, ...,Argm);

which allocates Stack bytes as the stack of this task from Mere,
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transmits arguments on the stack and starts a process to execute

the code of Funs on this stack, ifthere existsa processor available

for this purpose.

The tasking environment is controlled by the program using

the following tasking primitives: task..suspend(}that suspends its

caller; task_resume(name) makes the task name reschedulable;

task_stopO terminates its caller; task.join0 waits for all tasks

initiated by its caller to terminate; task_selfO returns the task

identificationnumber of its caller.

There are two restrictionsimposed on parallelprogram devel-

opment by the tasking approach: the code of a function designed

as a task needs to be provided in the program text before the

invocation of that task and the locks need to be created and ini-

tializedin the main program. The consequence isa bottom-up

approach for program development. The structure of a parallel

C language program using the tasking environment isillustrated

by the following sketch of the tasking version of the simplex al-

gorithm.

#include < stdio.h >

#include < parallel.h >

#define Stacks 20000

#define Stack 500

#define cols 1200

#define lines 1200

double pivot, a[lines][lines+cols];

int m, n, Procs, JobCount, Jobs, H, K;

int answer, ColCount, RowCount, C, L, p, q;

LOCK *lock;

transform()

(
int i;

i = Monitor(JobCount);

while (i < Jobs)

(
Update(i/p, i % p, H, K);

i = Monitor(JobCount);

}
)

master 0

{
int i;

Start: ColCount = 0;

for (i = 0, i < Procs, i++)

task_start(Stack, PivCol, 1, C);

task_join0;

if (C < 0) ( answer = 1; return }

RowCount = 0;

for (i= 0, i < Procs, i++)

task_start(Stack, PivRow, 1, L);

task.join();

if (L < 0) { answer = -1; return }

JobCount = 0;

for (i = 0; i < Procs; i++)

task_start(Stack, transform, 0);

task,join();

goto Start;

}

main (int argc, char *argv[])

(

/* Read matrix, parameters and initialize data */

lock = share (0, sizeof(LOCK));

spin_init(lock, PAR_UNLOCKED);

Set_timers();

task_init (Stacks, Procs, master, Stack, 0);

G et_timers 0 ;

if (answer == 1) PrintSolution0;

else PrintNoSolution0;

)

3.3 Performance Measurements

The performance measurements of the simplex implementation

on the Multimax using the process environment and the task-

ing environment closely follow the same pattern. Therefore in

tables 2 and 3 we only present the performance of the program

implemented in the process environment which is slightlybetter

than for the tasking environment. Table 2 illustratesthe varia-

tion of the time to solve a problem whose simplex tableau was

512 × 512 (i.e.,256 × K elements), with the number of processes

running in parallel and the granularity of their interaction. The

linesof this table are labeled by the number of processes running

in paralleland the columns are labeled by the granularity of the

process interaction. The granularity isexpressed by the size of

the contiguous subtableaux of the simplex tableau transformed

by a process independently of the other processes. This is given

in the number of parts in which the lines and columns of the

simplex tableau are divided. The time in seconds needed by the

Encore parallel processor to solve the problem isrecorded in the

entry (ij). However, examining the behavior of the algorithm on

a large number of problems we observed that the best time was

provided by job size (16, 260) with 12 processors. Therefore, the

lastcolumn of table 2 records the behavior of the algorithm for

thisprocess interaction granularity.

I II 1 I 2 ] 4[ s I 161 32 1(16,260)j
1 33.6 9 20 27.2 32.4 35.3 17.8

3 33.9 9.4 7.2 9.8 11.1 11.7 6.6

6 34.4 9.7 5.3 5.8 6.3 6.5 4.2

9 34.8 10.2 3.6 4.6 5 5.2 3.6

12 35.2 10.7 4.1 4.5 4.6 4.7 3 5

15 35.7 ll.l 4.7 4.5 4.5 4.6 '3.9

18 39.9 12.8 6 4.9 5.3 5.3 4

Table 2: Granularity study

I It 1l 4] 9 I 16[ z5 I 36 1 49 1 64]
3 0.6 2 2.5 3.5 4.6 5.5 6.7 8.2

6 1 2.1 3.5 5 6.6 8.5 10.5 12.9

44 2.9 7.1 13.2 21.9 36.4 44.3 62.5 73.2

Table 3: Encore performance measurements

4 Implementation on Alliant

The Alliant FX8 is a register to register machine equipped with 8

MC68000 compatible vector processors, 11 interactive processors

for input and output, and a 64 megabyte memory subsystem

lARGO86]. Parallel processing on the Alliant is performed by

9O



pipeliningvectoroperationsand by parallel processing of the 8

vector processors.

Parallel programming support is provided by the Coneen-

trix operating system (Unix-based) and the FX/Fortran lan-

guage which supports the array data type. Like MPP Pascal,

FX/Fortran has been extended with a set of intrinsic array func-

tions: rain(At], maz(Ar), size(At), etc..., as well as a very sim-

ilar conditional array assignment statement allowing masking on

an array assignment:

where < cond > < stl > otherwise < st2 > end where

A Fortran optimizing compiler generates parallel streams of

control and vector operations unfolding DO loop operations un-

der programmer control.

Four modes of program execution are available on the Alliant

FX8, concurrent execution, vector execution, vector-concurrent

execution, and concurrent-outer vector-inner execution. Typi-

cally a programmer tunes the program execution by inserting

compiler directives in the Fortran code. These directives might

for example either turn off vectorization for a specific loop or

rather force concurrency specifying that there are no data de-

pendencies in a loop. The information allowing the programmer

to inject compiler directives in his program is provided by the

compiler itself. There are only 7 groups of possible directives.

The syntax of a compiler directive is CVD$[s] directive where:

[ G, directive applies globally (i.e., to the end of file);

s = _ R, directive applies to end of the current routine;
( L, directive applies to end of the current loop (default).

The available directives are ( * indicates the default value): AS-

SOC, NOASSOC s, telling the compiler to perform the optimiza-

tion of the associative operations; CNCALL, NOCNCALL s, al-

lowing subroutine and function references in loops optimized for

parallel execution; CONCUR*, NOCONCUR, forcing (or inhibit-

ing) the optimization for concurrency irrespective of data depen-

dency; DEPCHK*, NODEPCHK, telling the compiler to check

(or to inhibit the checking) for data dependencies between loop

iterations; LSTVA L s, NOLASTVAL, telling the compiler to gen-

erate code to save last values of original indexes and promoted

scalars of optimized loops and arrays; SYNC s, NOSYNC, telling

the compiler to check for synchronization problems between loop

iterations; VECTOR s, NOVECTOR, telling the compiler to op-

timize (or to inhibit the optimization) for vectorization.

4.1 Simplex on Alliant FX8

In the Alliant FX8 simplex implementation through compiler di-

rectives, we inhibited vectorization of certain loops and strategi-

cally forced concurrency by inhibiting data dependency checks.

A sketch of the Fortran version of the simplex algorithm fully

tuned and optimized and running on all eight processors follows:

program simplex

integer L, C, m, n

real mat(1200, 1200)

CVD$R NOLSTVAL

C Read matrix and initialize data

SetTimer

99

C Find Pivot col and find Pivot row

C Divide Pivot row

CVD$L NOSYNC

do 80 j = 1, m

if(j.ne.L) then

CVD$L NOSYNC

do 40k: 1, n+m

if(k .ne. C) then

mat(j,k)--mat(j,k)-mat(L,k)*mat(j,C)

endif

40 continue

endif

80 continue

C Divide Pivot col

goto 99

C GetTimer

C Print solution or lack of solution

stop

end

In this implementation all the code is brought in the main

program to avoid subroutine calls.

4.2 Performance Measurements

In order to compare the performance of the simplex algorithm

implemented on the three machines, MPP, Encore Multimax, and

Alliant FX8, we run the program on the same set of problems

and organize the results in the same way. The behavior of the

algorithm on the Alliant FX8 is given in table 4.

I II 11 4 I 9] 16 I 25 I 36] 49 ! 64 I

3 0.015 0.093 0.39 0.79 1.3 1.8 2.5 3

6 0.026 0.15 0.74 1.6 2.5 3.6 4.9 5.9

44 0.11 0.8 4.6 9.5 16.7 24.5 33.6 41.2

Table 4: Alliant performance measurements

5 Instead of Conclusion

The conclusions of the experiments we performed with the sim-

plex algorithm implemented on the three different computers are

twofold. On the one hand they regard the efficiency of the algo-

rithms implemented on the new parallel processing architectures

measured by the speed-up obtained by their parallelization and

on the other hand they regard the user convenience of the vari-

ous parallel processing architectures measured by the difficulties

implied in their programming.

The speed-up of Machine1 versus Machineg, (Machine 1, Ma-

chine $ are A for Alliant, E for Encore, and M for MPP) while

solving a problem requiring a given number of iterations for vari-

ous sizes of the simplex tableau is recoded in a line of a speed-up

tableau labeled by Machinel:Machineg in table 5. The size of the

simplex tableau used in our experiments is measured in number

of parallel arrays required to accommodate it.

I II 11 4] 9 I 16] 25 I 36 I 49[ 641
3 - A:E 40 20.4 7.7 5.6 4.4 3.9 I 3.5 3.5

3 - M:A 5.2 14.8 36.1 48.2 3 3.2 [ 3.4 3.3S - M:E 207 302 278 268 13.3 12.3 12 11.6

I6 M:A 4.3 11.6 33.6 48.5 3 3.3 3.5 3.3

6 M:E 167 162 159 152 7.9 7.7 7.5 7.2

44-A:E 26.4 8.9 2.9 I 2.3 I 2.2 [ 1.8 1.9 1.8

.-M:A II 23178 26.6 36.5 2.7 3 3.4 3.4

_- M:E 61.7 69.6 76.3 84.2 5.9 5.4 6.2 6.1

Table 5: Speed-up for 3, 6 and 44 iterations
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Thesimplexproblemsforthesesizeswereactuallyautomat-
icallygeneratedfromsmaller problems. Therefore, instead of

definitive conclusions we present our findings as the following

three observations:

* The simplex algorithm provides a natural application in

which operations on matrices are used. Therefore, array

and vector processors should perform better than the gen-

eral multiprocessor machines. This was confirmed by the

speed-up of the algorithm implemented on the three ma-

chines.

* The second conclusion shows that even for problems that

are naturally suited for array and vector operations, the

control of the granularity of process interaction allows the

shared memory multiprocessor to become comparable in

efficiency to the vector processor in the case of large size

problems.

• The third conclusion shows that the performance of the

vector processor provided with parallel execution becomes

comparable with that of the array processor when the the

size of the problem is large. This is due to the cost of array

transfer between array memory and stager memory.

Parallel processors clearly allow the simplex algorithm to become

an efficient tool in solving linear programming problems. There-

fore, comparing the standard version of the simplex algorithm

[TARJ83],[DANT79] with the newly discovered polynomial time

algorithms [ASPV79], [BORG80](pp. 18-22) may provide differ-

ent data when executed in parallel environments. So, further

study of the parallel implementations of the simplex algorithm

and its comparison with the parallel implementations of these

newer methods are necessary.

Each of the three different philosophies of handling parallel

processing has its specific type of user difficulties. The major

difficulties in programming an array processor result from the

promotion of the array (which is a defined type in most pro-

gramming languages) to a predefined data type. However, the

predefined type _array" does not coincide with the array type

existing in most languages nor with the matrix type existing in

mathematics. Therefore, in order to take advantage of the ma-

chine's potential for parallel processing both experience and the

language support developed in this respect provide the necessary

help. The major difficulties in developing parallel programs for a

multiprocessor machine result from the requirement to explicitly

manage the implicit process type in the program. This task is

performed by the multiprogramming (multiprocessing) operating

system operating on a sequential program. Again, experience,

the development of concepts and their encapsulation in appro-

priate data types in the language seem to provide the real help.

As for developing parallel programs through the compiler the

major difficulties result from the compiler-programmer-processor

interaction which requires the programmer to have knowledge

of architecture, compilers, and the behavior of the algorithm.

Therefore, this could be only a temporary solution used to suc-

cessfully parallelize existing code that would otherwise be too

expensive to redesign.
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ABSTRACT

The region growing paradigm for image segmentation groups neighbor-

ing pixcls into regions depending upon a predetermined homogeneity
criteria. A parallel method for region growing on a highly parallel SIMD

mesh computer is presented. The approach is based upon a parallel

merging paradigm, which involves the selection of the best of all merge

possibilities for all regions concurrently. A key requirement of any
parallel region growing scheme is the ability to concurrendy compute

functions on irregular shaped regions. A set of general primitive func-

tions for region growing have been defined and techniques to implement
these functions on an SIMD processor have been developed. These

techniques make use of an embedded tree data structure to represent
regions. The results of implementing a parallel split and merge region
growing algorithm on the Massively Parallel Processor are discussed.

The approach is shown to be efficient primarily for images involving
large numbers of regions.

Keywords: Non-uniform load disnibution, Parallel processing, SIMD,

Segmentation and 2-D description, Parallel region growing, and Split
and merge.

INTRODUCTION

Region growing is a general technique for image segmentation. Fre-

quently, the basic scheme is to combine pixels with adjacent pixels to

form regions; regions are then merged with other regions to "grow"
larger regions. The association of neighboring pixels and neighboring

regions in the region growing process is often governed by a homo-

geneity criterion that must be satisfied in order for the pixels and regions

to combine. The homogeneity criteria arc application dependent and
may be dynamic within a given application.

In addition to the homogeneity criterion the order in which regions are

merged can have an important effect on the final result; many sequential

region growing algorithms ignore this fact. We introduce a parallel

merging paradigm in which a merge decision is based upon the best of
all alternatives for all regions simnll:meouslv

Highly parallel SIMD processors have been shown to be very effective

for regular algorithms such as image filtering and the FFT. This work
extends the domain of the SIMD processor to the irregular processing

characteristics of region growing algorithms which exhibit non-uniform

and unpredictable load distibutions. Our results indicate that, especially

for the case of a very large number of small objects, powerful parallel
region growing techniques can be implemented in a reasonable amount

of time. Section two of this paper outlines the principles of region

growing with emphasis on the split and merge algorithm. Section three
discusses the characteristics of the SIMD architecture and section four

introduces a parallel merging paradigm and considers the parallel imple-

mentation of a region growing technique on an SIMD architecture. The

algorithm complexity is discussed in section five. An example of the

parallel region growing technique is presented through a split and merge
implementation on the Massively Parallel Processor (MPP) in section
six.

REGION GROWING

Region growing is a technique for partitioning an image by linking indi-

vidual pixels into groups of pixels called regions. The merging of pixels

or regions to form larger regions is usually governed by a pre-defined
homogeneity criterion that must be satisfied. In this section we first

define a region and discuss its properties, next, we review the concept of
homogeneity criteria, and finally, we present a split and merge algorithm

as an example of a region growing technique.

Regions

A region might correspond to a world object or part of one. As defined
by [1], a region is a four-connected, two-dimensional area that is

allowed to be non-simply connected (contain holes). A single pixel can-

not belong to more than one region. These properties stated more for-

mally are as follows.

A region R is considered to be a set of points with the following proper-
ties:

(1) xi in a region R is connected to x./ iff there is a sequence
{xi,...,xj] such that x_, and xk+l are connected and all the points
are in R.

(2) R is a connected region if the set of points x in R has the pro-
perty that every pair of points is connected.

m

(3) 1, the entire image = k.dRk.
k=l

(4) Ri ("1 Rj = O, i * j.

Homogeneity Criteria

When grouping pixels into regions it is usually necessary that the groups

satisfy some sort of homogeneity criteria. Therefore, the grouping of

neighboring pixels into regions is dependent on the characteristics of the

individual pixels. Once pixels have been combined to form a region,
the region assumes certain properties based on the combined characteris-

tics of the pixels as a group (e.g. area or texture). A homogeneity cri-
teria can be designed to specify such things as the maximum range or

gradient allowable within a region, etc. This criteria will then be used

as a test to determine whether or not a given group of pixels can be
classified as a region.

As an example, the pixel range homogeneity criteria H(R) is defined as
follows:

frue,

tI(R) =- _false,

if for all point pairs x and y in R,

f (x)-f (y)<T.

otherwise.

(l)

This particular criterion requires that the range between the minimum

and maximum values within a region R, not exceed a threshold T.

A variety of homogeneity criteria have been investigated for region
growing, ranging from statistical techniques, which involve the distribu-

tion of pixel grey levels, to state-space approaches, which represent
regions by their boundaries [1,2,3].

A problem with many region growing schemes is that large regions

require an excessive number of merge steps. A computationally

expedient technique called split and merge [4] addrcsses the large region

problem with a preprocessing split phase.

CH2649-2/89/0000/0093501.00 © 1988 IEEE
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The Split and Merge Approach

The split and merge technique requires two types of operations; in our

algorithm a fast split phase is followed by one or more merge phases.

The split stage rapidly partitions an image into square regions which

conform to a first homogeneity criterion; then a region growing tech-
nique is used to merge these square regions into larger regions which

conform to a second homogeneity criterion. High speed is achieved by

the top down approach that rapidly deals with very large regions. Such

regions require many iterations to achieve with just a region growing
paradigm.

Splitting--The first phase of the algorithm is concerned with dividing the

image up into homogeneous, square regions of varying dimensions.

Beginning with the entire image as the area in question, an area is

checked for homogeneity. Should the homogeneity check fail, the area is

split into four quadrants. Each of the quadrants is then checked the

same way and recursively split until the homogeneity requirement is
satisfied. If an area passes the homogeneity test then it is considered a

region and left alone until the merge stage of the algorithm. The

scheme is illustrated in Figure 1. For this case the homogeneity criterion

requires that the range of the pixel values in a region must not be
greater than 2. Initially each pixel is labeled with a unique identifier

number (ID). While splitting, pixels are assigned a region ID number

corresponding to the pixel ID of the pixel located in the upper left hand

comer of the quadrant to which they are associated.

(a) (b)

I 3 13143_

9 11 _ II

1

13114

(c) (d)

Figure 1. Split and Merge splitting phase. (a) Pixel ID numbers. (b)
Pixel values. (c) Region ID's after first split. (d) Region ID's after

second and final split.

11
13114

(a) {b) (c) (d)

Figure 2, Split and Merge merging phase. (a) Region ID's after split-
ting phase. (b) Region ID's after first merge. (c) Region ID's after

second merge. (d) Region ID's after third and final merge.

Merging--In the merge phase, adjacent regions are merged to form

non-square regions. Region pairs that satisfy the homogeneity criterion
are allowed to merge. Figure 2 presents an example of the merging

stage for the regions split in Figure 1. In this case, the same homo-

geneity criterion as for the split phase is used again. Now, however,

merged region pairs assume the smaller ID of the two regions.

For many merging criteria, including the one used in the example, the

order of merging is important and this affects both the execution time
and the final result. An approach which involves increasing the threshold

value, in stages, in the merge phase, has been found to improve the

quality (i.e., produce less regions) in the final result for region growing

using both range images [13] as well as grey level images [5]. Certain

constraints imposed on the merging order, as mentioned above, help to

improve on the final results, other constraints, however, are imposed in
the parallel merging strategy to avoid violating the homogeneity criteria.

These constraints will be addressed later in the section on parallel region

[,,rowing.

THE MESH-CONNECTED SIMD ARCHITECTURE

Many highly parallel computer architectures designed for low level

image processing applications have been proposed and implemented

[6,7,8]. These designs exhibit a variety of interconnection schemes

between processors and the processors themselves range from simple
processing elements in the SIMD arrangements to much more sophisti-

cated processors in the MIMD systems. The architecture of interest in

this paper is the highly parallel (tens of thousands of binary processors)

mesh-connected SIMD processor army. The SIMD mesh consists of an
array of identical processing elements (PE's) with near-neighbor connec-

tions. We will be considering the 4-connected case in which processors

are connected to their neighbors to the north, east, south, and west. The

architecture we are considering is illustrated in Figure 3. The array of
PE's is controlled by a host computer that issues it instructions when a

parallel array computation needs to be performed and is linked to

memory via a bi-directional I/O path. Each PE contains an ALU with a

limited amount of local memory.

ARRAY

Figure 3. General organization for a mesh-eonnected SIMD architec-
ture.

The SIMD-mesh architecture is particularly well suited for low-level
image processing. The physical layout of the processor array allows for

a direct mapping of pixels to PE's. Furthermore, the type of computa-

tions inherent in low-level processing, such as image filtering and edge

detection, involve the analysis of a pixels local neighborhood.

The Massively Parallel Processor Architecture

The Massively Parallel Processor [11] is a SIMD mesh-connected com-
puter arranged in a two-dimensional 128x128 array of PE's. The PE's

are bit-serial, allowing for a flexible data format and efficient utilization

of resources. Each PE can perform high speed arithmetic and implement

all sixteen possible boolean functions. In addition, each processor con-

tains a mask register that can be set to inhibit execution of an instruc-

tion. PE's are connected to their near-neighbors to the north, east,

south, and west. For data to be transmitted from one point of the array
to another, it must be routed via a path linking both points through adja-

cent processors. The MPP is equipped with a built-in sum-OR tree
which combines the output from all PE's in a tree of OR elements. This

can be used to check for termination or convergence of a repeated

sequence of instructions.

PARALLEL REGION GROWING

Parallel Merging Paradigm

When merging regions in parallel, in order to obtain a correct result, it

is necessary that the merge sequence be ordered. Sequential region

growing algorithms are most often based on a "first merge" paradigm.

In this approach pixels are scanned one at a time, left to right, top to
bottom, and combined so long as they meet the homogeneity require-

menU. The "best merge" paradigm requires that regions only merge

with the neighboring region that best satisfies the homogeneity require-

ments. This not only imposes an ordering to the merge sequence, but
tends to yield better results by minimizing the increase in range with

each merge. The best merge paradigm is based on the following rules:

(1) Each region can only merge with one other region at a time; that

being the neighbor which best satisfies the homogeneity criteria.

(2) A tie is broken, arbitrarily, by selecting the neighbor with the

larger ID.

(3) A merge choice must be mutual for two regions to merge.

The parallel region merging paradigm can be modeled using an

undirected graph.

Let G = (V,E) be an undirected graph with weighted edges. The

vertices, V, of the graph correspond to the regions in the image.
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Figure 4. Parallel merging graph model. In the example shown the homogeneity range threshold has

been set at 6. Pixel values are given in (a), and the result of the split phase is represented in (b).
Edges exceeding the allowable range are deleted from the graph. Merges are performed by combining

vertices that share an edge that is of lowest value for both vertices. After combining the vertices all

edges touching the newly formed vertices are updated with the new range values. Merging terminates
when there are no edges left in the graph. The result is shown in (h).

The set of edges, E, is comprised of the edges (v,w) such that the

regions corresponding to vertices v and w share a common boun-
dary. The edge weight, given by

e,,,, = h(v,w),
equals the value of the homogeneity criterion evaluated for the
regions represented by v and w.

Using the model described above, the process of merging regions in
parallel is performed as follows:

For all edges E, in graph G, merge those vertices, v and w, for

which e,,_, is the edge of minimum weight for both vertices v and

w. For vertices with more than one edge having the same

minimum weight, the edge connecting with the vertice of highest
value is selected. Only edges weighted within the homogeneity
threshold are considered.

Two vertices, v and w, are merged by deleting edge (v,w) and

relabeling all edges (i,w), connecting to w, as (i,v). All edges

connected to v must then be updated with the new values for el, v .

The process continues until there are no edges weighted below the
homogeneity threshold remaining in G.

The parallel merge process is illustrated in Figure 4. In this example we
make use of the range homogeneity criterion with a threshold, T = 7.

Figure 4(a) gives the pixel values of a 4x4 image. The result of the

split phase of a split and merge region growing process is presented in

Figure 4(b). At this point each region is represented by a unique
identification number (ID) and the values of the minimum and maximum

pixels within the region. Using this initial partitioning, the regions are

represented in the form of a graph (Fig 4(c)).

In the case of the range homogeneity criterion, the homogeneity value

h(v ,w) for two regions can never decrease. Hence, edges weighted with
a value greater than the allowed threshold can be deleted from the

graph. A new region assumes the smaller region ]D of the two regions
being merged.

In a single merge step multiple region pairs can merge without

conflicting with each other (Fig 4(d)). This illustrates the degree of

parallelism inherent in the merging paradigm. After each merge step,
once all edge weights have been updated (Fig 4(e)), those edges exceed-

ing the criterion threshold can once again be removed (Fig 4(f)). The

merge process is terminated when there are no edges left in the graph
(Fig 4(h)). The final result is illustrated in Fig 4(i).

Parallel Region Growing Implementation
A parallel region growing strategy is affected by both the form of the

homogeneity criteria and the constraints of the parallel processor archi-
tecture. In this section a set of representative local processing functions

which can be used to realize a large number of homogeneity criteria are

defined. Their implementation on the mesh-connected SIMD architec-
ture, outlined in the previous section, is considered.

Parallel Region Growing Primitives-- A general set of primitive opera-

tions, which can be used on a multi-processor system to implement
parallel region growing algorithms, is described in this section. The

strategy for mapping image points onto processors in a multi-processor
system may vary from one architecture to another. Conceptually, a

region is characterized by the values and spatial locations of its indivi-

dual points, as well as the properties of all individual points combined.

Therefore, a suitable representation of a region would be: a unique
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region ID number assigned to all points in the region in conjunction

with a region descriptor that contains all relevant global information
needed to describe the region. Figure 5(a) illustrates the partition of an

image, where each region in the partition is described using the

representation suggested above. We assume that the region descriptor

information is located within a given processor. However, there is no
guarantee or constraint that confines all image points within a region to

a single processor.

region
descritor$

Figure 5. Region representation. (a) A generalized representation of a

region consists of a spatial distribution of the region points relative to

their locations in the image, along with a corresponding region descrip-

tor for each region. (b) A region representation on a mesh of processing
elements consists of each region pixel mapped to its own PE and a

designated PE to serve as the region's descriptor.

The primitive operations required by a parallel region growing algorithm

are as follows. First, in order to adequately characterize a region, a

method to accumulate information from all region points to the region
descriptor is needed. Second, in order to update region points concern-

ing changes in status (i.e. region ID due to merging), information held at

the descriptor must be distributed out to all region points, particularly
boundary points. Third, in order to interact with all neighboring regions

in parallel, a method for exchanging information between all neighbor-

ing regions sharing a common boundary is needed. These tasks are fun-

damental in a parallel region growing process and can be accomplished
using the following set of primitives.

(l) Reduction primitive: reduces information from many points in a

region to a single value and records it at the region descriptor.
Typical reduction functions used are minimum, maximum, and
sum.

(2) Distribution primitive: distributes a value from the region

descriptor to all points in the region.

(3) Exchange primitive: exchanges information between points

across a common boundary shared by neighboring regions.

Having defined a set of general parallel region growing primitives, we

now consider their implementation on a mesh-connected SIMD
architecture. When processing images on a highly parallel array of pro-

cessors each pixel in the image can be directly mapped to a processor in

the array. Initially each processor will only have information about a

pixel's value and its spatial location in the image (this is straight for-
ward with this architecture since a pixel's location in the processor array

is a direct spatial mapping of its location in the image). To adhere to the

region representation outlined above, as pixels are joined to form

regions, a given PE within each region is designated to be the region
descriptor (Fig 5(b)). What we require is a systematic way of choosing

the descriptor PE and a method to efficiently implement the primitives

described above. The nature of the primitives, particularly the reduction
and distribution functions, suggest that a tree structure could be an

efficient mechanism to incorporate into the region representation out-

lined thus far. This reasoning helped us arrive at the embedded tree

data structure described in the following section.

The Embedded Tree Data Structure-- An embedded tree structure is

used to represent a region in an image. The tree structure is embedded

within a region's boundaries on the PE array. Each region PE is
assigned to a vertex in that region's embedded tree. A natural choice of

PE to be designated as region descriptor is the PE located at the

corresponding location of the tree root.

A tree is defined in [9] as a directed acyclic graph containing exactly
one vertex, called the root, which no edges enter. Every other vertex has

exactly one entering edge and there is a path (which is easily shown

unique) from the root to each vertex. A sample tree structure is

presented in Figure 6(a). The arrows indicate the edge directions. Furth-
ermore, if (v,w) is a directed edge of the tree, then v is called the parent

of w and w the child of v. A vertex with no children is called a leaf.

The depth of a tree is the length of the longest path from the root to a
leaf. For example, in Figure 6, vertex a is the parent of vertices b, c,

and d, and conversely vertices b, e, and d are children of vertex a. Ver-

tices e, f, i, j, k, and 1 are all leaves, and the depth of the tree is 3.

An embedded tree is a tree confined within a specified boundary, and

linked in such a way that all points within the boundary correspond to a
unique vertex in the tree. An example of an embedded tree is shown in

Figure 6(b). Since each point in the image, or a region for that matter,

is mapped to its own processor, we can think of the processors them-

selves as the tree vertices. Furthermore, edges of the tree correspond to
interconnections between adjacent processors.

We chose the tree data structure because of its fan-in, fan-out nature and

because it is easily extended to cover a two-dimensional arbitrary shaped

region. The tree's fan-in and fan-out qualities make it very efficient for
implementing the reduction and distribution primitives. By using a tree

to link together the various pixels in a region, whcre the pixels form the

vertices of the tree and the region descriptor is located at the tree root, it

becomes possible to broadcast information from the region descriptors to

other region pixels, or conversely, to accumulate region information at

the descriptor PE's, within all regions simultaneously. What is impor-
tam, however, is the way the tree is constructed. The primitives'

efficiency is directly dependent on the depth of the tree. When process-

ing regions of an image in parallel, the complexity of the functions

employing the tree structure is bounded by the maximum tree depth of
all regions in the image. Therefore, it is essential that the trees be con-

structed in such a way so as to minimize the trec depth of all regions.

,_.....- root

h

k r

c a'_

g d

j i

_region
boundary

(a) (b)

Figure 6. (a) Tree data structure. (b) Embedded tree data structure.

Embedded Tree Generation-- An iterative shrinking algorithm is used

to create an efficient tree structure. This technique systematically

removes pixels around a region's border and creates pointers linking the

removed pixels to still existing neighboring pixels. The shrinking pro-
cess continues until only a single pixel of each region remains. This

remaining pixel is defined as the tree root or region descriptor. This stra-

tegy will centralize a tree root within a region.

The shrinking algorithm makes use of the near-neighbor connection

scheme existing in the mesh. A pixel can be removed in the shrinking
process only if certain conditions regarding its neighbors are true. This

requires that each PE investigate its neighbors' values in order to make

a decision on whether or not to "shrink". Initially all PE's in the array
contain a binary one. As pixels are removed in the shrinking process

these ones are changed to zeroes. Two things about a PE's neighbors
need be known in order to determine whether or not the conditions

required for shrinking exist, (1) their region ID number and (2) their
binary value. The set of conditions shown in Figure 7 pertain to the

shrinking of the central pixel into its neighbor to the south. Shrinking

may occur into any one of a pixels four near-neighbors. To determine
whether a pixel may shrink to the west, north, or east, the conditions

need to be adjusted accordingly. In one iteration of the shrinking algo-

rithm the conditions are checked for each of the four neighbor directions
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Figure 7.
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S- pixel of same region and
of binary value one

Shrinking Algorithm.
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S X Q S X S

S S S S S

Q- pixel of different region or pi×el

of binary value zero

In order for pixel X to shrink to the

south one of the near-neighbor arrangements shown must exist.

in turn. Should a pixel satisfy the conditions in any one of these direc-

tions, its binary value is set to zero and a set of pointers are created.

Each processor contains a pointer set which is encoded in four bits; one

bit for each possible direction. The resulting embedded tree is

represented by a double-linked set of parent and child pointers. For

example, if parent-pointer[d] is true for PE(i,j) then the pixel at (i,j) is

linked to its parent in the direction corresponding to d. We can ascer-

tain that at the parent node, child-pointerld] will be true for the value of

d corresponding to the opposite direction. The region PE with no

parent-pointers is the root of the region tree, and those PE's with no

child-pointers are designated as the tree leaves. The result of applying

the tree generating algorithm is illustrated in Figure 8. The region pix-

els are linked together by the parent-pointers, shown in 8(c), created

during the shrinking process. A corresponding set of child-pointers exist.

311
3i3 1 3 313[,x_" _

3J33 3 313_'x, _

3Is 3 3 313L_-q

root

4j 2

x 2 x

4--
3

IX _ 2

(b)(a) (c)

Figure 8. Embedded tree data structure. (a) Regions are represented by

a unique ID number. Co) Embedded trees are created by the shrinking

algorithm. (c) Parent-pointers are assigned according to the following

encoding: I=N, 2=E, 3=S, 4=W.

Regions with Holes-- The algorithm just described cannot generate

embedded trees for non-simply connected regions (i.e. regions with

holes). Rather than converging to a single point, the algorithm converges

to a single element wide, ring of region pixels which surround the

enclosed region. This ring is similar to a medial axis of the region to

which it belongs. The result of applying the shrinking algorithm to a

region with a hole is shown in Figure 9(a). Since a root node must be

chosen from the remaining pixels contained in the ring, it is most

efficient to choose that pixel with maximum distance to the region boun-

dary. This would help to minimize the height of the region's tree.

Should two or more pixels possess the same height, the pixel with the

highest ID is selected, arbitrarily, to be the region root. The remaining

pixels in the ring are then, systematically, linked to each other in the

direction of the chosen root. The ring uncoupling is illustrated in Figure

9(b). Pixels neighboring the root are uncoupled from the ring and

linked to the root first. Their neighbors in the ring are removed next,

and so on, until all ring pixels have a linked path to the root. This solu-

tion will also work for regions with more than one hole. Unfortunately,

however, the presence of holes can lead to rather inefficient (deep) tree

structures.

General Parallel Region Growing Algorithm

Region growing, as mentioned earlier, is achieved by merging regions to

form larger regions that conform to a pre-defined homogeneity criterion.

Using the embedded tree structure, two regions can be merged together

by discarding the embedded trees of the individual regions and re-

generating a single more efficient tree for the combined regions. Merg-

ing is performed in iterations and terminates when no more regions are

able to merge without violating the homogeneity criterion. The parallel

merging is accomplished by regions exchanging information with their

neighbors and accumulating this information at the region descriptors for

evaluation. Regions can then select a merge partner based on the homo-

geneity criterion being used. Following the parallel region growing para-

digm proposed earlier, although more than one neighbor may be suitable

for merging, merging is performed in a hierarchical fashion giving

preference to those regions that best satisfy the criterion by allowing

them to merge first.

The order of merging and a solution to the merge contention problem

are important aspects in the parallel approach. Both aspects are

addressed by the "best merge" paradigm which states that it is not possi-

ble for a region to merge with more than one other region during a sin-

gle merging iteration. The resulting region could otherwise be in viola-

tion of the homogeneity requirements. Two common merge contention

situations are illustrated in Figure 10. Furthermore, merging is not per-

formed unless both regions select each other as merge partners. A region

/hat was unable to merge during a given iteration because its selection

was not mutual, may succeed in a subsequent iteration.
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Figure 9(a). The result of the shrinking algorithm performed on a

region with a hole is a ring in the shape of a medial axis.
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Figure 9(b). The ring is uncoupled in such a way that the region root is

located at the point on the ring that is furthest from the boundary.

ALGORITHM COMPLEXITY

The region growing algorithm complexity depends upon both the imple-

mentation of the region growing primitives and the number of iterations

required to arrive at the desired result. The cost of implementing a

region growing primitive, Embed, Dist, or a reduction, is O(d) where d

is the maximum distance across any region, The Exchange primitive is

implemented in constant time.

The speed of the primitives also depends on the region shape and topol-

ogy. Convex blob-like regions containing O(d _) elements are processed

in O(d) time. Non-simply connected regions require slightly more time

than simple regions due to the additional time taken to compute the

embedded tree. The complexity for these regions is still O(d) and, in

general, the cost increase will be less than 2. Strange concave shapes,
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such as spirals, require the most time. Here d is the longest path

between two pixels in a region which does not go outside the region.
However, these regions rarely occur in practice. The ideal cost com-

plexity is O(log d) but, this cannot be achieved because of routing limi-
tations on a mesh-connected architecture.

The number of iterations also depends upon the region dimension d. In

an ideal situation, merging of a two-dimensional region can be achieved

in O(log d} parallel merges starting with each pine[ as a region; how-

ever, if only one merge occurs during each iteration then the worst case
complexity is O(d).

There are two heuristics which can greatly reduce the number of merge

iterations. The first is the split phase which was mentioned earlier. The

split algorithm only requires O(log d) computations for the region grow-

ing primitives (although routing is still O(d)) and O(log d) iterations to
complete. Second, in many practical applications there is a "back-

ground" behind a collection of objects. This background, being a single

region, could dominate the algorithm cost. However, in most cases it is

possible to remove the background from consideration by a fairly simple

thresholding technique. The zdgorithm cost then depends on the span of

the largest object which remains.

(a)

(b)

Figure 10. Merging order. Contention for merging is indicated by the
arrnws in the diagram. (a) and (b) represent two diffcrent situations that

may develop. In both cases regions iirst choose a neighbor based on the

homogeneity criterion and rcsol,,'e ties by selecting the neighbor with the
higher ID. Two regions may only merge if the choice is mutual.

PARALLEL SPLIT AND MERGE ON THE MAS-

SIVELY PARALLEL PROCESSOR

A parallel split and merge algorithm has becn implemented on tire Mas-
sively Parallel Processor (MPP), using the parallel region growing tech-

nique outlined in the previous sections.

The Parallel Split and Merge Algorithm

[n order to implement the parallel region growing algorithm, a procedure
for generating the embedded tree data structures and a set of primitives

closely resembling those outlined earlier, were designed. These primi-
lives are zts fcdlows:

EMBED(ridm, pptrs, cptrs0 ma*td):

This procedure receives as input the region ID matrix, rialto, and

performs the region shrinking anti embedded tree generation. It
returns a matrix of parent and child pointers (pplrs,eptrs), and a

value proportional to the maximum tree depth, maxld. Region ]D

zero is rescrved to mask ont regions that need not be processed.

MIN(pptrs, maxtd, pixval, rootval):

MAX(pptrs, maxtd, pixval, rootval):

These procedures receive as input the tree parent pointers, pptrs,
the maximum trcc depth, maxtd, and the pixel values, pixval, and

perform reduction functions. They dcli','er the region minimum

•'rod maximum, respectively, to the region roots (rootval).

DIST(cptrs, maxtd, rootval, pixval):

This procedure receives as input the tree child pointers (cptrs), the

maximum tree depth (maxtd), and the values contained at the

region roots (rootval) and distributes them throughout the regions

(pixwd).

EXCHANGE(rldm, pixval, direction, neighbval):

This procedure receives as input the region ID matrix (ridm) and

the pixel values (plxval) to be exchanged across the region border.

The parameter direction is needed to discriminate between neigh-

boring regions bordering in different directions. The pixcl values
of neighboring regions are returned in neighbval.

Since all regions are square in the split phase of the algorithm, it is not

necessary to create embedded trees to represent the regions. On the

MPP the regions in the split phase will have dimensions mxm where m

is a power of 2. Hence, the upper-left corner PE of each region can be

designated as the region root. Then, by initially treating each pixel in

the image as an independent region, an iterative merging technique can
be used to create larger square regions comprised of four subregions

(one in each quadrant). This has the same effect as a top-down split but

is more efficient. Using the homogeneity criterion suggested earlier, eqn

(I), all information needed to describe a region can be accumulated at

the root during the region growing process. In effect, a larger region's
properties (e.g. minimum and maximum values) are obtained from the

properties of its four subregions. There is no need to re-evaluate the

minimum or maximum values of all pixels in a region, but simply to
calculate the minimum and maximum of the values held at the roots of

the four subregions. A larger region is created by merging its four qua-
drants only if all four quadrants are homogeneous regions and Ore com-

bined properties of the subregions satisfy the homogeneity criterion.

Hence, reduction operations only require a constant number of steps to
perform and the distribution operation can be performed in O(log(m))

steps. However, since the MPP only has near-neighbor connections the

cost of routing is still Of m). This could be reduced if a more complex

interconnection network between PE's were available (e.g. Of log(m))

given a hypercube interconnection). In any case, this is much more

efficient than using the embeddcd trees, and only requires a slight
modification of the parallel primitives described above. The modified

primitives for square regions are described below.

SQRMIN(iterallon,pixval,rootval):

SQRM AX(iteration,pixval,roolval):

These procedures receive as input the splitting iteration number Io

determine the dimensions of the regions being processed and the

locations of the region roots. A region's minimum and maximum
are computed by shifting the minimum and maximum values of its

subregions to the region root, The results are returned in ruotval.

SQRDIST(dimensions, rootval,pixval):

The parameter dimensions is an array containing the dimensions
of each region. This information is used to broadcast the root

value to all PE's within the region. The result is returned in pix-
val.

Both phases of the split and merge algorithm are described below. Each

phase of the algorithm is first outlined by dividing it into a series of
steps. The corresponding pseudo-code for each phasc is then broken

down into the same steps. The WHERE (condition) construct is a
musk that only enables those PE's tor which condition is true. Tire

ANY (condition) construct returns a value of true if condition holds

true for any PE in the system. The homogeneity criterion suggested ear-
licr, eqn.(l), is used.

The SE!klitphase algorithm

1. Since initially all pixels are treated as independent regions, the

region minimums and maximums are set to equal the pixel values

and the split iteration is set to one.

2. Each region's maximum and minimum values are computed.

3. The region ranges are calculated at the roots.

4. If any regions display a range within the allowed threshold, the
new region dimensions are set at the roots.

5. The iteration value is incremented and, unless either the iteration

value exceeds log(n) (n is the image dimension) or no merges

occurred during the last iteration, control is returned to step 2.
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6. Theregions'rootPEID'saredistributed to all region PE's using

the region dimensions contained at the region roots.

The Split phase pseudo-code

/* Variable declarations */

idm, pid, roomode : PARALLEL ARRAY [1..128,1..128]
OF [0..16383];

pixval, regmin, regmax, T, range : PARALLEL

ARRAY 11..128,1..128] OF [0..255];
dimension : PARALLEL ARRAY [1..128,1..128] OF [1..128];

iteration : [1..71;

merge : BOOLEAN;

1. /* Initializations */

regmin <-- pixval;

regmax ,_- pixval;
iteration _- 1;

2.

4.

REPEAT

/* Compute the region minima and maxima. */

SQRMIN(iteratinn, regmin, regmin);

SQRMAX(iteration, regmax, regmax);

/* Calculate the new region ranges. */

rootnode _ f(pid,iteration);
WHERE rootnode

range _-- regmax- regmin;

/* Calculate new dimension for homogeneous regions. */

merge _-- ANY(range < T);

IF (merge) [
WHERE ((range < T) AND rootnode)

dimensinn _-- 2't'_ati°_;

}

/* Terminate when either no merges occurred in the previous

iteration or the entire image has been spanned. */

iteration _ iteration + 1;
UNTIL ((iteration > log(n)) OR NOT merge);

/* Broadcast the region ID's to all PE's contained within

their boundaries. */

SQRDIST(dimension, pid, idm);

The Merge phase algorithm

1. Embedded trees for all regions are constructed using the region

ID's.

2. Minimum and maximum values and region ID's are exchanged

between neighboring regions, to determine the range of combined

regions, and possible merges.

3. Lowest merge ranges are accumulated at the region roots and dis-
tributed to all region PE's.

4. In case more than one neighboring region yields the same "lowest

merge range", the region with the higher ID is selected.

5. Choices of merge selection are exchanged with neighbors. If two

regions select each other, both regions merge by assuming the
smaller ID of the two.

6. Unless no merges occurred during the last iteration, control returns

to step 1.

The Merge phase pseudo-code

/*
Variable declarations.

*/

ridm, regmins, regmaxs, mergeneighbid, mergechoices, mergechoice,

neighbmergechoice : PARALLEL ARRAY [1..128,1..128]
OF [0..16383];

pixval, mintoroot, maxtoroot, mergerange, neighbmin, neighbmax.

newmergerange, bestrangeval : PARALLEL ARRAY [1..128,1..128]

OF [0..255];

cptr, pptr : PARALLEL ARRAY [0..5,1..128,1..128] OF BOOLEAN;

merger : PARALLEL ARRAY [1..128,1..128] OF BOOLEAN;
maxtd, i : INTEGER;

/* Create embedded trees for all regions and calculate

the region minima and maxima. */

EMBED(ridm, pptrs, eptrs, maxtd);

MIN(pptrs, maxtd, pixval, mintoroot);

MAX(pptrs, maxtd, pixval, maxtoroot);
DIST(cptrs, maxtd, mintoroot, regmins);

DIST(cptrs, maxtd, maxtoroot, regmaxs);

/* Initialize the merge range to the threshold value. */
mergerange _ T;

/* Exchange ID, minima, and maxima information

with all neighbors. */
FOR (i _-- 1 TO 4) {

EXCHANGE(ridm, regmin, i, neigbmin);
EXCHANGE(ridm, regmax, i, neigbmax);

EXCHANGE(ridm, ridm, i, neighbid);

/* Determine the homogeneity range value of each neighbor. */

WHERE (neighbmax < regmax)

neighbmax _- regmax;
WHERE (neighbmin > regmin)

neighbmin _ regmin;

newmergerange _-- neighbmax-neighbmin;

/* Record the range and ID of the region

yielding the best range. */

WHERE ((newmergerange < mergerange) AND

(ridm <> neighbid))[

mergerange <-- newmergrange;

mergeneighbid _-- neighbid

};
/;

/* Accumulate the best merge range at the root. */

MIN(pptrs, maxtd, mergerange, mintoroot);

DlST(cptrs, maxtd, mintoroot, bestrangeval);

/* Select the neighbor yielding the best range value and arbitrate

ties by selecting the neighbor with the largest ID. */

WHERE (bestrangeval = mergerange)
mergechoices _ mergeneighbid;

MAX(pptrs, maxtd, mergeehoices, maxtoroot);

DIST(cptrs, maxtd, maxtoroot, mergechoice);

/* Exchange merge choice information with neighbors.

Choices must be mutual for a merge to occur. */

FOR(i_ 1TO4) {

EXCHANGE(ridm, mergechoiee, i, neighbmergechnice);
EXCHANGE(ridm, ridm, i, neighbid);

WHERE ((ridm = neighbmergeehoice) AND

(mergechoice = neighbid))

merger <-- true;
haveamerge _-- ANY(merger);

/* For merging regions, arbitrarily, select the smaller

of both ID's as the new region's ID. */

IF (haveamerge) {

WHERE (merger AND (neighbid < ridm))
ridm <--- neighbid;

MIN(pptrs, maxtd, ridm, mintoroot);

DIST(cptrs, maxtd, mintoroot, ridm);
};

};

Results

A high-level language (Parallel Pascal [12]) implementation of the

region growing primitives was run on the MPP. A series of timing tests
were conducted using images of square NxN regions with the set of
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dimensions: N = 8, 16, 32, and 64 (Table 1). These test sets were

representative of blob-like regions with d=N.

Table I. Measured Timing Results for Primitives.

Dimension Time (ms)

N embed rain/max dist exchange

8 1 12.5207 1.9675 1.5291 0.0660

16 [ 22.2983 3.5137 2.7260 0.0660
32 41.8582 6.6043 5.1177 0.0660

64 80.9739 12.7876 9.9032 0.0660

The following set of timing expressions, given in milliseconds, were
derived from these results.

T,,_,d(N ) = 1.222N + 2.741 (2a)

T,,a,:,_(N) = 0.1932N + 0.4210 (2b)

Ta_,(N) - 0.1495N + 0.3322 (2c)

g',_h,,,t, (N) = 0.0660 (2d)

The measured values do not deviate from the above equations by more
than 2 percent.

An estimated performance analysis was conducted assuming an optimal
machine-level encoding of the primitives. The clock cycle time for the

MPP is 100 nanoseconds. Furthermore, it was assumed that loop set-up

in the host could be overlapped with array computations. This is possi-
ble on the MPP since a FIFO buffer exists between the host and the PE

array which allows the host to perform serial calculations while the

array is busy processing instructions in the buffer. The analysis yielded
the following expressions.

l"_,,_,a(N) = 0.1570N + 0.0197 (3a)

T,,_,_v) = 0.0168N + 0.0034 (3b)

f_,(N) = 0.0104N + 0.0034 (3c)

f,,_a_,f, (N) = 0.0358 (30)

The estimated results range between 2 to 15 times faster than the meas-

ured results. This is probably due to two main reasons. First, the Paral-

lel Pascal code generator produces inefficient code since it currently

does not perform any code optimizations; second, the host may not be

able to generate instructions fast enough to keep the processor array
busy; especially for boolean data operations. (Conditional branches

which are dependent on processor array values cause the FIFO buffer to

empty, however no such branches occur in the implementation of the
primitives).

A similar comparison analysis was conducted for the split and merge

phases of the algorithm. The measured results for the Nob-like regions
are summarized in Table 2.

Table 2. Measured Timing Results for Split and Merge Phases.

Dimension

N Split Merge

8 2.7276 38.1122

16 3.4329 67.1308

32 4.2128 125.1579
64 5.2824 241.2121

These results yielded the following expressions.

T, pt,(N) = 0.01518N + 0.5839log(N) + 0.8077 (4a)

T,_,g,(N) = 3.627N + 9.104 (4b)

The first term in the split phase expression represents the cost due to the

shift operations needed to route information through an NxN mesh con-
nected region. This could be reduced to O(logN) given a hypercube

interconnection scheme. The second term in the expression is related to

the number of arithmetic opcrations performed to create an NxN region.

The third term includes the overhead operations that are independent of

N. The merge phase results are primarily a product of the primitive

operations and therefore yield an expression of O(N). The estimated per-
formance using an optimal encoding is as follows.

Tspllt(N) = 0.0045N + 0.100log(N) + 0.052 (5a)

f',,_rg, (N) = 0.3746N + 0.3737 (5b)

For the split phase the estimated performance was three to five times

faster than the measured results. Since the merge phase of the algorithm

is highly dependent on the parallel primitive implementation, we could

predict that the estimated performance will be approximately ten times

faster than measured results. This is in fact the case as demonstrated by
the expression above.

2ONCLUSION

A technique for region growing on a highly parallel SIMD computer has

been described. This technique is based on a "best merge" paradigm
which imposes an ordering to the parallel merge sequence. Three funda-

mental primitives for region growing have been defined: reduction, dis-
tribution, and neighbor exchange. Furthermore, it has been shown that

the split algorithm on the target architecture is efficiently implemented

by region growing using special primitives for processing square regions.

A simple homogeneity criteria, pixel range, has been used to demon-

strate the basic parallel techniques. However, arbitrary complex homo-
geneity functions can be computed with this scheme. Additional reduc-

tion functions such as PRODUCT and MEAN may be implemented with
a similar efficiency to.the primitives MAX and MIN. An embedded tree

structure has been introduced to implement the region growing primi-
tives on a mesh-connected SIMD system.
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HYPERCUBE ALGORITHMS SUITABLE FOR IMAGE UNDERSTANDING

IN UNCERTAIN ENVIRONMENTS

T.L. Huntsberger, A. Sengupta

ABSTRACT

Computer vision in a dynamic environment needs to be fast and

able to tolerate incomplete or uncertain intermediate results. An

appropriately chosen representation coupled with a parallel architecture

addresses both concerns. The wide range of numerical and symbolic pro-

cessing needed for robust computer vision can only be achieved through

a blend of SIMD and MIMD processing techniques. The 1024 element

hypercube architecture manufactured by NCUBE of Beaverton, Oregon

has these capabilhies, an_J was chosen as _ _esl-bed hardware for

development of highly parallel computer vision algorithms.

This paper presents and analyzes parallel algorithms for color

image segmentation and edge detection. These algorithms are part of a

recently developed computer vision system which uses multiple valued

logic to represent uncertainty in the imaging process and in intermediate

results [HLrNT86]. Algorithms for the extraction of three dimensional

properties of objects using dynamic scene analysis techniques within the

same computer vision system framework [HUNT87, HLrNT88] are briefly

examined. Results from experimental studies using a 1024 element

hypercube implementation of the algorithms as applied to a series of

natural scenes will also be reported.

INTRODUCTION

Several supercomputers such as the NEC SX-2, the Cray Research

CRAY-2, and the ETA-10 offer the possibility of extremely high speed

execution of various computer vision algorithms. However, the syn-

chronization of numerical processing and symbolic manipulations of

higher level vision information has bee.n proven to be a difficult problem.

The massively parallel architecture ot the connection machine addresses

some of the underlying problems with processing for image understand-

ing [BALL83, HARR86]. The large number of processors needed for

such a machine for computer vision would dictate a possibly prohibitive

cost. A modular pipeline architecture such as the PIPE design allows

computer vision tasks to be partitioned [KENT85].

The low level operations of computer vision such as edge detection

and component labeling are efficiently accomplished on parallel arrays of

processors such as the ZMOB [BANE81, KUSH81, RIEG81], the homo-

geneous multiprocessor [DIMO81, RAMA86] and systolic arrays

[KUNG83] among others. Reeves gives a review of the current designs

for parallel architectures for image processing [REEV84]. The develop-

ment of reconfigurable architectures like the PASM design [SIEG81] has

led to more flexibility in the range of tasks possible on a given architec-

ture of this type. Since the nature of image understanding is more

abstract at higher levels, vastly different tools are needed to perform

higher level operations such as object identification. Putting more intelli-

gence into the operating system for control in image understanding tasks

was recently suggested in [DELP85].

The large bandwidths (100 MIzLOPS) typically needed for feature

extraction algorithms has severely limited response times in most vision

systems. Many architectures are capable of local image operations, but

become very inefficient for higher order symbolic processing. This is

due not only to the architecture design itself, but also to the utilization of

algorithms and processing techniques not optimized for parallelism.

Recent results for a number of both low and high level vision algorithms

Intelligent Systems Laboratory
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Columbia, SC 29208

implemented on a hypercube architecture indicate the flexibility inherent

in the design [BOND88, lONE88, WILL88].

IMAGE SEGMENTATION ALGORITHM

An iterative algorithm which performs clustering in an image color

space is used for image segmentation [HUNT85a]. This clustering in

color space is done with the fuzzy c-means algorithm generalized by

Bezdek [BEZD81]. The performance of this algorithm on a Single

Instruction Single Data (SISD) machine has been disappointing, with a

typical runtime of from htmdreds of minutes to 40 plus hours depending

on the hardware used. A recently developed integer version of the algo-

rithm coupled with lookup tables for the distance metric and exponent/a-

tion gives an order of magnitude increase in performance on a SISD

machine, with the tradcoff of increased storage requirements [CANN86].

Upon investigation, it was found that certain portions of the algorithm

were highly parallel in nature and that a significant performance benefit

can be achieved by exploiting this inherent parallelism [HUNT85b].

The clustering procedure has two phases: cluster center generation

and membership value determination from these cluster centers. This

means that there is an inherent sequential limitation to the algorithm,

since each phase relies on the output of the other. Expressions for the

cluster centers and membership values are given below:

n

k=i
v i , (la)

_ (ga) _
k=l

for the cluster center vl and

1

i=1

for the membership value p_, where c is the number of clusters, da is a

distance metric, m is a weighting exponent and n is the total number of

points being analyzed. The values used in the segmentation phase of the

computer vision system are n = 9, m = 2.0 and c = 2 with a Euclidean

distance metric in RGB color space.

The scheduling table for the parallel implementation of the cluster

generation phase of the segmentation algorithm indicates that generation

of cluster centers can be accomplished in 13 machine cycles using a 16

node hypercube configuration, as opposed to 177 operations on a sequen-

tial machine. Partitioning the tasks along these lines differs from the

multistage pipeline, which was the ,)riginal application-specific design

[HUNT85b]. Analysis of the member ;hip value determination portion of

the algorithm indicates that 16 cycles ,vill be required on the s_me hy/_er-

cube configuration, as opposed to 212 operations on a sequential architec-
ture.

The implementation of the clustering algorithm discussed above has

been designed to only allow interprocessor communication between

nearest neighbor nodes in the hypercube network. This will greatly cut
down on communication overhead timcs and should allow accurate
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reportsof running times, since the direct peak interprocessor communica-

tion speed on the NCUBE/10 is 180 Megabyteslsec. Each run of the

clustering algorithm will typically take 5 iterations to converge. Thus,

there are typically about 1945 floating point operations involved in the

production of the membership values and cluster centers for each pixel

for a sequential analysis, or put another way, 11.7M floating point opera-

tions for each frame of size 240X256 full color pixel data. Recent results

of parallel algorithm development on the NCUBE/10 have indicated a

relatively slow sustained processor floating point performance of 0.14 to

0.26 single precision MFLOPS [GUST88]. Allocation of the full 1024

nodes as 16 element sub-cubes gave a near real-time segmentation rateof

1.2 seconds per frame.

Although the MIMD algorithm just discussed exhibits a possible

parallel speed-up of about 82 percent, message buffering for interproc_s-

sot communication within the AXIS operating system on the NCUBE/10

hypercube totally negates this speed-up. As observed by the Sandia

group, unless overlapped communioation cycles can be built into the

algorithm, interprocessor transfers typically take about 365 microseconds

per four byte transfer [GUST88], As the operatingsystems on hypercube

architectures evolve, this speed bottleneck will be eliminated with

unbuffered nearest neighbor communication protocols included at the

algorithm level.

Tim hypercnhe architecture is flexible to allow alternate mappings

of algorithms. The possible parallel implementations of the segmentation

algorithm for the hypercube would be decomposition of the image data

with very little inlerprocessor communication needed, or a 5 stage pipe-

line. Both of these approaches were investigated, with the expected

results. If the image data set is decomposed into windows of size 9 X 6

pixels, with a single window on each of 1024 processors, the segmenta-

tion time is reduced to 40 milliseconds per 240 X 256 full color frame.

Another version of the data set decomposition technique would assign

two processors to each window, with each processor computing a single

cluster center and then exchanging the results. Despite the simultaneous

calculation, the communication overhead drove the segmentation time up

to 67 milliseconds per frame.

The five stage pipeline design allows each iteration of the algo-

rithm to he computed in one stage of the pipe. For five processors

arranged in a ring pipeline the number of interprocessor communication

cycles is 35 with overlapping and a segmentation rate of 54 milliseconds
per frame, This tJme is about of factor of 1.4 times slower than the

image data decomposition method. If a five stage pipeline with two pro-

cessors in each stage is constructed fo_ the segmentation process, the time

increases to 92 milliseconds due to the extra interprocessor communica-

tion cycles.

PARALLEL EDGE DETECTION ALGORITHM

Once the membership values to the color cluster centers are deter-

mined, the process of edge detection is done using these membership

values. Local homogeneity properties of a color image are evaluated

with set operations. An edge operator has been developed that is

independent of thresholds and that treats the pixel color characteristics as

a vector [HUNT85b]. The information for the location and strength of

color edges is resident in the hypercube processors after the image

segmentation process. This leads to efficient edge detection for input to

higher level processes, such as shape representation [HUNT86], due to

the elimination of reloading time for the membership values.

Ambiguities in edge strength and location can arise from many fac-

tors. Among these are noise in the sensors and motion blur of region

boundaries. Membership values are close to one within a homogeneous

color region, and drop close to zero after crossing the boundary of the

region. The corresponding change from one to zero will occur in the

membership values of the adjacent region. If regions are treated as

image subsets, the spatial intersection between these subsets can be

defined as an edge.

As such, we defined an edge operator based on local pixel charac-

teristics obtained from the cluster analysis. This operator has the form

HOMOGi = _ - I.ta,, (2)

and computes the relative homogeneity of pixei i with respect to its adja-

cent pixel. Here, It.. and It,_ are the membership values associated with

pixel i to the image subsets a and b. The location of an interclass edge

is the point at which the operator

EDGELOC;¢,, = HOMOG/ - tlOMOG_, (3)

experiences a zero-crossing, where j and k are labels for two adjacent

pixels. Both operators are only defined for two adjacent pixels, where

the index a in (2) is the set label corresponding to the maximum

membership value for pixel j and index b is the set label corresponding

to the maximum membership value in pixel k.

From the homogeniety information derived in equation (2), it is

possible to express the strength of the edge in terms of a membership

value to the set of ideal step edges. This edge strength is defined as

I
HOMOGi - HOMOGy I

I'teDGe'_ = 2 (4)

where i and j are two adjacent pixels, and 2 is a normalization factor.
A diffuse edge is characterized by values of Itnoo__:i intermediate

between zero and one, being closer to one as the interface between two

adjacent color regions becomes more distinguishable. This operator is

computed only at the zero crossings of operator (3), i.e. where evidence

for an edge exists.

Determination of edge location and strength was only implemented

in the data decomposition hypercube mapping scheme used in the seg-

mentation phase of processing. The edge location using equations (2)

and (3) and the same size windows as in the segmentation step took 9.7

milliseconds per frame. It is anticipated that this step can be interleaved

with the segmentation phase. Determination of edge strength varied

depending on the edge frequency found in the previous step. Typical

times on our full color natural images ran on the order of 2 to 4 mil-

liseconds per frame.

DYNAMIC SCENE ANALYSIS

In this section we analyze a possible parallel technique for the

determination of the optic flow field in a sequence of images. This tech-

nique exploits the link between contour and region deformations that is

inherent in the behavior of moving objects as viewed by a monocular

observer. The segmentation method mentioned in a previous section is

extended to deal with dynamic scer.es. We consider a packet of k

frames at a time for analysis, k normally being four or five. The cluster-

ing analysis is done for the first frame of this k frame sequence. The
color cluster centers obtained are used as reference centers for the calcu-

lation of the region characteristics for subsequent frames.

These centers allow a connected components analysis to be per-

formed using the technique discussed in Jones [JONE88]. The typical

case timing on a 256X256 image was 636 milliseconds on a 6 dimen-

sional 7 MegaHertz NCUBE system. After the connected components

calculation is performed, further calculation of principal components can

be done using the butterfly accumulation algorithm [JONE88].

Changes in these principal components are used as features for spa-

tiotemporal deformation studies. A series of simultaneous linear equa-

tions is derived from the deformation of four of the low order principal

components. Sequential versions of these algorithms are discussed in
[HUNT87, HUNT881.

DISCUSSION

The 1024 dement hypercube architecture allows the integration of

image processing and computer vision modules under a single structure.

Studies of the parallel implementation of some recent dynamic scene

analysis work is also under way [HUN'T87, HUNT88]. The performance

improvement over the sequential algorithms just in the segmentation
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phaseof the system indicate that close to real-time three dimensional

analysis of moving objects can be accomplished on this type of architec-

ture. We are presently implementing these algorithms on a 1024 element

hypercube (NCUBE/10). In addition, parallel algorithms are being

developed for the higher level operations such as model base matching
[HUNT86].
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Abstract

A fast algorithm is presented for broadcasting a word

of length w, on an n x n SIMD array of bit-serial

processing elements, in time O(n + w). Data-skewing

problems caused by SIMD restrictions are solved by

assuming that each processing element contains a shift
register and an activity flag that allows each pro-

cessing element to conditionally ignore instructions.

The broadcasting algorithm is then extended to a

fast segmented-scan (prefix) algorithm that runs in

time O(n + (w + t)log n), where t is the time needed

to perform the arbitrary, user-defined, operation on

which the scan is based. Because of the versatility

of scan operations, many algorithms written for more

powerful SIMD computers, such as the Connection

Machine, can easily be adapted to bit-serial arrays.

Slightly less efficient algorithms are also presented for

processing elements that lack shift registers.

Keywords: Broadcast, parallel prefix, scan, SIMD arrays,

bit-serial algorithms, meshes.

I. Introduction

The Connection YIachine is a powerfltl Single Instruction

Multiple Data (SIMD) computer consisting of 64I( bit-

serial processing elements (PEs) connected by a global

router. In addition to providing general interconnections

among the PEs, much like a telephone system, the router

can be used to implement sorting and various segmented-

scan (prefix) operations [Hil, Ble]. Due to the relative effi-

ciency of scans, many Connection Machine algorithms use

them heavily in conjunction with some sorting and a nfin-

imal number of general permutations. Algorithins written

in this style can often be ported directly to bit-serial pro-

cessor arrays for which efficient scan implementations exist.

In this paper we present a fast parallel algorithm for

computing segmented scans on a two-dimensional n x n

SIMD array of bit-serial processors. The algorithm takes

O(n+(w+t) log n) time to perfi_rin a scan on n _ data items,

where u, is the word length and t is the time to perform

the binary operation on which the scan is based.

The scan algorithm is adapted from a novel SIMD

broadcasting technique that takes O(t_ + w) tinle on an

n x n bit-serial array in which each PE has an activity flag,

that determines whether that PE will execute or ignore the

current instruction, plus a shift register that is used to solve

data-skewing problems. Machines such as the MPP [Bur]

and the GE Cross-Omega chip [GEl have both of these fa-

cilities. In practice, our bit-serial technique is considerably

faster than the straight-forward word-level method, which

requires O(wn) time, and has the desirable property that it

is essentially independent of word length, for a large array,
sincen+w_n.

A slightly less efficient broadcasting technique is also

presented fl)r PEs without shift registers. However, the al-

gorithm is sufficiently more complex that it makes a good

case for including shift registers in future designs of bit-

serial SIMD arrays. Indeed, it can be argued that, in ad-

dition to including shift registers, the data paths within a

PE can be easily designed so that broadcasting takes place

at clock speeds; i.e., in about 7z + w cycles. Such mesh ar-

rays wouht then become conlpetitive with machines, such

as the DAP [Flan etal], which resort to global busses for

broadcasting.

For applications, such as linear programming or Gaus-

sian elimination, in which broadcasting is an essential part

of the piw_ting operation, our fast bit-serial algorithm

speeds up broadcasting by nearly a factor of w. This re-

duces the broadcasting time to a small fraction of the piv-

oting time, rather than dominating it.

II. Fast Broadcast

Consider the prolAem of broadcasting the values in a given

row, of a bit-serial SIMD array, to the m rows below it.

If the values are words of length w, the obvious word-level

row-at-a-time algorithm takes O(wm) time. Given the re-

strictions of the SIMD model, it is not clear that a sig-

nificantly faster algorithm exists. In this paper we show

how the inclusion of a shift register in each PE, together

with the exploitation of the bit-serial nature of the array,

can be used to reduce this time to O(m + w). If shift reg-

isters are not available, we show how it can be done in

time O(n_ + w log w) using a more COlnplicated algorithIn.

We note that both of these results give speedups on the

order of u,, when _n is sufficiently large. This is quite sig-
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nificantinpractice.For example, consider the problem of

performing a pivoting operation on a 512 x 512 array using
32-bit words. If the bit-serial arithmetic in a PE takes time

O(w2), then the broadcast time (using our algorithms) is

on tile same order as the time to do arithmetic, whereas

with the word-level O(wm) algorithm, communication time

would completely dominate the pivoting operation.

Implicit in our algorithms is the ability of each PE to

conditionally ignore the current instruction. This is done

via an activity flag. We also assume that each PE has

its own shift register, and that the PE's activity flag also

controls the shift register. This means that, in an inac-

tive PE, the contents of the shift register do not change.

On the other hand, we view tile bit-serial mesh as being

a global connection network that is ez_ernal to the PEs

and is thus influenced only by the global controller. Thus,

the movement of bits along the mesh, into and out of the

one-bit mesh registers located "under" the PEs, is uncon-

ditional. An alternative view is that every PE, active or

not, must participate in moving mesh data, although an

inactive PE can neither read nor write its mesh register.

The major SIMD restriction is that all PEs must use the
same address whenever a reference is made to a bit in the

local memory of a PE. No indexing is allowed within a PE.

Since the broadcasting of each word in the source row

is confined to one column, we confine our attention to a

single column of the PE array. The bit-level algorithms in

the sequel may best be understood by referring to Figure

1, where a typical column of the array is depicted. The

basic idea is to exploit the bit-serial nature of the mesh by

allowing each sending PE to s_ream its w bits down tile

bit-serial mesh, while each receiving PE copies the bits as

they go by.

Note that there is no word-level description of this

bit-streaming process. If we can make it work in a SIMD

environment, the broadcast will clearly take only O(m + w)

time. The major problem is that a given bit, of the word

being broaAcast, arrives at different PEs at different times.

This causes skewing problems, because all active PEs must

use the same memory address to store each incoming bit.

In this section, we show how to solve the skewing problem

by assuming that each PE has a shift register. We then

show how this problem can also be solved, without shift

registers, by accepting the fact that bits are first stored in

a skewed fashion, and then using an O(a, log u,) algorithm

to align them.

A. With a shift register

Assume that each PE has a bit-array B[0 : w - 1] in its

memory, serving as a w-bit buffer. Initially, a sender has a

word in its buffer; eventually, every receiver will also have

a copy of this word in its buffer. In addition, each PE

has two one-bit flag registers S and R to indicate various

conditions. If a PE is a sender then S = 1 otherwise S = 0.

Tile value of S is assumed to be given as part of the input to

the broadcasting routine and is not modified by the routine.

The R flag is used to indicate that a PE has received its

copy of the word; at that point, R = 1. To deal with

the SIMD restrictions, we find it usefltl to also treat each

sender as a receiver. Thus, when R = 1 in all PEs, a copy

of the word exists in every PE. The subtleties involved with

detecting this global condition are discussed below.

Associated with each PE, there is also a one-bit mesh-

register M which the PE can read or write when it is active.

The global instruction advance mesh causes the Lit con-

tents of all mesh register to unconditionally "shift down"

one row. That is to say, each PE, active or not, simultane-

ously sends the bit in its M register to the PIE below and

replaces it with tile bit in the M register of the PE above.

It goes without saying that the "down" direction is used

only for illustrative tmrposes and that any mvsh movement

could be used in its place. Indeed, it should be clear that

the entire broadcast process can be carried out not only

along any direction of a PE array of any dimension d > 1,

but also along any set of node-disjoint paths of any graph.

Finally, we assume that each PE has a shift register

SHR of length I _> w, where l'= O(w). The instruction

SHtt(X, Y) simultaneously shifts the register's eolltellts to

the right, reads a new bit from bit-register X lute, the h'ft

end, and writes the old right bit into bit-register Y. The

purpose of the shift register is to capture the bits stream

ing down the mesh and shift them mltil they occupy the

rightmost w bits of the register. This solves the skewing

problem, provided each PE can be nmde to conditionally

stop once the w bits are right justified in its shift register.

Conditional stopping is accomplished by preceding the w

bits in the broadcast stream with an extra header bit.

Being up front, it is the first to emerge from the right end

of the shift register, and serves to deactivate the PE. this

event can be detected by, say, usiug the value 1 for the

header in conjunction with an initially ch'arvd shift regis

ter. Carefld analysis rew'als that it suffices to ch'ar Cmly

the leftmost l - u, bits of the shift register, since the right-

most w bits are shifted out before the halting condition is

tested. It follows that no clearing is necessary when l = w.

The parallel SIMD pseudo-code for the entire process

is given below.

clear leftmost l - w bits of shift register
M+-- S

SHR(M,R)
fork _- 0to w-1 do

advance nlesll

when S do M +-- B[k] endwhen

SHR(M,I/)
endfor

while not all R do

advance mesh

when not R do SHII(M,R) endwhen

endwhile

shift rightmost w bits into buffer B[0:u,- 1]

The line M _ S perfi_rms two functions. Siliee S-1 for

a sender and S=0 for a receiver, the c()nunalnl effectiwqy
clears the mesh and then writes the header bit S- 1 on the
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meshiff thePEisasender.
ThelineSHR(M,R)immediatelyreadstheheaderbit

intotheshiftregister.ThesecondargumentRservesno
logicalpurposeat thispoint;however,thefactthatit can
bechosenasR isof considerableimportance.It should
benotedthatall instancesoftheSHRcommanduseonly
theargumentsM andR,in thatorder.Thismeansthat
thedata-pathconnectingM,R, andtheshiftregisteris
neverchanged.Thisimpliesthatit can be efficiently imple-

mented in hardware. Such a concurrent data-path would

allow the algorithm to stream bits at the clock rate. In

such an implementation, the bit register R could be essen-

tially identified with the (complement of) the PE's activity

flag.

The for loop also serves two purposes. It is used, by

a sender, to move its u, bits B[0],...,B[w - 1] onto to the

mesh. This portion of the code is factored out of the while

loop, below it, because the first w steps of the algorithm

are the only ones that need to make memory references.

During this time, the initial rightmost w bits of the shift

register, assumed to be garbage, are shifted out by all PEs

and ignored. Again, the argument R serves no logical pur-

pose, until k = w- 1, when (if I = w) the header bit

emerges from the shift register into R. Because the left-

most l - w bits were cleared (set to 0), it follows that the

first 1 to eventually emerge from the right end of a shift

register must be the header bit. Its recognition is therefore

assured. When this event occurs, the shift register has the

desired w bits right-justified and the PE deactivates itself.

If l > w, the leftmost l - w bits are considered to be junk.

The while loop keeps the bit-stream going, until each

receiver has a right-justified copy of the desired w bits in

its shift register. Of course, during this time, any PE that

has already received its copy (R=l=true) remains inactive.

Note that a when statement activates only those PEs that

satisfy" its predicate; only those PEs execute the entire body

of the when statement.

The predicate not all R that c()r, trols the while loop

needs some discussion. It should be viewed more as a spec-

ification than an actual evaluation of a predicate. Its real

intent is to keep the bit-stream going until every PE has

received the w bits and has deactivated itself. We note

that there is no harm in letting the loop continue past this

point, and that being able to do so offers a flexibility that

allows the algorithm to be used on various PE arrays and

under various circumstances. Certainly, if the PE array has

a global flag [GE, Hil], so that each PE has an input to a

global AND gate, say, then the loop condition can actually

be evaluated as needed. Since such a massive gate would

likely be pipelined, the termination condition would be de-

tected after the event actually occurred. As pointed out

above, this will cause no harm. A more likely situation is

that the distance m, that a word needs to be broadcast, or

an upper bound for m, is known in advance or can be pre-

computed. In such a case, the while loop can be replaced

with a for loop (counter). One need only guarantee that

the number of iterations is sufficlently large so as to allow

all PEs to deactivate themselves; such a scheme needs no

global gate.

The clearing step, the for loop, and the final shifting

step can all be done in O(w) time. The while loop takes

O(m) time since the last bit sent must be streamed down

into the shift register of the farthest receiver. The entire

process thus takes O(m + w) time.

It is worth noting that, if the tl register is identified

with the PE's activity flag, the when statement, in the

while loop, cat: be replaced by the unconditional instruc-

tion SHR(M,R). This is possible because the condition not

R is then equivalent to if the PE is active, and hence only

active PEs would participate. The point is that, if PEs

have the data path depicted it: Figure 1, the b,,dy of the

while loop can be performed at clock speeds.

B. Without a shift register

If the PEs do not contain shift registers, the streaming idea

still works; however the solution to the skewing problen: is

a bit more complicated. The SIMD restriction that all PEs

use the same memory address, together with the fact that

a given bit of the word being broadcast reaches different

PEs at different times, means that the bit will be stored at

different addresses in different PEs. However, the pattern

is regular enough to be managed by a SIMD algorithm.

During the first, stage, as the bits are streaming by, the

global controller generates a sequence of addresses that cy-

cle through the u, locations of the buffer B[0 : w - 1]. This

cyclic addressing process conti:mes until ewery PE has a

(cyclically skewed) COl))' of the u, bits. Each PE is respon-

sible for deactivating itself, once it has stored u, bits in

its buffer, to prevent the bits from being overwritten with

garbage. Each PE nmst also maintain an offset counter

that keeps track of how nmeh that PEs buffer needs to be

cyclically shifte(1 to correct its sk_,w. This is done with an

additional logw-bit counter C in each PE. Once all PEs

have received copies of the w bits, a second stage of the al-

gorithm is performed, in order to correct the skew in each

buffer, by cyclically shifting its contents as specified by that

PE's offset value.

There are two barriers to this approach in a bit-

serial SIMD environment. Although C is a counter, we

do not want to sin:ply increment it in the obvious way.

In the worst case, car:'3, prol)agation would take O(logw)

time, resulting in an O(m log w)-time broadcasting algo-

rithm. A more efficient counting scheme is discussed be-

low. Once the offsets have been deternfined, the straight-

forward method of correcting the cyclic skews of the buffers

is to allow each PE that has a given skew s, 1 _< s < w,

to correct it by cyclically shifting the contents of its buffer

s units. Since any such a shift needs to move all w bits

of the buffer, it takes O(w) time for any value of s. Do-

ing this, with a SIMD algorithn:, for all u, - 1 values of s

takes O(w 2) time. Vie show below how it can be done in

O(w log w) time.

In addition to th,,se complications, we nmst still deal

with the problem of detecting when a given PE should
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deactivateitself,soasnot to overwritethew bits in its

buffer B[0 : w - 1]. For this purpose, we again resort to

the use of a header bit. We essentially clear the buffer and

begin to cyclically store the incoming bit stream. Before

storing a bit, we check the bit already there. The first time

a value of 1 is seen, we are assured that it is the header

bit, and can thus deactivate the PE.

The parallel SIMD pseudo-code for the entire process

is very similar to the previous code.

M*--S

for k (-- 0 to w- 1 do

advance mesh

when S do M *-- B[k] endwhen

B[k] _ M
endfor

R_S

k (--- 0

C*--0

while not all R do

advance mesh

when not R do

R _- B[k]

n[k] (--- M

increment C from global k

endwhen

k (--- k+l (mod w)
endwhile

align the circular buffer B[0:w-1]

Note that there is no need to initially clear the buffers.

Since the instruction M (-- S overwrites the garbage in the

mesh, the for statement will store w of these "clean" mesh

bits into the buffers, before the testing of register R begins.

This effectively overwrites and ignores the initial contents
of the buffers.

The global counter k serves two purposes. It specifies

the single (SIMD) memory location B[k], where each PE

stores the bit copied from the mesh, and it is also used

to update each of the offset counters C. After reaching lo-

cation B[w - 1], k returns to location B[0] and continues

in this cyclic fashion until all PEs are deactivated. Each

counter C simply tracks k until its PE deactivates itself; its

sole function is to remember the last value of k. When a PE

deactivates itself, its C points to the buffer location where

the broadcast word starts. Rather than letting each PE

cyclically increment its own C register, in a bit-serial fash-

ion, the global controller need only broadcast the bits of C

that need to be modified to keep it current. This can be

done in a SIMD manner since all active PEs have the same

value of C, and hence need the same update. Although as

many as log w bits of C may need updating, to increment

C, the total number of bits that need to be changed, to

perform w increments of C, is at most 2w [FidMat], rather

than w log w. Thus, on average, an update modifies only

two bits, and the streaming process, although not progress-

ing at a constant rate, is slowed down by a factor two.

When the streaming process finally stops, each PE

has a copy of the w broadcast bits in its circular buffer

B[0 : w - 1], together with a pointer C to the location

B[C] of the first bit. Again, there is no harm in letting

the loop go past the point when all PEs have been deac-

tivated. The contents of all buffers can then be aligned,

in d = logw iterations, by stepping through the d bits

C[d - 1],..., C[0] of C. At the ith iteration, any PE that

has bit C[i]=l cyclically shifts its entire buffer an amount

2 i. After d iterations, taking dw = w log w time, all PEs

have their buffers aligned and the broadcast is complete.

The entire process takes O(2ra + w + w log w) time.

C. Segmented broadcasting

The above descriptions of the two broadcasting algorithms

were given as if only one PE per column were sending a

word of length w to the rn PEs below it. In fact, both algo-

rithms work for any number of senders. The real meaning

of register S is that any PE with S=I will send its word to

all PEs (if any) between itself and the next PE, below it,

that also has S=I. The crucial step that makes this work

is that every advance of the mesh is followed by a write

to the mesh. As a consequence, every sender overwrites

the bits coming from above and substitutes its own. This

effectively cuts the mesh into segments, at the will of the

user, according to the values given to S in each PE. The

term m should then be interpreted as the length of the

longest segment. Moreover, the values of S in one column

of the PE array can be chosen completely independently of

those in other columns. Any assignment to S is valid, no

matter what the dimension of the PE array. This means

that we are not restricted to simply broa_tcasting rows, in

two-dimensional array, or planes, in three-dimensional ar-

rays.

The only uncertainty in this description is how the

boundary PEs are connected. If the mesh wraps around,

the top PE in a column may be naturally viewed as being

below the bottom PE in that column. Since this interpre-

tation gives a potentially infinite column, there should be

at least one sender per column to guarantee that the PEs

in that column will eventually be deactivated. If the mesh

does not wrap around, any PE above the topmost sender

will receive garbage from the boundary of the mesh; how-

ever, because of the segmentation, all other PEs receive
well-defined values.

As an important example of segmentation, consider

a column with n = 2 k PEs, numbered 0 through 2 k - 1,

say. If we choose those PEs whose indices are multiples of

2 i as senders, we effectively segment the column into 2 k-i

segments, each of length 2 i, and can concurrently broadcast

a different value in each segment. Thus, for i = 1, each of

the n/2 PEs an even index will send its value to the PE

immediately below it. This idea is used in the next section

to build a broadcasting tree that serves as the skeleton of

the scan algorithm.
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III. Fast scan

In this section, we first describe how one-dimensional

broadcasting can be made into a fast bit-serial scan algo-

rithm. \Ve then show how to extend the scan algorithm to

two dimensions. The generalization to higher-dimensional

arrays is immediate.

Let 2( = ( x l ..... x N ) be a list (vector) whose elements

are from some domain D. Assume that D has an associa-

tive operation on it, which may be though of as multipli-

cation. The product of two elements x and y is denoted,

as usual, by xy. Multiplication need not be commutative.

Given an input list X = (Xl,...,XN) , the scan op-

erator a produces the list a(X) = (Trn(X),... ,wIN(X)),

whose ith element is the prefix product Xli(X), where,

in general, Trij denotes the interval product 7rq(X) =

xixi+l.., xj. We also use the notation 7r(X) to denote the

product rqN(X) of the entire list. Note that a(X) is a list,

whereas rr(X) is a scalar.

By appropriate choice of the multiplication operation,

the scan operator can be made to perform a variety of

useful functions. Its versatility may be further enhanced

when a bit-vector B -- (bl,... ,bN) is associated with the

input X. The vector B is used to segment X, by inter-

preting each 1 in B as the beginning of a new segment,

going from left to right. The scan function can then be

extended to a list of pairs, over {0, 1} x D, b_" restricting

each prefix product that represents the ith output element

to the segment that contains the ith input element xi. That

is to say, if B segments X into X1,X2,... ,Xs, say, then

o,(x) = (a(x,), a(x_),..., a(x_))
The recursion 7rli(X) = zq,i-l(X)xi makes it clear

that a scan can be performed sequentially in time O(N);

however, the computation is not inherently sequential. In

[LadFish] it is shown that there exists a parallel prefix

circuit of size O(N) and depth O(logN). A simpler ap-

proach easily yields a circuit of size O(N log N) and depth

O(log N). _,Ve now use this simpler approach to derive a

scan algorithm for a one-dimensional bit-serial array. The

algorithm is then extended to two-dimensional arrays.

Let m, 1 < rn <: N, be a "midpoint" that parti-

tions the input X into two lists X1 = (Xl,...,xm) and

"_'2 = (Xm+l,'-', ZN_" Note that for every i > m, we have

7hi(X) = 7h,,(X)n,_+l,i(X). This suggests that to com-

pute a(X), we concurrently compute the scans a(X1) and

a(X2), and then simply "lift" every element of a(X2) by

premultiplying it by the last element _h,m(X1) = _r(X1) of

a(X1). This gives the recursion

a(X_,X_) = (a(X,),_(Xl)a(X_))

where a(bl,...,b,) - (abl .... , ab,).

For our purposes, the main observation is that the

last element Zrlm(X1) -- 7r(Xl) of a(X1) needs to be broad-

cast to all the elements of a(X2). This three-step pro-

cess of computing a(.¥1) and a(X2), broadcasting r(X1)

to a(X2), and multiplying 7r(X1) by the elements of a(X2),

is depicted in Figure 2. Although the technique is rccur-

sively defined, it can be emsity expressed as a log N-stage

iterative SIMD algorithm. The main problem is to deter-

mine, at each stage, which PEs need to broadcast. This

can be decided on the fly, assuming that each PE knows

its own index, or that each PE can precompute a logN-

bit value that specifies at which stages that PE should be

broadcasting.

Using our fast bit-serial broadcasting algorithm, and

assuming that multiplying two words of length w takes

time t = t(w), the time T(N) to perform a scan, on a list

of length N, satisfies the recursion: T(1) = 0,

T(N) = max(T(m), T(N-m))+max(m+w, N-m+w)+t

Assuming N = 2 k, and that at each stage of the re-

cursion we cut each sublist in half, the time to perform a

scan on a list X, of length N, whose elements are placed

one per PE, on a one-dimensional mesh, is

T(N) = (N/2+w+t)+(N/4+w+t)+... _ N+(w+t) log N

Thus, the use of our fast streaming broadcast method

gives an O(N) scan algorithm, rather than O((w + t)N),

for values of w, t; and N that are likely to be encountered

in practice.

A. Segmented scan

In this section, we consider how to perform the scan opera-

tion on a list X when we are also given a bit-vector B that

specifies a segmentation of X IBlel. Rather than giving a

new scan algorithm, we simply show how to define a new

multiplication operation that yields the desired result.

We first take the bit-vector B, with elements in {0, 1},

and the list X, with elements in D, and combine then into

a single list of pairs X' = ((b_,xl) ..... (bN,xN)), with

elements in the cartesian product D * = {0,1} x D. We

now define the product of an)' two pairs (a,x) and (b,y),

in D', as

(a,x)(b,y) - if (b = 1) then (b,y) else (a, xy).

If D has has a unit element I, the new product is

equivalent to (a + b,x_'y), where x ° = I for MI x E D,

+ stands for boolean OR, and the bar denotes boolean

negation. Note that when b=l, meaning that y is at the

beginning of a new segment, we have xly = x°y = Iy =

y. If, on the other hand, b=0, we get xOy = xly = xy.

Thus, b=l causes a segmentation, while b=0 does not.

This means that by doing a conventional scan a(X') on

the list of pairs (using the new multiplication), and then

projecting out the boolean component in the resulting list

of pairs, we get the desired segmented scan as(X) of the

original list X. By case analysis, one can easily verify that

the new multiplication is associative.

B. Two-dimensional scan

In this section, we consider the problem of doing a scan

on a list X of length N = ran, whose elements are placed,
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oneperPE,in raster-scanfashion,ona two-dimensional
m x n bit-serial array. Thus, the first n elements of X are

in the first row, the next n elements are in the second row,

..., and the last n elements are the last row. Note that in

this section, the row and column indices of the PE array

go from 1 to m and from 1 to n, respectively.

Although the PE array is two-dimensional, we wish to

treat X as a one-dimensional list and perform a scan oper-

ation on it, such that the result a(X) has its ith element in

the same PE that holds xi. The algorithm has five steps.

Step l[horizontal scan]: In parallel, for i = 1 to m, per-

form a left-to-right scan a(x(i-1).+l,... ,xi,) of each row
i.

After this step, the (i,j)th PE contains the interval

product rr0_l),+l,(i_li,+j(X ). In particular, the last col-

umn of the array contains the products

pl = _rl,,(X), p2 = rr,+i,2,(X) .... ,pro = 7r(m-1) .... (X).

Note that the interval products in the first row are the

desired prefix products, those in the second row need to be

lifted by ql = Pl, those in the third row by q2 = PIP2, and

that, in general, those in the (i + 1)th row need to be lifted

by the factor qi = rrli(Pl ..... Pro). Clearly, (ql .... ,qm) =

a(pl,... ,Pm), SO that a vertical top-to-bottom scan of the

last column of the PE array is required.

Step 2[vertical scan]: Perform a top-to-bottom scan of

the values in the last column of the array to compute the

"lifting factors" ql,. • -, qm.

Since qi is needed in row i + 1, we need to do:

Step 3[vertical shift]: In parallel, shift ql,..., qm-1, in the

last column of the array, down one row: qi _ qi-1.

Since each interval product in row i, 2 _< i _< m, needs

to be premultiplied by (the new value of) qi -= rrl,(*-l)n(X),

which is now at the right end of row i, we need to do:

Step 4[horizontal broadcast]: In parallel, for i = 2 to m,

broadcast the lifting factor qi to every element in row i.

There are two ways to perform this step. We can

simply do a right-to-left broadcast, or, if the mesh wraps

around horizontally, we can first shift the last column to

the right, into the first column, and then do a left-to-right

broadcast. The advantage of the second method is that

it uses the same left-to-right broadcasting direction as the

scan in step 1.

Now that each PE has the appropriate lifting factor,
we can do:

Step 5[lift]: In parallel, in every PE, in rows 2 through m,

nmltiply the lifting factor by the interval product computed

in step 1.

The product computed in the (i,j)th PE will then

be the prefix product 7rl,(i_l)n(X)Ti'(i_l)n+l,(i_l)n+j(X) =

7rl.(i-1),+j(X), as desired.

The times taken by the five steps are: 7'1 = O(n +

(w + t)logn)), T2 = O(m + (w + t)logm), T3 = O(w),

T4 = O(n + w), and T5 = O(t). The total time to perform

the entire scan on the list X, of length N = ran, is thus

O(m + n + (w + t)log(ran)). If m = n = x/_, the time is

O(2v/N + (w + t)log g).

Its clear that the technique used above for a two-

dimensional mesh can be easily extended to a multi-

dimensional mesh. Thus, if N = n a, the scan time,

on a d-dimensional mesh, for a list X of length N, is

O(dn + (w + t)log N).

A final observation is in order, for the realistic situ-

ation in which the length N of the list X is larger than

the number of PEs in the array. Suppose that the array is

rn x n and that N <_ stun, for some integer s > 1. Assum-

ing each PE has sufficient memory to hold s elements, we

can again distribute X in a raster-scan fashion, putting s

adjacent elements of X per PE. Each PE can then perform

a scan on its s elements, in time O(st), using the obvious

sequential algorithm. The sth result, in each PE, is then

used by the above scan algorithm, to compute the neces-

sary mn lifting factors. Since all s elements in a given PE

need to be lifted by the same factor, an additional O(st)

time is needed to compute the final results. The total par-

allel time is thus O(m + n + (w + t)log(mn) + 2st). When

m = n, this is O(2v_ + 2st), for realistic values of t and

w, showing that s can be O(n/t) without increasing the

time by more than a factor of two.

[Ble]

[Bur]

[FidMat]

[GEl

[Flan etal]

[Hill

[LadFish]
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Abstract

In this paper we describe a formalism for the

compact representation of message patterns for

multistage interconneetion networks. In this for-

realism a descriptor called an (s,d)-mask is used

to represent a message pattern, or rather, a set

of messages. We show that when message pat-

terns are represented in this way a number of

their properties can be determined in polynomial

time. This includes determining ifa message pat-

tern creates conflicts or congestion. In addition,

we show that the minimum round partitioning

problem, which in general is NP-complete, can

be solved in polynomial time for any message

pattern which can be represented by a single

(s,d)-mask. This generalizes a known result to

a more general class of message patterns and a

more general class of networks.

Keywords: Omega network, routing, computa-

tional complexity, SIMD, parallel processing.

1 Introduction

Ill [La73] Lawrie proposed the Omega network as an in-

terconnection network for a multiprocessor system. For

this network a particular message can be represented by a

source-address, destination-address pair, abbreviated as

an (s,d) pair, where s is the binary address of the source

of the inr_sage and d is the binary address of the desti-

nation of tile message, llence, a message pattern can be

represented by a set of (s,d) pairs, where each (s,d) pair

corresponds to one message.

In this paper we develop a formalism, called the mask

language, for the representation and transmission of mes-

sage patterns on Omega networks. In this formalism a

message pattern call be represented by a single descriptor

called a (s,d)-mask. This representation has a number of

advantages. For example, a single (s,d)-mask can repre-

sent a number of (s,d) pairs which is exponential in the

size of the (s,d)-mask. tIence, it saves space and, in the

context of multiprocessor communication, a single (s,d)-

mask can be broadcast to all processors rather then send-

ing the entire set of (s,d) pairs to their respective proces-

sors. In addition, we show that when a message pattern

is represented by an (s,d)-mask, a number of properties

of the message pattern can be determined in polynomial

time simply by examining the (s,d)-mask rather than the

entire corresponding message pattern. Since a message

pattern can be exponentially large compared to its corre-

sponding (s,d)imask, this fact illustrates one of the main

advantages of representing message patterns in the mask

language. In addition, we show that the mask language

defines a class of message patterns for which the mini-

mum round partitioning problem can be solved in poly-

nomial time for a general class of networks called bundled

Omega networks .

2 The Omega Network

Following Lawrie [La75], an N-input N-output Omega

network (also called an N x N Omega network), where

N= 2 TM, consists of m identical stages. Each stage consists

of a perfect shuffle wire interconnection [St71] followed

by N/2 switching elements. In Figure l(a) we show an

8 x 8 Omega network, and in Figures l(b)-l(g) we show

the possible states for each of the switches. Figure l(b)

shows the "straight through" state where the input sig-

nals are sent directly to the corresponding outputs, l(c)

shows the "interchange" state where the input signals

are first interchanged before being sent to the outputs

and Figures l(d)-l(g) show "incomplete" states. For ex-

ample, in Figure l(d) a signal is passed from the upper

input to the upper output while nothing is on the lower

input or lower output. Note how the model here differs

from the one in [La75] since switches are not allowed to

"broadcast" messages. In Figure l(a) we have labeled the

interconnection links for each stage, from the top down,

with a logan bit binary address. We have also numbered

the stages and shown a path through the network from

input 000 to output 011.

A particular path through the network can be rep-

resented by a source-destination pair, abbreviated as an
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(s,d) pair, where the source s= s0sl.., sin-1 is the bi-

nary address of the input at the first stage, the destina-

tion d= dodl.., d,,,-i is the binary address of the out-

put at the last stage and m= logaN . Careful exami-

nation of the network shows that the path code s0s_...

s,,,-ldodl.., d,_-I completely determines a unique path

through the network. Specifically, if we define an m bit

window W, as the bit pattern beginning t bit position

i of the path code, we see that at stage i in the net-

work, where 0 < i < m, the path which goes from SOS1...

sm-i to dodl.., d,,,-1 makes use of the link with address

I,V_= sis_+l.., sm-xdodt.., d,_l[RV86]. For example, Fig-

ure l(a) shows a path from 000 to 011. For this path

1412=001 and at stage 2 the path makes use of the link

with address 001.

The fact that a path code uniquely determines a path

through the network enables communication conflicts in

the network to be detected easily. Two messages that are

being transmitted through the network will conflict if and

only if they require use of a common link in the network.

Hence, in light of the window property mentioned above,

two (s,d) pairs are said to conflict if and only if there

exists an i such that the two (s,d) pairs have the same bit

pattern on window Wi. For example, Figure l(a) shows

the paths (000,011) and (100,000). Both (s,d) pairs have

Wl=O00, accordingly at stage 1 both pass through the
link with address 000.

This concept of an Omega network can be generalized

by the addition of a new parameter b called the bundle

size of the network. Specifically, we define a (b)N× (b)N

Omega network, where N=2 m, to have bundle size b if

each switch in the network has two bundles of inputs

and two bundles of outputs, each of size b. For example,

in Figure 2 we show a (3)4×(3)4 Omega network. Each

bundle in the network may carry b or fewer signals into

a switch. Hence, a total of at most 2b signals may be

input to a switch at any given time. Similarly, each out-

put bundle may carry b or fewer signals out of a switch.

For each input bundle, the incoming signals may be sent

to the upper or lower output bundle, ttowever, all the

signals on a given input bundle don't necessarily have

to go to the same output bundle. Some may go to the

upper output bundle, while others may go to the lower.

Similarly, two signals on different input bundles may go

to the same output bundle. The only constraint is that

at most b signals can use a particular output bundle at

any given time. If more than b require use of the same

output bundle then we say that congestion occurs. The

definition of the standard Omega network is a special

case of the generalized definition, where b=l. Similarly

"conflict" is just a special case of "congestion". Bundled

networks have also been considered in [SH87], where a
bundled network was referred to as a dilated network.

Recall that two (s,d) pairs are said to conflict at stage

i in the network if and only if they have the same bit

pattern on window H.;. However, when b > 1 the fact

that two pairs have the same bit pattern on window W,

doesn't necessarily imply that congestion occurs. In or-

der for congestion to occur at stage i, at least b+l pairs

must have the same bit pattern on window W,. For ex-

ample, consider the paths (0000,1000) and (1100,1001)

on a (2)16 × (2)16 Omega network. These pairs have the

same bit pattern 0010 on W2 and, hence, the bundle at

stage 2 with address 0010 is full because the two paths

are in use at the same time. If we now consider the path

(0100,1010) we see that at stage 2 this also requires use of

the bundle 0010. Hence, if all three paths were required

to be in use at the same time, congestion would occur.

An example of a bundled Omega network with b=16 is

in the proposed G.E. Cross Omega machine [tt86].

Finally, define a message pattern to be a set of (s,d)

pairs. Each (s,d) pair in the set represents the fact that

a message is to be sent from input s to output d of the

network. Note that this definition imposes no restrictions

on what type of message pattern the set represents. For

example, many pairs may have the same source or the

same destination. Furthermore, any number of conflicts

may exist in the set.

3 Definition of the Mask

Language

Define the mask language as follows. Symbols used in

the language will include constants and literals. Con-

stants are 0 and 1, literals include variables " x0" ,

" xl" ," x2" , etc. and their complements. A mask is

any sequence of symbols such as 0001, 1, ll, xolOxll,

XoXl"_, etc. The length of a mask M is the number of

symbol occurrences in the mask. Each mask has an im-

plicit universal quantifier to the left of the mask for each

variable in the mask, where the variables are quantified

over the set {0,1}. Hence, a mask containing the vari-

ables x0, xl,..., x__l is said to represent the set S of

2_ addresses, each specified by one of the 2 _ functions

from the variables x0, xl,..., x_-i to the set {0,1). For

example, the mask xolxl0 represents the set of addresses

{0100, 0110, 1100, 1110} . Furthermore, each address in

the set is said to be covered by the corresponding mask.

In the case where a mask contains no variables, such as

the mask 101, then the mask represents the set which

contains only itself {101 }.

An (s,d)-mask consists of a left hand side and a right

hand side, where each is a mask of the same length.

Examples of (s,d)-masks are (001,010), (lx0, 01) and

(xolOz_x2, x, lOz2xo). As with masks, an (s,d)-mask

has an implicit universal quantifier to the left of the

(s,d)-mask for each variable contained within. Hence,

the (s,d)-mask is said to represent the corresponding set

of (s,d) pairs. For example, the (s,d)-mask M=(x010,

:F01x_) represents the set S={(010, 110), (010, 111), (110,

010), (110,011)).
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4 (s,d)-Masks and Detecting

Congestion

In this section we describe a structure called a conflict-

cube[RVS6]. Each (s,d)-mask has a conflict-cube associ-

ated with each window of the (s,d)-mask. As we shall

show, the conflict-cubes associated with a given (s,d)-

mask can be used to determine a number of properties of

the corresponding message pattern.

Suppose that M is an (s,d)-mask and let V be the

set of variables which occur or whose complements occur

in M. Furthermore, let 1/3. be the set of variables which

occur or whose complements occur in window Wj of the

(s,d)-mask, where 0 _< j _< m. The conflict-cube SMj

of M corresponding to window W 3 is the set Sat,j= V-Vj.

Note that this definition is a slight variation of the one

given in [RV86].

Now let 5' be the message pattern corresponding to

M. Then the following property of S holds[RV86].

Fact 1.Consider an Omega network with bundle size

b=l. Then the number of messages which conflict on a

particular link at stage j is given by 2 k, where k is the car-

dinality of the corresponding conflict-cube SM,j. tlence,

a message pattern represented by a single (s,d)-mask will

contain conflicts if and only if it has a nonempty conflict-
cube.

In following sections we will show how conflict-cubes

can be used to determine a number of properties of (s,d)-

masks and their corresponding message patterns. Fur-

thermore, conflict-cubes can be exploited in the solution

to the minimum round partitioning problem for any mes-

sage pattern which can be represented by a single (s,d)-
mas k.

5 Detecting Conflicts in an

(s,d)-mask

The Omega network is a blocking network and, as such,

does not allow the transmission of arbitrary message pat-

terns. Specifically, it does not allow the transmission of

message patterns which give rise to communication con-

flicts. Hence, algorithms for detecting communication

conflicts and strategies for dealing with communication
conflicts have become the focus of numerous researchers.

As stated in Section 1, one of the advantages of the mask

language is that many properties of message patterns can

be determined simply by examining (s,d)-masks rather

than the entire corresponding message pattern. The fol-

lowing lemmas illustrate this for the detection of conflicts

and congestion in a message pattern represented by one

or more (s,d)-masks. It should be noted that for tile lem-

mas and theorems in this paper we give short sketches of

the proofs. We refer the interested reader to [B88] for
the detailed versions.

Lemma 2. Let M be an (s,d)-mask of length m. Then

determining if the message pattern corresponding to M

contains communication conflicts can be done in O(m)
time.

Proof. (sketch) By Fact 1 in Section 4, a given (s,d)-

mask will contain conflicts if and only if it has a nonempty

conflict-cube. Hence, an algorithm for detecting conflicts

would operate by scanning the (s,d)-mask from left to

right checking for a nonempty conflict-cube. The key to

the algorithm lies in the fact that each window is exam-

ined using only a constant amount of time, thus ensuring

that the algorithm operates in linear time.O

In [BR87] an algorithm is discussed which will deter-

mine if a given set S of (s,d) pairs contains communica-

tion conflicts. The algorithm operates in time O(m2p),

where p =1 S I • Given that p could be exponential in m,

the length of a corresponding mask pair, Lemma 2 illus-

trates one of the main advantages of using (s,d)-masks

for representing message patterns. We now consider the

more general case of detecting congestion in an Omega

network with bundle size b __ 1.

Lemma 3. Let M be an (s,d)-mask of length m and

b > 1 be a bundle size. Then determining if the mes-

sage pattern corresponding to M is congestion-free for

an Omega network with bundle size b can be done in

O(m) time.

Proof. (sketch) As in the proof of Lemma 2, an algorithm

for detecting congestion would scan the (s,d)-mask from

left to right examining the conflict cubes at each win-

dow. However, it follows from Fact 1 in Section 4, that

in order for congestion to occur on an Omega network

with bundle size b > 1, the (s,d)-mask must contain a

conflict-cube of size k, where 2k> b. o

In addition to message patterns representable by a

single (s,d)-mask, we consider message patterns which

require more than one (s,d)-mask for their representa-

tion. Hence, it becomes important to be able to detect

communication conflicts and congestion in a set of (s,d)-

masks. In the following, a set of (s,d)-masks is said to be

disjoint if no (s,d) pair is covered by two different (s,d)-

masks in the set.

Theorem 4. Let S be a set of disjoint (s,d)-masks where

n =[ S I and m is the length of each (s,d)-mask in S. Then

determining if S is conflict-free can be done in O( m2n 2)
time.

Proof. (sketch) An algorithm for detecting if a set of

(s,d)-masks contains conflicts would operate by scanning

all of the (s,d)-masks, at the same time, from left to right.

As it scans it would examine the set of (s,d)-masks on

each window. For each window it would compare each

pair of (s,d)-masks to see if they conflict on that window.

This can be determined by a reduction to an instance of

2-SAT, which can be solved in O(m) time[G J79]. Since

each pair of (s,d)-masks must be compared on each win-

dow, a total of O(n 2) 2-SAT instances must be solved for

each window. Hence, each window requires an O(mn 2)
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operation.Sincethereareatotalofm+ 1 windows to be

examined, this gives a total running time of O(m2n2). 1-1

Theorem 5. Let b _> 1 be a bundle size and S a set of

n disjoint (s,d)-masks, where n is fixed and each (s,d)-

mask in S is of length m. Then determining if the set S

is congestion-free for an Omega network with bundle size

b can be done in O( m s) time.

Proof. (sketch) As in Theorem 4 an algorithm for test-

ing for congestion will check each of the m+l windows.

In addition, for each window each of the 2" subsets of the

n masks must be checked to see if a subset of the (s,d)-

masks covers a set of conflicting (s,d)-pairs, at least one

(s,d)-pair per mask. The test of each such subset requires
that an instance of 2-SATISFIABILITY be solved, which

requires O(m) time. However, since the bundle size of the

network may be greater than 1, an additional counting

step must be performed. Since there are m + 1 windows

and since n is fixed the running time of the algorithm is

O(mS). It should be noted that since each window re-

quires 2" 2-SATISFIABILITY instances to be solved the

constant on the running time is exponential in n. []

As with Lemma 2, the above results illustrate one of

the main advantages of using (s,d)-masks. Specifically,

the corresponding algorithms which operate on sets of

(s,d) pairs, instead of (s,d)-masks, may require an expo-

nential increase in time.

6 Minimum Round Partitioning

for (S,D) Masks

Suppose that a message pattern is to be transmitted on

an Omega network. In addition, suppose that it has been
determined that the message pattern creates congestion.

One strategy for dealing with this situation is to par-
tition the corresponding set of messages into disjoint,

congestion-free subsets, called rounds, and then trans-

mitting the set of messages by successively transmitting

the messages in each round. Clearly, in order to minimize

the total time for message transmission, it is important
to minimize the total number of rounds.

The problem of partitioning a set of (s,d) pairs into
a minimum number of rounds is referred to as the min-

imum round partitioning problem. This problem

has previously been considered by a number of authors.

For example, in [A83] upper and lower bounds for the

problem have been established. In [WF80] and [DF87]
heuristics for the problem are given. An algorithm is

given in [RV86] which will construct a "partitioning func-

tion" for a set of messages when the message pattern is

represented as a "bit permute complement" permutation.

And in [BR87] the computational complexity of the prob-
lem was considered. For a number of special cases the

problem was shown to be solvable in polynomial time,

however, it was shown in general to be NP-hard. Here,

we show that the problem can be solved in polynomial

time when the message pattern can be represented by a

single (s,d)-mask.

Theorem 6. Let S be a message pattern which can be

represented by a single (s,d)-mask. Then S can be parti-

tioned into a minimum number of congestion-free rounds

for an Omega network with bundle size b > 1 in linear

time.

Proof. The algorithm for performing the partitioning

exploits two facts related to message patterns which can

be represented by a single (s,d)-mask. The first is that

for any such message pattern the (s,d)-rrmsk can be com-

puted from the set S in linear time[B88]. And the second

is that the minimum number of rounds required by the

message pattern is equivalent to 2 k, where k is the cardi-

nality of the largest conflict cube for the corresponding

(s,d)-mask. Given the message pattern as input, the al-

gorithm will compute the (s,d)-mask and then determine

how many rounds are required by examining the associ-

ated conflict-cubes. Using this information it will then

partition the message pattern. Each of these steps can

be performed in linear time. Hence, the result follows. []

7 Conclusion

In this paper we have described a formalism for the com-

pact representation of message patterns. We have shown

that when message patterns are represented in this for-

malism a number of their properties can be determined in

polynomial time, simply by examing representative (s,d)-

masks rather than the message patterns themselves. This

fact is important since a message pattern may be expo-

nentially large compared with its corresponding

(s,d)-mask. In addition, we have shown that the min-

imum round partitioning problem, which in general is

NP-complete, can be solved in polynomial time for any

message pattern that is representable by a single (s,d)-

mask. This generalizes a known result [RV86] to a more

general class of message patterns and a more general class

of networks.
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Abstract

A fast algorithm to compute minimum spanning tree of a given

undirected graph on Hierarchical MESH connected computer

(HMESH) is presented. The time complexity of the algorithm is

O(log 2 n), where n is the number of nodes in the graph. HMESH

is a broadcast bus VLSI architecture which consists of n × n

processing elements (PE's) in a mesh connected structure and a

hierarchy of broadcast buses in each row and column of the mesh

structure such that each broadcast bus is connected to exactly k

PE's, where k is a small constant. Later, we will show that with

simple modifications to the algorithm, MST of n node graph can

be found on HMESH of size p × p in O( [n/p 12 log n logp) time.

It is also shown how to compute connected components and tran-

sitive closure of a given undirected graph in O(log _ n) with a few

modifications to the algorithm presented for computing minimum

spanning tree.

1 Introduction

The minimum spanning tree of a given undirected, connected

graph G = (V,E), where V is a non-empty set of n nodes and

E is a set of e unordered pairs of nodes called edges, with cost

or weight assigned to each edge in the graph, is the connected

subgraph of G whose total edge cost is minimum. The problem of

finding minimum spannin 9 tree has some practical applications

e.g., the problem of connecting various cities by high ways so

that each city has a path to other cities, directly or through

another city, with minimum cost, routing a common signal to

different points in a VLSI chip efficiently, efficient broadcasting in

networks etc. The problem of finding the connected components

of a given undirected graph is to color all the vertices in the

same component of (7, with some unique color. So, the problem

of finding the connected components of a given undirected graph

G can be seen as the problem of finding the spanning forest of

G with weights of all edges being equal. The problem of finding

connected components has some applications in areas like pattern

recognition etc.

The classical methods of finding, sequentially, the minimum

spanning tree of a given undirected graph are Prim-Dijkstra's

[1,2] method, Kruskal's [3] method, and Sollin's [4] method. Of

these three, Sollln's method is most suitable for parallel compu-

tation of the minimum spanning tree of a graph. The problem of

obtaining a parallel solution to compute the minimum spanning

tree and the connected components of a given undirected graph

G with n nodes and e edges, has been studied extensively in the

'This research is supported by the NSF Presidential Young Investigator
Award No. MIP 8452003, a grant from AT&T Information Systems, and a
grant from TRW Inc.

literature [5,6,7,8,9,10,11,12,13].

Some fast and efficient parallel algorithms are proposed in

[8,7,9,10,11]. In [8] an O(log2n) parallel algorithm to com-

pute the connected components is presented. They use PRAM

model with CREW (Concurrent Read, Exclusive Write) capa-

bility. Modifications to the algorithm in [8] resulted in faster

algorithms with time complexity O(log n) to compute minimum

spanning tree [9,10], and connected components [I1]. However,

they all use PRAM model with CRCW (Concurrent Read, Con-

current Write) capability. The algorithm proposed in [11] uses

O(log(n + 2e)) processors, and computes the connected compo-

nents of G. The algorithm proposed in [9] uses n 3 processors,

and computes minimum spanning tree of G.

Many researchers use PRAM models to evaluate the time com-

plexity of their parallel algorithms. However these PRAM

models are not realizable in practice with the current technol-

ogy. So, some researchers have proposed various VLSI architec-

tures as practical models for synchronized parallel computation

[29,25,26,27,28]. In particular linear array and two dimensional

array processor architectures are given considerable attention

[30], [18],[17],[16],[14], [6]; because, the regularity of the archi-

tectures makes them suitable for VLSI implementation. One dis-

advantage of these architectures is that they have large diameter

(i.e. worst case communication delay between any two process-

ing elements in the architecture). Attempts to overcome this, in

particular for two dimensional mesh connected computers, are

met with some success [15,23,19,20,32]. ttowever, mapping algo-

rithms to these architectures is non-trivial and, in some cases,

is highly complex [19,15]. Moreover, the resultant architecutes

are not practical for VLSI implementation. As a solution to

these problems the Hierarchical Mesh structure (ttMESH) was

proposed [21]. HMESH is a highly modular architecture, which

allows easy mapping of algorithms [24]. In this paper we will

present an algorithm to compute the minimum spanning tree us-

ing HMESH (described later) in O(log 2 n) time. With simple

modifications the same algorithm can be used to find connected

components and transitive closure of G.

2 Architecture of the HMESH

In mesh connected computers, the solution time complexities are

dominated by the interprocessor communication times. In a 2-

dimensional MCC with n 2 PE's, time required for movement of

data between two farthest PE's is O(n). Therefore, many prob-

lems on the MCC will have O(n) complexity, e.g., finding maxi-

mum ofn numbers. Since the MCC is a well suited structure for

various problems, attempts are made to reduce the delay involved

with long data movements, by adding broadcast buses [15,22,19].

In [21] the hierarchical mesh connected computer (HMEStt) has
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been proposed by generalizing the idea of multiple broadcast

buses with a view to certain practical aspects, such as limiting

the number of PE's that can be connected to a bus. The main

idea is to provide multiple buses in each row and column of a 2-

MCC such that there are some finite number of PE's connected

to each bus (figure 1.)

Figure 1: The ttmesh architecture with r_ = 16 and k = 4.(Ouly

tlrst two and last column buses are shown for clarity)

Tile hierarchical mesh is an SIMD architecture consisting of

n x n processing elements with four nearest neighbor connec-

tions. Each PE consists of a few registers and is capable of per-

forming arithmetic and logic computations. For routing data to

long distances, the array of PE's are interconnected by a system

of hierarchical broadcast buses. The PE's are numbered as (i, j)

where 1 < i,j << n. In each row and column PE's are grouped

and each group of size k share a common bus. The least index

nmnbered PE's are again grouped in the next level, and again

groups of k PE's share a bus. This construction is repeated until

tile top b_.vel is reached with one group <_ k PE's which would

require only one bus. There will be Flogk n] levels of buses in

each row and column. The architecture for 16x16 PE's is shown

in figure 1.

The hierarchy of multiple buses allow fast data transfer between a

pair of PE's. It takes at most O(log n) bus transfers for data to be

routed from a source PE to a destination PE. Of course multiple

PE's can be transferring data to other PE's simultaneously as

long as different buses are used. However, there is potentially

high parallelism in transfer of data between PE's. Also, a single

PE can broadcast its data to all other PE's in O(log n) time. This

can be accomplished by first broadcasting to local PE's, then to

subsequent level of PE's, and after logn steps to the entire row

of PE's. Then the same procedure can be repeated in all the

column of PE's. In the algorithm for MST we repeatedly use te

row or column broadcast operation (contents of the register z of

PEi5 will be sent to all the PE's in row i,) and min operation

(nfinimum of the contents of register(s) of PE's in a colmnn or row

is found) repeatedly. The time taken by either of these operations

is O(log n) (here k is treated as a constant.) These two operations

are discussed in detail in [31,5].

Many parallel algorithms use divide and conquer technique which

maps naturally to this architecture. Therefore, we can expect

algorithms for this architectuxe to be much simpler and yet very

efficient.

3 Minimum Spanning Tree

In this section we present the algorithm MST to compute the

minimum spanning tree of a given graph G. We will also show

that with simple modifications to the algorithm, MST's of graphs

larger than HMESH can be found with correspondingly larger

time complexity.

8.1 Discussion

The algorithm uses the well known Sollin's technique to compute

the minimum spanning tree in parallel [4]. The basic idea is

to group nodes in the same component using the edge weight

information, and to make all the nodes in a group to have one

identification number (also called color of the group, but it is

really the node number of one of the nodes in the group) so that

any two nodes can immediately identify whether they are in the

same group or not. A group in which all the nodes have one color

is called a super vertex.

At the beginning of the algorithnl, each node is a super vertex by

itself, and its color is same as its node number. Each node tries to

hook to a node, to which it is connected by the nfininmm weight

edge. This is called hook operation. As a result of hook operation

there could exist a long chain of nodes in which a node is trying to

another node and one or more nodes are trying hook to this node.

Cycles between two nodes are avoided by making one of the nodes

to point it to itself and the other to point to it. This chain is

condensed into a star shape format so that all the nodes point to a

single node, called the leader of the super vertex which also gives

the color of the super vertex. This condensing operation is called

shortcut operation. In case of long chains it may take several

steps before they are condensed into one supervertex. In the

meanwhile, a supervertex is free to hook to another supervertex

or to a chain of nodes that is being condensed. It should be noted

that a chain of nodes will never participate in a hook operation

until it is condensed into a supervertex. This process is repeated

until no supervertex changes and there exists no chains of nodes.

3.2 The algorithm MST

We shall now present the algorithm to compute minimum-cost

spanning tree of an undirected graph G (see figure 2.) The initial

conditions and ternfinating conditions are as given below.

Initial Conditions

• Each PEIj for 1 < i, j <_ n has the following registers: (a) A

register Ci./ to keep the color of the node j. Cic, indicates

the color of the node Cil. (b) register l_. i to keep the cost of
the edge connecting the new neighbor vertex. (c) A register
C_j to keep the color of the new neighbor vertex.

• Each non diagonal .PEij for 1 < i, j < n and i _ j has the

following registers/flags in addition to the above mentioned

ones: (a) A flag Eij to indicate whether there is an edge

(i,j) present in the given graph, i.e. adjacency matrix is

assumed to he the input to the algorithm. (b) A register

IV,./ to keep the cost of edge (i,j). (c) A flag Sij to indicate

whether the edge {i,j) is present in the spanning tree.
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• Each PEil for 1 < i < n has the following registers/flags in

addition to those mentioned above: (a) A flag Qi to indicate

whether the vertex i has participated in the present iteration

or not. This is useful in testing for the completion fo the

algorithm. (b) Two registers Sll and S21 to keep the index

information of the PE that supplied the most min. cost

edge to connect super vertex i to a neighbor super vertex

in the present iteration.

Terminating Conditions

• All diagonal PE's in the same component will have the same

color, i.e. , Cii - Cjj iff vertices i and j are in the same

connected component.

• All the edges in the spanning tree are indicated by setting

the corresponding _S' flag true. i.e. , Sij = true if edge (i,j)

is in the spanning tree.

Time complexity of the algorithm is, shown in [31], O(log 2 n).

Proof of correctness also is given in [31].

3.3 Finding MST with Smaller HMESH

In this section we will show that MST of a given graph G(V,E)

can be found on HMESH of size smaller than n, the number of

nodes in G.

Let the nmnber of rows and columns in the HMESH be p where

p > 1. With simple modifications to the algorithm MST given

earlier it is possible to find MST of G. Now each PE in the

HMESH will have r = in�p] times the original number of regis-

ters, and will keep the information about r nodes. Information

about node i will be kept in PE's in row i rood p and cohmm

i rood p. Each step in the algorithm is modified to execute the

same operation for all the nodes having the same index ( given as

z modp where z is the node number ) and hence are taken care

of by PE's in the row or column given by the index number. All

the subscripts appearing in the algorithm are now their actual

value modulo p so that correct PE's are accessed.

It is shown in [31] that the resulting time complexity is

O([n/pl _ logn logp).

4 Related Problems

In this section we will show how to compute connected compo-

nents and transitive closure of a given graph G using the algo-

rithrn MST.

By taking the adjacency matrix as the weight matrix, the al-

gorithm MST can be used to compute connected components of

the given graph G. However, to compute transitive closure of

G we first compute the connected components of G and then

step 3 given below is performed. The transitive closure of the

graph is given by the boolean matrix formed by falgs Sij for all

l<i,j<n.

foreach i do

if Ci i - Cil then S_j = true

Algorithm 1 MIST

/* The following terminology is used in the algorithm.

forall indicates that all the PE's are active in the computation, fore-

ach i indicates that all the PE's in a row are active, foreach j indicates

that all the PE's in a column are active, broadcast is done along that

column. The broadcast value is given by the diagonal PE. */
1

I.I

1.2

2

2.1

2.2

2.3

2.3a

2.3ai

2.3a2

2.3b

2.4

2.4a

2.4ai

2.4a2

2.4a3

2.4a4

2.4a5

2.4b

2.4bl

2.4b2

2.4b3

2.4b4

2.4b5

2.4b6

2.4c

2.4d

2.4dl

2.4d2

2.4d3

/* Necessary parameters are initialized now */

forall PE,, do { C,, = i; }

forall PEij j 7£ i do S,j - false;

repeat

forall PEii do { Q_ - false;}

column-broadcast Cjj;

/* This is a shortcutting operation */

foreach i do {

C, = C,c,,;

if C, ¢ Czc, then Qc,c. - true;}
column broadcast Cj:;

/* This is a hooking operation */
foreach i do

if C. = C,C,, A _Qc,, then do {

S2i = min:{jlW, J is rain. AC, j is min.

AE 0 A C 0 ¢ C.;}

W'c. = W, s2,;

C[c . = C.s_, and mark PE (i,C'.) active; }
else C_i = O;

foreach j do

if there exists an active PE in the column do {

Qj = true;

Slj = min,{ilC_,: is rain. AWl, is rain. I;

SSl_S2s b -- true;

Ss2s.iSlj true;

column broadcast C_j
foreach i do {

if (c:,¢ o) A (i - C:c,,,) then

C', rain{i, C;,}

else if C_, ¢ 0 then Ci, - C_,; }

until (_Qi for all i)

Figure 2: Algorithm to compute minimum spanning tree
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Abstract

We develop optimal mesh algorithms for several VLS[

routing problems, such as river routing between rectan-

gles, routing within a rectilinear polygon and wiring mod-

ule pins to Dante pads. We assume that the mesh consists

of a v_ x _ processors, where n is the input size. Each

processor has a constant amount of memory. All our al-

gorithms run in time O(x/n).

successor after each iteration). Given n elements a0, al,..., a__l

and an associative operation ,, the prefix computation consists

of evaluating the n partial products si = ao* al * ...ai, for

0 < i < n - 1. Finally, sorting is the process of rearranging

a sequence of values in ascending or descending order. All the

techniques mentioned above can be implemented in O(v/77) time

on a v_ x ,,/-n mesh.

1 Introduction

The recent advances in tim VLSI technology allow the fabrica-

tion of highly complex systems on single chips. Sophisticated

software tools are needed to successfully design such systems.

In particular, the routing phase is a critical and time-consuming

part of the overall design process. Unfortunately, it turns out

that most routing problems are NP-complete and hence no ef-

ficient solutions seem to be likely. There are few exceptions,

however. For exalnple, various river routing (one-layer) prob-

lems, the two-layer channel routing with no constraints, and few

routing problems in the knock-knee model are known to have

efficient solutions ([D et alJ,[MP],[O],[P],IPL]). Our goal is to

develop a good set of techniques to obtain fast and efficient par-

allel ,-outing algorithms.

In this paper, we consider several basic problems in VLS1

routing such as river routing between rectangles, routing within

a rectilinear polygon, and wiring module pins to frame pads.

The known strategies to haadle these problems seem to be in-

herently sequential. We develop new techniques that lead to

optimal parallel algorithms. Our basic model of parallel pro-

cessing is the two dinrensional array.

Some of the well-known parallel techniques, such as path

doubling, prefix computation, list ranking and sorting, are used

extensively in our parallel routing algorithms. All of these tech-

niques have efficient mesh implementations. We will briefly, in-

troduce these techniques below. Path doubling is a basic tech-

nique used to solve many problems involving lists and graphs.

For example, given a set of linked lists, we can deternfine the

sink reachable fi'om each node by iterating the process of chang-

ing tile successor of a node to the successor of the successor

(effectively" doubling the length of the path from the node to its

1Supported in p_trt by NSA Contract No. MDA-90,I-8511-0015, NSF

Grant No. DCIt-86-00378 and by the Systems ]Research Center Contract

No. 01R-85-00108

2 Definitions

We assume that the reader is familiar with the basic definitions

related to river routing, routing within a rectilinear polygon (See

for example [D et al],[LP],[P],[SDI,[T]), and wiring module pins

to fi'ame pads (See [BP]). Here we will introduce these problems

briefly. The class of general river routing problems involves rout-

ing between ordered sequences of terminals such that the final

layout is planar. Figure 1 shows an example of a river routing

problem and a wiring achieving the minimum separation be-

tween the two boundaries. A more generM version of the river

routing problem is to perform planar routing where the ports lie

on the boundary of a simple rectilinear polygon. Figure 2 shows

an example of this routing problem.

x tt la Is tq tl t, _ t# ig _,0 lu Ii_ I,i tl,

Jlb_, _4_,io $_6. ID _1o July* lublt,

Figure 1: Basic river routing problem between two parallel

boundaries.

Figure 2: Routing within a rectilinear polygon.

CH2649-2/89/0000/0125501.00 © 1988 IEEE
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Theproblemofwiringmodulepinstoflamepadsisgiven
byatriplet< .M,Y,.,'v" >, where .,M is an arbit,'ary rectilinear

polygon representing a module, .T is a rectangle representing a

frame, and ..V is a set of two-ternfinal nets such that one terminal

is on .M and the other is on .T. We asstune that 3r contains ._

and that each boundary segment of f14 is parallel to a frame

edge. We are supposed to determine a one-layer routing of.,V

whenever it exists. Figure 3 is an instance of a such problem

and its final wiring.

In this abstract, we will concentrate on the one-layer model.

Section 3 presents a summary of the river routing algorithms

attd section 4 addresses the problem of wiring module pins to

frame pads.

_ub_ d

Figure 3: Routing between module pins and frame pads.

3 River Routing

We can partition the nets into blocks such that the wiring prob-

lem is reduced to wiring each block simultaneously. For any

right block, such as < Ns, Nt_ .... ,N14 > in Figure 1, we have

following lemma.

Lemma 1: ([CJ1]) Let Ni be a net in a right block and let .)

be the minimum j _< i such that ta + (i - j - 1) > bi. Then

the coordinates of the characteristic bend points of Ni (bend

points closest to the bottom row) are Art = (bi,i-)+ 1) and

till = (t"3 + i - j,i - ) + 1). The characteristic bend points

uniquely define the overall wiring.

Theorem 1: ([CJ1]) The characteristic bend points of the n

input nets as well as the mhfinmnt channel separation can be

detor,mued on a x/77 × x/_ mesh in O(v/77) time.

In the routing problem of nets within a simple rectilinear

polygon, our strategy, for the routing problem will consist of

identifying a set of net groups and the rcpcesentativc net of each

group then I_erfornd ng the wi ring of each such net with the nel s

"covered" by it separately.

Lemnta 2: ([C.II]) The total number of bend poil,ts of all the

representative nets is O(n), where n is the number of nets. We

can identify the prope," g,'oups and find the representative nets

in t>,e O(,/37) on a _ × vai mesh of processors.

Let N =< x,y > be a net in a group whose representative

is N,. With the number of nets between N and N_, we can de-

termine a bounding perimeter such that the wiring of N_ cannot

lie inside it. We claim that the following [emma is true.

Lemma 3: ([CJ1]) The union of all the bounding perimeters of

all the nets within a group determines the contour of the group

and hence determines the wiring of the representative net. If

the number of nets in the group is n, then the union can be

determined in time O(v/'ff) on the mesh.

Theorem 2: ([CJ1]) Detailed routing of n nets within a simple

rectilinear polygon can he done in time O(g'_ ) on a v _ x

mesh of processors.

The problem may be unroutable if (1) The graph determined

by the nets when restricted to lie within the rectangle is non-

planar. (Figure 4-1) (2) The wiring of all the nets requires more

area. (Figure 4-2) Case (1) can be detected easily by the ted>

niques such as path doubling , prefix computation and sorting.

Out' approach to case (2) is to partition nets into blocks, then

determine the wiring capacity and the wiring density between

blocks. Based on this information, we can detect the routabil-

it 5' ([CJt]). Below we give the algorithm to determine whether

or not there is enough space between the blocks to wire the

remahfing nets.

(1) (2)

Figure 4: Routability testing: (1) Planarity tesatlng (2) Area

testing.

Algorithm Density and Capacity

t,put: The wirittg of cover nets of the blocks and the ternfinals

of the remaining nets.

Oolp_tt: Determine whether or not there is enough space be-

tween the blocks to wire the remaining nets

1. Cut the rectilinear polygon boundary at some fixed point attd

straigt, ten it into a horizontal line ([CJ1]).

2. Assign weights to the terminals of each remaining nets outside

the blocks as follows: +1 to the terminal with smaller coordinate

in the line,-1 otherwise. Order these terminals according to their

line coordinates and compute the rank ( summation of all tim

weights proceed it, including itself) of each terminal. Each block

is assigned the rank of terminal adjacent to the left ternfinal (in

the horizontal line) of its cover net. The density between two

blocks is equal to the difference in their ranks.

3. Compute the intersection point of each 45 degree line seg-

ment emitting fi'om the convex corners of each block attd the

block contour or the original boundary of the rectilinear poly-

gon ([CJI]). The capacity between blocks can then be calculated

easily.

4. Test whether the capacity is at least as large as the corre-

sponding density. Otherwise the problem is unroutable.
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Theorem3: Testingtheroutability of n nets within a simple

rectilinear polygon could be done in time O(x/_) on a _ × v/-ff

mesh of processors.

4 Wiring Module Pins to Frame Pads

For any routing problem < .M,.T,.A/" >, we partition the nets

into groups such the nets in the same group share a 45 degree

diagonal. For example, the groups of Figure 5 are given by:

G1 = {WI,N2,N3, N4, Ns, N6}, G2 = {NT}, G3 = {Ns}, G4 =

{Nlo}, as = {Nu,N12), G6 = {Nts, N,s, Nlr}, Gr = {Ng} and

G8 = {Nla, N14}. For each net, we call the intersection point of

the routing with the diagonal as the intermediate terminal.

The wiring of each net consists of two parts. TILe first one

starts front the module terminal and routes as close to the mod-

ule boundaries as possible until it reach the intermediate termi-

nal. The other part is between the intermediate terminal and

the frame terminal and stays as close to the frame edges as pos-

sible. The first part can be determined by the techniques of

deternfining the union of rectilinear polygons. For the second

part, we move the intermediate points vertically to a horizontal

line L such that the separation distance is enough to solve the

corresponding river routing problem. With the above methods,

we can determine the wiring of each net.

The following is an algorithm to determine the intermediate

terminals of those group such as Ga, Ga and Gs in Figure 5. Ob-

vious changes can be made to get other intermediate terminals.

Figure 5: Example of routing problem with frame terminals on

the bottom flame edge.

Algorithm Intermediate Terminals

Input: Corners of module boundary, module terminals of a group

of nets, and the corner and the diagonal of the group.

Output: The intermediate terminal of each net in the group.

1. Rank each terminal of the group according to its order coun-

terclockwise around the boundary. Call the corresponding rank

of a net sequence number.

2. Calculate the distance between each convex corner and the

diagonal of the group. For each convex corner C, detel'mine an

integer k such that each net with sequence number > k intersects

the diagonM near C. k will be called the boundb_g value of C.

3. For each net N, determine the closest convex corner Q with

bounding value less than or equM its sequence number. Q is

called the bounding point of N. From this information, deter-

mine the intermediate terminals of all the nets in the group.

Figure 6 shows the lists obtained by the above algorithm for

group GI.

Lemma 4: ([CJ2}) The intermediate terminals of all the nets

can be determined in time O(v'_) with an array of v _ x v/_

PEs.

al a2 a3 a¢ _5 a6

_ A B C O I_

NI N2 N3 N4 N5 NfJ

Figure 6: Determination of Intermediate Terminals.

Theorem 4: Given an instance of above routing problem, we

can deiermine the routing in thne O(v/77) with an array of v/77×

V6_ PEs, where n is the input length.

For tile routability testing, we can fill<[ out the routing of the

outermost net in each group then detect the intersection be.tween

these nets, module and frame boundary by the methods of [MS].

The following is the algorithm for the set of nets whose frame

terminals are on tim bottom frame edge. Obvious changes can

be made for lnore general nets.

Algo,'ithm Routability Testing

1. Partition the nets with one terminal on the bottom frame

edge into groups and identify the corresponding corners and di-

agonals.

2. Determine the outer contour of each group as well as the

intersection points (intermediate terminals) of the routing with

the corresponding diagonal assuming a greed)' strategy as close

to the module as possible (greedy-in).

3. Move the intermediate points vertically to a horizontal line

L such tbat the separation distance is enough to solve the cor-

responding river routing problem. Find the characteristic bend

points of nets corresponding to the imluced river routing prob-

lem.

4. Determine if there is any intersection between tile wirings of

any two different nets or between the wiring of any net and the

module or frame boundary.

Step 4 involves a set of cases. Each of these cases will be

reduced to testing the intersection between two sets of line seg-

me,,ts ([CJ2]).

Theorem 5: Given an iustance of the routability testi_,g prob-

lem, we can test wlmtber a solution exists in _ime O(v/n-) with

an array of _ x v _ PEs, where n is the input length.
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Figure7:TransformationofU+wit'eswithonobstacles.

Supposethatinadditiontotheinput< .3,4, .T, N >, a wiring

of all the nets in dr" is also provided. Our next subproblem is to

modify tile given wiring m such a way that the total wire length

is minimized. A U- Wire is a sequence of three successive seg-

ments resulting from two successive 90 degree turn clockwise or

counterclockwise. A U-wire is reducible if the line segment one

unit fi'om tile base is not occupied by another wire or module

edge, or is occupied by the base of a reducible U-wire. It is clear

that shapes more complicated than redudble U's have to be con-

sidered if a fast parallel algorithm is desired. We can shrink U-

wires whenever possible as follows. Let W be a U-wire with ini-

tial segment el = (Ba, At) and last segment e2 = (132, A2) with

(say) the x-coordinate of B1 less than or equal the x-coordinate

of B2. Ill addition, suppose there is no obstacle inside W. Then

we can apply the transformation shown in Figure 7 to shorten

IV. If W has a,t obstacle inside it, then we find a ma_ximal set

of U-wires with the same obstacle and apply the transformation

shown in Figure 8. "File algorithm consists of identifying U-wires

and reducing them whenever possible. This process has to be

repeated O(log n) times to remove all the reducible U-wires such

that the resulting wiring is of minimutn length. We can use the

divide and conquer technique. After the first iteration, the prob-

lent is divided into two subproblems of half the size. Repeat this

strategy recursively for each subproblem for at most O(h)gn)

limes. We have following result ([CJ2])+

Theorem 6: Given an initial wiring, we can change this wiring

so that tile resulting wiring is of nfininmm total length in time

O(,¢G) with an array of V'_ x v'q7 PEs, where n is the input

length.

_t+l

J_:jl!
IF,.

i I t__. I _, { t ........ /H....,.

A II

Figure S: Transh)rmation of U-wires with an obstacles.
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ABSTRACT

The computational demands and real-time constraints of the multidimen-

sional Fourier transform (FT) make it an ideal candidate for attack by

massive parallelism. The appeal of parallelism has lead to the considera-

tion of a variety of architectures including systolic arrays, data flow ar-

chitectures, arrays of digital signal microprocessors and so-called hybrid

architectures. These designs have been advance for d _ 2 dimensions or

rely complex and inflexible hardware such as array transposers and

peripheral rotation networks. Moreover, they include specific optimiza-

tions for the FT or assume the need for course-grain, high-speed com-

putational resources. The Hypercomputer supercomputer is a

reconfignrable, massively parallel architecture, a 9,072 processor

prototype currently planned. The hypercomputer architecture family is

based on arrays of a simple and autonomous unit logic entity, the univer-

sal cell. Physically wired in a uniform, eight-degree mesh, the universal

cell is a pipelined, 8-bit microarchitecture. The mesh array is supported

by a separate 3D, parallel IO network. The surprising conclusion we

demonstrate in this paper is that simulated d-dim FT algorithms on the

hypercomputer are fast and achieve optimal area and time complexity

even though the approach is uniform and does not incorporate any

specific architectural optimizations for the FT. For an N-cube signal

space ofd dimensions, we derive detailed performance models for thek

cell hypercomputer where N d _ k and N _ k </_. We also present numeri-

cal results comparing a simulated hypercomputer and the AT&T Signal

Processing Ensemble Parallel Computer Architecture.

INTRODUCTION

The application of the Fourier transform (FT) has undergone explosive

growth aided primarily by the discovery of more efficient algorithmic im-

plementations like the fast Fourier transform (FF]') (Ref. 1,2) and more

recently, by advances in Very Large Scale Integration (VLSI). As such,

the FT has emerged as one of the most widely studied, computationally in-

tensive algorithms in the literature. Much of this interest has focused on

accelerating its performance in a unidimensional and multidimensional

signal space. Several special-purpose and parallel architectures have been

suggested including systolic arrays (Ref. 3), data flow architectures (Ref.

4), digital signal processors as well as arrays of digital signal processors

(Ref. 5,7,8), and so-called hybrid VLSI architectures (Ref. 9). in all, the

above proposals have been advanced for d a 2 dimensions, or rely on

complex and inflexible hardware such as array transposers and peripheral

rotation networks. Moreover, these architectures include specific op-

timizations for the FI" or assume the necessity of course-grain, high-speed

computational resources.

In contrast, we present an alternative, general design based instead on

reconfignration and massive parallelism; that is, in the context of the Hy-

percomputer supercomputer (Ref. 6), a 9,072 processor prototype cur-

rently planned at Plex Systems Research, Inc. in New York City. The

surprising conclusion we show is that simulated multidimensional Fr algo-

rithms on the hypercomputer are fast, achieve optimal space and time

complexity even though the approach is uniform and does not incor-

porate any specific architectural optimizations for the FT. Furthermore,

each cell in our design is simple and fine grain (8-bits), and is to be imple-

mented with high latency circuits ( >_.200 ns). We exploit these hardware

limitations through massive parallelism at the instruction level and the al-

goritbm level. Through the reconfiguration, we address specialized com-

putation and communication, tailoring the degree of both to accomodate

each other as well as the FT of different problem sizes and with different

space-time constraints.

HYPERCOMPUTERS

The hardware foundation of the hypercomputer family centers on a

uniform, eight-degree mesh of universal cells. This mesh array is sup-

ported by a three dimensional, global 10 network which provides real-

time IO in the planar dimension and distributed configuration and

synchronization along the polar dimension. Physically, each cell is an

autonomous, 8-bit microarchitecture with a four stage, pipelined data

path and a 128x32-bit control store, general purpose registers, control

registers and flags, and an interface to its neighbors through locally

shared regions collectively called the synapse. These simple hardware fea-

tures is the physical basis of low level reconfignration which captures the

functionality of processor elements, switch lattices, adjunct memory, etc.

in a single conceptual entity. These attributes also serve a much more

powerful abstration concept we call computational holism in which ob-

jects or actors (Ref. 10) pool their limited resources functionally and

hierarchically, forming cooperative associations of cell ensembles or

"chunks" that behave as a single, continuous whole. The software counter-

part of this model is embodied in an object-oriented, visually interactive

environment, called hypetware which composes arbitrarily abstract and

complex actors.

ALGORITHM

The discrete Fourier transform (DFT) for the N-cube signal space ofd

dimensions is computed by Equation 1 where S(nt,n2,...na) is a datum in

2- 22 (')
_1 _ "1

the signal space, N = Nt = N2 = ...Nd, N is a power of 2 and

WN = exp(j2,rrniki/Ni) for ni,ki = 0,1,...Ni.1. Equation 1 can be re-written in

a form which is more suitable for direct implementation (Ref. 9) as Equa-

tions 2-4 where R is a cyclic permutation function: that is,

R(S(aha2,...an)) = S(a2,a3,...amal). Functionally, R is aperfect shuffle rout-

ing map. Physically, R is a rotation of the signal cube through one dimen*

CH2649-2/89/0000/0129501.00 © 1988 IEEE
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)Xk,_=__d :R ,_kt_a- kd.tWN=

sion of the d dimensional signal space. For d = 2, this is the simple matrix

transposition. Thus, computing the 2-dim FT using cyclic rotations is

equivalent to the row-column method which computes the l-dlm DFT on

all the rows then computes another 1-dim DFT on the columns of the row

results. Wc note, in the general case, the d-dim FT is computable solely in

terms of l-dim DFTs, each interlaced by rotating the signal cube. Since

the 1-dim DFT requires O(N 2) multiplications, the d-dim FT (from Equa-

tions 2-4) has requires O(dN 4 + l) multiplications, it can be seen, then,

that a successful real-time implementation of the FT (following Equations

2-4) will depend on fast multiplication. In many of the dcsigns listed

above, thc necd for fast multiplication is the justification for low latency

circuits.

Figztre 1. Cooperating subproblemsfor the d-dim FT.

To achieve the theoretical lower bound complexity, O(d log N) (Ref. 12),

Equations 2-4 arc implemented to take full advantage of the inherent op-

portunities for parallelism: first, the parallel, fast Fourier transform

(oFF'F) is used instead of the scrim DPT and second, in the (d-1)-dim
dl

plane, N - pFV'Fs are computed in parallel. However, in practice, this
lower bound cannot be achieved without communication overhead costs

since the speedup gained through parallelism is obtained at the expense

increased data movement in the oFFT and the cube rotation. The cost of

this overhead is architecture dependent. For our implementation, we

present overhead results in the "Performance" section.

IMPLEMENTATION

In vicw of the above algorithm (Equations 2-4), the d-dim VI" on the hy-

percomputer presents a challenge, enough to easily overwhelm any single

cell. However, when local groups of cells chunks tx_ol their limited resour-

ces through c_a_pcrative computation, complicated tasks like the d-dim
FT can be viewed as various levels of abstraction which as a whole,

simplifies the task enormously. At the highest level, we analyse the d-dim

FF problem as two smaller cooperative subproblems in computation and

communication which map to two tightly coupled, complcx actors: the FT

actor and the shuttle actor. See Figure 1. These complex actors are hicrar-

:o _
Ftgure 2. N = 8parallel FFT.

hically integrated as a composition of progressively simpler, more fun-

damental actors which "bottom-out" at the level of primitive actors: i.e.,

actors whose behavior is derived directly from a single universal cell.

FT Actor

The FT actor is composed ofN d'l 1-dim pFFT actors. A multistage ver-

sion of the oFFT actor for N = 8 is shown in Figure 2. The pFF'F version

..,t (A+B)

Figure 3. Butterfly operation.

we implement is recirculating: that is, there is one stage which behaves

like multiple stages by way of an interconnection network to "circulate"

the data flow. In our case, this recirculation is carried out by the shuttle

actor. We prefer the recirculating network of actors because of its sig-

...............................................

Figure 4. Butterfly actor

nificant area advantage compared to the multistage version: that is, for

the oFFT, O(N) vs. O(N log (N/2L The oFFT actor is composed of N/2

butterfly actors (e.g., the black objects in Figure 2) each of which compute

log N output pairs, (,4 + B) and (A-B)w k (see Figure 3). A, B arc inputs
k h

and w is a "twiddle factor" constant which corresponds to the N t root of

unity for the complex number (x + iy) N.

A butterfly actor is composed of three primitive actors: i, m, and t. Sec

Figure 4. The main task for the i-actor is to provide a control interface be-

tween the rest of the butterfly actor and its counterparts in the shuttle

actor. As a secondary task, the i-actor computes (,4 +B) of the butterfly

output after fi_rwardingA,B to the m-actor. Since the FT-shuttlc network

is recirculating, the i-actor also retains one of the outputs, either (A + B)

or (A-B)w k depending upon its logical address in the butterfly network.

The t-primitive actor provides an active store for the twiddle factors and

forwards to the m-actor one constant for each of the log(N�2) outputs.

The twiddle factors are stored in a register chain table using the general

purpose registers and are retrieved using very long shifts. Although very
long shifts are slow (2-bits pcr cycle), the computations ofw _ in Ihe t-

actor and (A + B) in the i-actor are completely overlapped by the com-
putation of (A-B)w k in the m-actor. The impact of this bottleneck in the

butterfly can be reduced ifparalM arithmetic (Ref. 11) is employed to ac-

celerate the multiplication step. In this _hcme, the butterfly actor is

reconfigurcd to perform two 16x32-bit or four 8x32-bit partial multiplica-

tions in parallel, then integrate the partial results.

Shuttle Actor

The shuttle actor is a general purpose, message-processing assembly of

simplcr, S and N actors which allow parallel data flow from one input to

another output. On behalf of the FT actor, the shuttle actor rccirculatcs

the data flow for both butterfly and perfect shuffle rotation networks: the

actor reconfigures itself as nccessary. The S actor pipelines data gcnerally

"southbound" and the N actor pipelines data generally "northbound?'

Variations on these themes allow data to be transferred in lock-step

fashions that are function routing dependent. For example, Figure 5

shows the step-wise data flow for the N = 16 butterfly network. A similar

data flow is used h_r the perfect shuffle rotation network.
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Figltre 5. Data flow for N = 16 butteqTy.

32 x 32 Fourier transform

We now present a detailed example of the FT and shuttle actors com-

posed for the two dimensional, 32 x 32 Fourier transform. The actor ar-

chitecture is presented in Figure 6 which shows the two dimensional

signal input of 32 rows to each of 32 oFFT actors. These pFFT actors are

16 butterfly actors wide. Figure 6 also shows the rotation of the signal

space for only one row output: namely, the worst-case scenario in which

the points (0,31) and (31,0) are transposed. This corresponds to a move-

ment of 480 ceils.

FTA_tol ShullleActor

fo.3q . (o,3_) .....
(1,o) i

{1,3'_) 4_0 512

_ 3 .... * 2

Figttre 6. 32x 32 two dimensional Fourier tran,sfoun.

PERFORMANCE

In this section, we derive the area and time performance ofthc muhi-

dimensional vr on the hypercomputcr and compare these data with exist-

ing production systems: specifically, commercial DSP microprocessors

and the AT&T Signal Processing Ensemble or ASPEN architecture.

Area, Time

The area performance for the N-cube signal space is dctcrmincd by the

butterfly actor type (i.e., the configurable degree of parallelism, q, used by

the built-in subaetor multiplier), the shuttle actor area and the d dimen-

sional cube volume. These relationships are expressed in Equation 5. This

,i

A _- (q+ 2 (s)

area complexity, O(N d) is optimal (P.cf. 12). The run-time performance

for the N-cube signal space is determined by the pipclincd computation

time fi)r the 1-dim pFFT (TFI') along each dimension and the communlca-

tion delay in the 1-dim pFFTs (Dirt') and the rotation (Drot). (All times

are reported in system clock cycles except where noted otherwise.) The

pipelincd computation time is given in Equation 6 (where tc(q), measured

Trr = to(¢ d log(N/2) (6)

empirically, is the butterfly stage computation time for the q version of

the butterfly actor). The values for to(q) are given in Table 1. The total

Table L Empirical values for tc(q).

q to(q)

1 507

2 3O9

4 177

delay, TD = dDFr + (d-1)Drot, is elaborated in Equation 7 (where tD = 6

is the cell-to-cell routing delay).

TD= t (dl°g=(N/2)z + (d-l) ) (7,

The above performance model assumes a k cell hypercomputcr such that

Na/2 ___k. However, this number of cells may be impractical for the

problem size such that only N/2 _< k < IVa/2 cells are availablc. To il-

lustrate our principle for dealing with this problem we suggest a model

for the simpler case of k = (q + 2)N/2 where k is now just large cnough to

compute the l-dim FT directly. We employ the global IO network which

is able to input data through the planar dimension or the polar dimension

in parallel. See Rcf. 6 for details. We use this network to pump inputs into

the mesh array and carry outputs (e.g., temporary results) away from the

mesh array. So, unlike the case where i@/2 _< k, the data flow now rccir-

culates between the I-dim FF actor to the global IO network. For

k = (q + 2)N/2, wc cycle a single dimension through the k cell array al a

time. The ncw computation time is now given by Equation 8 and the

-- t_(¢ d N_-1Iog(N/2) (8)Tn

delay, Equation 9 where tG is the delay steps to input or output a single

To :tD(d "l°g=(N/z) +(d-1)(ZNtu+t_)) (9)

datum items and trot is the delay steps to rotate the signal cube. The final

pcrh)rmance of this system will depend upon thc architecture of the

global 10 network.

Comparisions

We use the above models to computc the performance of our prototype

machine with a 200ns ch)ck for the 1-dim 1024 point FT and the 2-dim

32x32 point FT. Note, the 1-dim 1024 point FT is unaffected by

N/2 _< k < 1@/2. We compare these results with available data in the

literature for commercial 32-bit digital signal proccssors (Rcf. 7) and the

prototype AT&T Signal Processing Ensemblc or ASPEN computer (Rcf.

5) with 25 32-bit AT&T DSP32 microprocessors. As can be seen in

Tables 2 and 3, the Hypcrcomputer would excel in the 1-dim FI r com-

pared with uniprocessor signal processors and would deliver nearly

equivalent performance for the 2-dim FT (for q =4) compared with the

Aspen Processor. This example would easily fit into our machine. Table 3

further shows the effects of serially computing the l-dim Urs over the two

dimensional signal space for "reasonable" values of tG: we assume that the

IO and rotation are pipelined so that the rotation is overlapped. Thus,

trot = 0.

CONCLUSIONS

Wc have considered a complete analysis of the d-dim FT on the hyper-

computer architecture. Our main goal has been to highlight implcmcnta-
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lion and performance and demonstrate that inspite of the machine's

proposed simplicity and generality, it delivers competitive response.

These results are surprising and may be even counterintuitive yet it under-

scores what we believe are the delightful possibilities when reconfignra-

tion and massive parallelism are married.

Table 2. Hypercomputer vs. uniprocessor DSPs.

DSP I Clock

Microprocessor (ns)

DSP5600 50

TM$320C25 40

ADSP2100 I 31

TMS3210 50

hypercomputer

q=l

q=2 I 200q=4

5.0
7.1

7.2

300

0.96

0.60

0.37

Table 3. Hypercomputer vs. Aspen Parallel Processor.

Architecture

ASPEN

hypercomputer

q=l

q=2

q=4

q=l, tG =32

q=l,tG :10

q=l,tC, = 1

# PEs (mT)

25 0.80

2,560 1.40

3,072 1.09

4,096 088

9.37

2,560 7.68

6.99
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ABSTRACT

Interactive three dimensional graphics applications, such as
terrain data representation and manipulation, require
extensive arithmetic processing. Massively parallel machines
are attractive for this application since they offer high
computational rates, and grid connected architectures provide
a natural mapping for grid based terrain models. This paper
presents algorithms for data movement on the MPP in support
of pan and zoom functions over large data grids. It is an
extension of earlier work that demonstrated real-time
performance of graphics functions on grids that were equal in
size to the physical dimensions of the MPP. When the
dimensions of a data grid exceed the processing array size, data
is packed in the array memory. Windows of the total data grid
are interactively selected for processing. Movement of packed
data is needed to distribute items across the array for efficient
parallel processing. Execution time for data movement was
found to exceed that for arithmetic aspects of graphics
functions. Performance figures are given for routines written
in MPP Pascal.

Keywords: interactive graphics, parallel algorithms, MPP,
terrain models

INTRODUCTION

Multiprocessor architectures have been used for several years
to meet the demanding computational requirements of
interactive, 3D graphics. The computing resources may take
the form of specialized hardware that exploits the vector and
pipeline suitabilily of graphics problems.(Refs. 4, 5, 7, 9,
and 13). However, there are several architectures which were
not designed specifically with graphics applications in mind,
but are versatile enough to be used advantageously on the
vectorizable nature of the computations (Refs. 1, 2, 3, 6, and
11). This paper focuses on the use of one such machine, the
MPP, for a specific graphics problem: representation of
digital terrain data and interactive manipulation of
corresponding terrain images.

Prior work has shown the feasibility of interactive
manipulation of stereo pair images of small terrain models on
the MPP (Ref. 10). In the prior work grids of terrain data
were 128 by 128 points, exactly matching the dimensions of
the MPP and leading to a natural mapping of terrain data to the
processing grid. In order to increase the possible applications,
it is necessary to implement interactive graphics operations

* This work was partially supported by NASA Goddard Space
Flight Center through the MPP Working Group.

on much larger databases of terrain points. Data structures
and algorithms reported in this paper are for pan and zoom
functions on larger databases. The work is more completely
described in Ref. 8.

PARALLEL ALGORITHMS

Data Representation

Grid-based digital terrain models contain an m by n
rectangular grid of points (xi, yj), l_<ism, l<_j<n, which
correspond to longitude and latitude values on the earth's
surface. Each grid point has an associated value zi,j which is
the elevation above sea level at the point (xi, yj).

Typically, a 128 by 128 grid of elevation points is considered
to match the MPP's architecture. Elevation points are assigned

to processing elements (PEs) in a straightforward way with
PEi,j containing the grid points (xi, yj, zi,j). A grid that just
matches the PE array size constitutes a small terrain model
and a limited display. In order to examine a different part of
the terrain, it is necessary to input a new set of coordinates
with elevation points from the host or staging memory. We
wish to make a large database available within the array unit
at the outset, and be able to display arbitrary parts of the
terrain in real-time, under interactive selection control.

The methods described in this paper can handle a terrain
database up to size 512 by 512 in the limited 1K per PE
memory of the MPP. However, for purposes of illustration, we
consider a model with a 4 by 4 array of PEs and an 8 by 8
array of terrain data. That is, there are four data points per
PE.

In order to exploit the full parallel capabilities of the MPP it
is necessary that terrain data points to be processed be spread
across the available PEs. This will require some movement of
data within the processing array. A particular storage
mapping, shown in figures 1 and 2, is chosen because it
supports the movements used in pan and zoom functions. The
original 8 by 8 data array, I in figure 1, is reformatted into
four 4 by 4 subarrays, A, B, C, and D in figure 2. Data
elements are mapped as follows:

A = {ai,j} where ai,j = 12i, 2j;
B = {bi,j} where bi,j = 12i, 2j+t;
C = {ci,j} where ci,j = 12i+1, 2j;
D = {di,j} where di,j = 12i+1, 2j+1;
where 0_<i_<3and 0<_j_<3.

CH2649-2/89/0000/0133501.00 © 1988 IEEE
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Terrain data in scan line order. Array I.

After reformatting, PEi,j will contain data points from the

same position in each of the four data arrays. That is, the

terrain data points shown in figure 2 as ai,j, bl,j, ci,j, and

di,j, collectively called ti,j, are mapped onto PEi,j.
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Figure 2. Reformatted data, as stored in a 4 by 4 PE array.

Windows

A subset of terrain points that exactly conforms to the

dimensions of the MPP is called a window. Figure 3, where a

square corresponds to a single PE, shows that a window only
includes data points that are localized to part of the PE array.

To exploit the parallelism of the machine, it is necessary to

spread the subset of points over the entire PE array such that

each PE has one data point from the window. Figure 4 shows

the distributed data produced by the "spread" function,
described below.
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Figure 3. Packed data with a window selected.
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Figure 4. Distribution of the selected window over the array.

The "Spread" Function

This function consists of a series of bit plane data movement
operations. All statements in this routine are executed

simultaneously on all PEs. Two data movement masks NSMASK

and EWMASK are created. MPP Pascal (Ref. 12) primitives

such as "rotate" and "any" are used in conjunction with these

data planes to route the selected data to the target PE. The

"spread" routine is invoked four times so that elements of A,

B, C, and D enclosed by the window can be moved to their target

positions, one array at a time. Parameter SOURCE is the

particular source array; either A, B, C, or D. Parameter

INDEX is the position of the upper left corner of the window

when it is packed in the array.

routine SPREAD

MAKEMASK(A, B, C, D, SOURCE, INDEX, NSMASK,

EWMASK);

where (NSMASK # 0)

rotate EWMASK and SOURCE to positions

indicated by NSMASK;

end where;

where (EWMASK = 0)

rotate SOURCE to position indicated by

EWMASK;

end where;

end routine.
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Routine SPREAD calls the following routine, MAKEMASK.

routine MAKEMASK (A, B, C, D, SOURCE, INDEX, NSMASK,
EWMASK);

for PEs outside the selected window
NSMASK = 0;
EWMASK = 0;
SOURCE = 0;

end for;
for PEs inside the selected window

depending on INDEX
SOURCE = A or B or C or D;

COMPUTEMASK (NSMASK, EWMASK);
end for;

end routine.

Routine MAKEMASK calls routine COMPUTEMASK.

r°utine COMPUTEMASK (NSMASK, EWMASK);
I If ti,j in PEi,j needs to be moved to PEx,y
I NSMASK = x -i;
I EWMASK = y -j;
i end if;
lend routine.

Once data has been spread over the entire array, further
funclions such as intensity calculations, hidden surface
removal, and rendering, can be executed in parallel with each
PE handling one data point as in Ref. 10.

Pan and Zoom Functions

We are interested in the ability to move the window about in
the array of terrain point sets. This process of moving a
window in object space is called "panning". The routine that
follows provides the pan function as simply a selection of the
window to be spread. This routine is used prior to computation
of intensities and image rendering.

routine PAN ( ORIGIN); II
choose window based on user-defined ORIGIN; mSPREAD;

end rout ne.

Another means of examining the entire database is to sacrifice
resolution for extent of coverage. By choosing representative

data points from the database it is possible to zoom-in or
zoom-out using the routine below. The spacing between
adjacent chosen points determines the resolution or extent of
zoom. For our small example there are only two zoom settings.
Maximum resolution is achieved by choosing a window and
carrying out a SPREAD. For minimum resolution, it is
possible to simply select one of the four arrays A, B, C, or D.
With greater terrain data packing factors, intermediate levels
of resolution,, involving different extents of data movement,
are possible.

We note again that once data has been spread over the entire
array, further functions such as intensity calculations, hidden
surface removal, and rendering, can be executed in parallel.

routine ZOOM (ORIGIN, RESOLUTION, INDEX);
if RESOLUTION = MAX

choose window based on user-defined ORIGIN;
SPREAD;

end if;
if RESOLUTION = MIN

depending on INDEX
FINAL = A, or B, or C, or D;

end if;
end routine.

TIMING ANALYSIS

Graphics programs were written in MPP Pascal (Ref. 11) for
a database of 256 by 256 terrain points. Execution time can be
determined using system provided timing routines. The
structure of a typical graphics program loop with pan and
zoom operations is to distribute the data points from the
selected window over the entire array, then compute
intensities of all pixels in parallel, then render the image.
Table 1 gives actual timing measurements

distribute data 2283 milliseconds

compute intensities 5 milliseconds

render image 819 milliseconds

Table 1. Measured timing for a 256 by 256 database.

The time taken to distribute data is almost entirely accounted
for by 28 calls to the SPREAD routine. It is invoked seven
times for each of the four arrays A, B, C, and D discussed
earlier. Moreover, the time taken to execute SPREAD once is
almost entirely accounted for by an inner loop which uses the
MPP Pascal "rotate" function extensively. The measured time
for one "rotate" is 204 microseconds. The time taken just for
executing "rotate" functions while distributing data is 2172
milliseconds. SPREAD is also used in rendering an image and
contributes greatly to its execution time.

An equivalent to the "rotate" function can be achieved in lower
level languages of the MPP in 3.3 microseconds, rather than
the 204. Table 2 is derived from the measured timing by
substituting the much lower rotate time.

distribute data 142 milliseconds

compute intensities 5 milliseconds

render image 53 milliseconds

Table 2. Expected timing with efficient "rotate".

A necessary condition for real-time graphics image generation
is that one pass through the .loop of the program must take no
more than 33 milliseconds. Even with the expected time table,
each pass takes 200 milliseconds, yielding only five frames
per second.

An alternative approach is to bypass data distribution in favor
of iteratively using a smaller portion of the processing array.
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Image generation time using this approach, for the same
database as above, was measured at 73 milliseconds. Execution
time is reduced but lull parallelism of the array is not used. As
the number of data points in the database is increased by a
factor of K, the number of active PEs in the array unit is
decreased by K. This will result in a factor of K increase in
time for the intensity computation alone.

A third approach is to maintain the database in the staging
memory and bring in only the data points needed for each.
computation. Image generation time reduces to 59
milliseconds. However, data in the staging memory is only
accessible along certain predefined boundaries. This
complicates pan and zoom functions.

CONCLUSION

Prior work has shown massive parallelism to be suitable for
graphics applications on data arrays which fit the processing
array size. When larger arrays must be handled, the time
involved in moving data becomes the dominant part of the
problem and can take the performance out of the real-time
realm.
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ABSTRACT

Sorting has long been used to organize data in preparation for

further computation, but sort computation allows some types of

computation to be performed during the sort. Sort aggregation

and sort distribution are the two basic forms of sort computation.

Sort aggregation generates an accumulative or aggregate result

for each group of records and places this result in one of the

records. An aggregate operation can be any operation that is both

associative and commutative, i.e. any operation whose result

does not depend on the order of the operands or the order in which

the operations are performed. Sort distribution copies the value

from a field of a specific record in a group into that field in every

record of that group.

Keywords: Sorting, Aggregation, Distribution, SIMD, Mas-

sively Parallel, Data Parallel, MPP, Routing.

INTRODUCTION

Sort computation uses sorting as a control mechanism to support

interspersed routing and data manipulation. Sort computation is

performed on sets of records, grouped according to a key con-

tained in each record. Groups of records contain only records that

have been determined to be equal by some function. The sort

computation technique which has been developed here is simple.

View a sorting algorithm as having two parts -- the comparison

of records and the routing of records. The comparison deter-

mines if the two records are in the correct order. Routing takes

this result and determines where each of the records is to go next.

Thus, the sort contains a routing and a comparison routine, where

the routing routine calls the comparison routine when necessary.

All sort algorithms, such as merge sort, bubble sort, and bitonic

sort, consist of these two parts. Sort computation can use the

routing part of any sort algorithm. The routing routine only

determines the order in which the records finally line up after the

son is through -- not how they are modified. The comparison

routine, on the other hand, is replaced with a comparison routine

whose nature depends on the type of sort computation it is to

perform. The comparison routine contains the code that deter-

mines how the contents of the records are changed. The compari-

son routine has two functions. One function is to determine if the

two records being compared are in the same group (generally

whether or not their keys are equal), whether a record from one

group will come before or after a record from another group, and

in some cases if the sort is complete. The other function is to

modify the records if they both belong to the same group.

AF.CoRE5ATE DISTRIBUTE

Figure 1. Conventional use of sorting to organize data

in preparation for computation.

Sorting has long been used to organize data in preparation for

further computation (Figure 1), but sort computation allows

some types of computation to be performed during the sort

(Figure 2). Sort aggregation and sort distribution are the two

basic forms of sort computation. Sort aggregation generates an

accumulative or aggregate resuh tor each group of records and

places this result in one of the records. Usually, it is placed in the

Figure 2, Sort computation allows some types of com-

putation to be performed during the sort.

last record or the one with the largest key value. An aggregate

operation can be any operation that is both associative and

commutative, i.e. any operation whose result does not depend on

the order of the operands or the order in which the operations are

performed. Addition, multiplication, AND, OR, and EXCLU-

SIVE-OR are examples of valid operations. Sort distribution

copies the value from a field of a specific record in a group into

that field in every record of that group. The record that contains

the value to be distributed contains a flag that is set to true. Note

u.s. Government Work. Not protected by

U.S. copyright.
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thatthere may be more than one record in a group in which the

flag is set, as long as all such records contain the same value.

SORT AGGREGATION

Sort aggregation is described here with pseudo code and a proof

is given to show that sort aggregation computes the aggregate

result for each group of records within the set of records being

sorted. The expression "A[5].(B,C,D)" defines an array of 5

records, where each record has 3 fields, B, C, and D. The terms,

sum or summing, are used as the generic terms for finding the

result of a valid aggregation operation. Thus, the command

"SORT(SUM,A)" performs the sort sum over the array A de-

fined by "A[n].(K,V)". Note that the sum operation can be

replaced by any other valid aggregate operation.

SUM (Figure 3) is the comparison routine that will, when used

in conjunction with a sort routine, sum all the values in field V of

the records for which the K fields are equal. SUM returns a value

of true if the records A 1 and A2 are in the correct order, and false

if they are not. SUM puts the sum of all the V fields of records

of the same group in the last (or largest) record in the group.

boolean function SUM(A1,A2)

given A 1.(K,V)

given A2.(K,V)

if A1.K =A2.K then

A1.V=0

A2.V = A1.V + A2.V

return(true)

end if

if A1.K < A2.K then

return(true)

end if

if A1.K > A2.K then

return(false)

end if

end function

Figure 3. SUM routine.

The proof that aggregation works as described goes as follows.

Even though the keys of the records being compared may be

equal, SUM can affect their ordering by returning the response to

the routing routine that the records are in the correct order (true)

or not (false). This in effect gives order within a group. SUM

always designates the record that contains the result of the sum

as the largerofthe tworecords, thelarger contains avalue of zero.

This means that the sum of the value fields of the group's records

will be contained in the record that was designated larger than all

others. Assume, however, that not all values of records in a

specific group were summed into the same record. This means

that at least two records contain only part of the result for that

group. Each one of these records would have been designated

greater than all records of that group. Yet, the records that

contained partial results must not have been compared to any

others or the partial results would have been summed into it.

Thus, each record would have been designated the largest in the

group. Because only one record is the largest of a group, there can

only be one record that contains the result for any group.

A comparison routine such as SUM can be written for any

operation that is both associative and commutative, as described

previously.

SORT DISTRIBUTION

Sort distribution is slightly more complex than sort aggregation

and is constrained somewhat compared to sort aggregation. The

constraint stems from the fact the result of a sort distribution must

be migrated to all the members of a group of records while the

result of a sort aggregation only needs to migrate to one record

of a group of records. This constraint will be clarified further

after the proof.

boolean function COPY(A1,A2)

given AI.(K,F,V)

given A2.(K,F,V)
if A1.K =A2.K then

if A2.F then

A1.V = A2.V

A1.V = true

return(true)

end if

if A 1.F then

A2.V = A1.V

A2.V = true

return(true)

end if

else

return(true)

end if

if A1.K < A2.K then

return(true)

end if

if A1.K > A2.K then

return(false)

end if

end function

Figure 3. COPY routine.

The idea in sort distribution is to copy the value of a record in a

group of records, which has been flagged as having a valid value

for that group, to all records that do not already have that value.

The command to perform this is "SORT(COPY,A)", where

SORT is a routing routine, COPY is a comparison routine, and A

is an array of records. This array of n records is of the form

"A[n].(K,F,V)", where K is the key, F is the valid value flag, and

V is the value field. COPY used in conjunction with SORT

distributes the flagged value in each group to all members of the

group (see Figure 4). Like SUM, COPY returns a value of true

if the records A 1 and A2 are in the correct order, and false if they

are not. COPY puts the same value in all records of the same
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group,ornovalueatallif norecordofthegrouphaditsvalid
valueflagsetpriortoperformingthedistribution.

Theproofthatdistributioncanbeaccomplishedduringasortis
similartothatofaggregation.Notethatwhentworecordsare
determinedtobeinthesamegroup,andoneof therecords
containsavalidvalue,it iscopiedtotheotherrecordanditsvalid
valueflagisset.This,ineffect,causestherecordwithavalid
valuetobeconsideredbothlargerandsmallerthanarecordthat
does not have a valid value. Thus, at the completion of the sort

computation, at least the largest and smallest record of each

group that had a record with a valid value will contain a valid

value. Assume that a record without a valid value remained after

the sort was completed. If it was either the largest or the smallest

record of the group, then no other record in the group had a valid

value. If it was not the smallest or the largest value of the group,

either there was no record in the group with a valid value, or it was

not compared to a record in the group with a valid value. If there

is a record without a valid value and one with a valid value in the

same group, such a pair exists logically next to each other and has

never been compared. If such a pair exists, there is no way of

knowing which one is larger, since they have never been com-

pared. Thus, the sort must not have been completed. Therefore,

a record can only be left without a valid value if there are no

records in its group with a valid value when the sort is complete.

(a)

(b)

(c)

Figure 5. (a) Record A is smaller than B.

(b) Record A is larger than B.

(c) Record A is both larger and smaller than

The statement in the proof written in italics is the key to whether

a sort algorithm can be used to perform sort distribution. The

distribution record must be seen as being both larger and smaller

than the replaced record. Figure 5(a) shows the order of records

A and B if A is smaller than B, 5(b) shows the order if A is larger

than B, but in 5(c) A appears to be both larger and smaller than

B by replacing B with A. If the solution to the fact that two

records are out of order is simply that they need to be swapped,

then A may be made to appear to be both larger and smaller than

B by simply replacing B with A. This is the case with merge,

bubble, and bitonic sorts, for example. But this is not the case

however with insertion sorts that use a log n time insertion. In

an insertion sort, one of the records being compared has already

found its position in the list. Therefore, it is not the case that if

the records being compared are out of order, they are simply

swapped. Such a sort may be extensively modified to support

sort distribution, but it might be more effective to just use a sort

that needs no modification.

GENERALIZATION OF SORT COMPUTATION

Sort computation requires that records of data be grouped ac-

cording to some criterion. Order merely forces this grouping to

occur. Thus, any function that causes the desired grouping may

be used to perform the comparison part of the sort. The function

used for comparison must evaluate to one of three results, less

than, greater than, or equal to, depending on the two records that

are being compared. The data values need not literally be less

than, greater than, or equal to, as long as the end result is an

unambiguous ordering that causes the desired grouping of rec-

ords that are designated as equal.

Records can be grouped, for instance, as a set of non-overlapping

ranges. In this case, the conditions of the comparison function

would be lower than the minimum of the range, higher than the

maximum of the range, or within the range. Range ordering uses

two types of records -- records whose keys are ranges and

records whose keys are single values. Note that in the case of in-

range ordering, once a record is determined to be in-range, not

only must the appropriate action be performed on its aggregation

or distribution fields, but the key field of the in-range record must

be modified so that it becomes a range key rather than a single-

value key record.

AGGREGATE DISTRIBUTION

Aggregate distilbution differs from aggregation in that all member

records of a group obtain the results of the aggregation instead of

just one member. It uses a sort algorithm that is made up of merge

steps, because the flag field must be set between each merge step.

It is not known if aggregate distribution will work for sorts that

are not made of merge steps. The following describes how a

merge aggregate distribution is performed.

Start with two sorted lists of records A_ and Bj, where i=l ...n and

j=l...m. Each record contains a 2-bit flag. The flags of records

in list A are set to 1 and the flags of records in list B are set to 2.

During the merge, if two records are determined to be in the same

group and one record's flag is 1 and the other's is 2, then the

aggregate function is performed, both records are given the

result, and their flags are set to 3. If one record's flag is 3 and the

other's is not, then the aggregate result contained in the record

with the flag value of 3 is copied to the other record. Otherwise,

if both records' flags are the same, nothing is done to either

record. When the merge is done, all records within a group have

the same aggregate results.

OPTIMIZATION OF SORT COMPUTATION

Sorting is generally a very time consuming function, particularly

on a single processor machine. However, on a multiple processor

machine such as the Massively Parallel Processor _(MPP), a sort

of 65536 records of 32 bits each takes about 29 milliseconds, and

a sort of 512K records of 32 bits each takes about 1 second. This

is very fast but still time-consuming if it is meant to be used very

often, as may be the case with sort computation. The time needed

to perform the necessa_ sort computation can be minimized in
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severalways--ineither hardware or software. Hardware can be

improved by decreasing the interprocessor communication time

or using a more far-reaching or elaborate processor interconnec-

tion scheme such as a complete hypercube. Hardware improve-

ments to sorting or sort computation will not be discussed here.

However, methods to improve sort computation performance

through the use of prudent software design and programming

techniques have been developed by the author and are discussed

next.

A bitonic sort has been implemented by the author on the MPP.

This sort and most other sorts, require log n merge steps, each

merging two sorted lists into one sorted list. Time can be saved

during sort computation by performing a merge only if certain
conditions are met: the records in each list must be in an order and

have values consistent with the result of a sort computation

performed on each list. An example of this is the use of sort

computation for table look-up. The table can be sorted once

before it is used. Therefore, it need only be merged with sorted
data records when its values are to be distributed to the data

records, rather than having to be sorted into the data records.

If it is necessary to extract table records out from among the data

records to complete a table look-up, the table records could be

sorted using a major key that distinguishes them from data

records. This, however, defeats the use of the merge to combine

the two record types because the son takes so much longer than

the merge. The records can be unmerged in no more time than

it takes to merge them by leaving a "trail of corn", so to speak.

During the merge, a set of log n bits in each processor is used to

record whether or not the pair of records in that processor arc

exchanged during each of the log n comparison steps of the

merge. This set of bits is then used during the unmerge operation

to route the records back to their original locations.

Another means of reducing the time spent in sort computation is

to, at times, perform only partial or local sorting of the data. This

has shown to be useful during image registration 2 when records

are being generated whose values need to be accumulated. Each

original pixel in the image is divided into much smaller subpix-

els. These subpixeis carry a fraction of the original pixel's value

and a calculated new position. The subpixel values are then

summed into their new pixel's value using sort summing. Since

the subpixels are likely to be summed with nearby subpixels,

many small local sort sums are performed to accumulate as much

as possible locally before sort summing across the entire image.

This saves space in the processor memory, as well as saving time.

Partial sorting can also be used when a table look-up needs to be

performed and the size of the table is much smaller than the
number of data records to which the table information is to be

distributed. In this case, multiple copies of the table arc distrib-

uted across the processors, allowing the use of smaller sort

distribution operations confined to local areas of the array of

processors.

Sort computation can be made faster simply by using a faster sort

algorithm. This is interesting because where the records were

before the sort and where the records end up after the sort is

irrelevant. This allows sorts to be used that leave the records in

unusual orders, such as snake row major or shuffle row major, if

they are faster.

In the case of son distribution, if it is known that all records either

contain a value or will obtain a valid value during the sort

operation, a check can be performed after every comparison step

to see if the sort distribution has been completed. Thus, the sort

distribution may be terminated before the sort is actually com-

plete.

To extend this concept one step further, it may not be necessary

for any arbitrary record to obtain the value it is looking for in any

given invocation of the sort computation. Therefore, many local

sort operations may be performed to get some local sort compu-

tation done quickly between successive complete sort opera-

tions. This brings up an issue for further study: can the keys used

in the sort operations be generated for records that are created

between sort computation operations, so as to minimize the

number of complete sort computation operations that need to be

performed.

AN EXAMPLE OF SORT COMPUTATION

Multiplication of a sparse matrix times a vector is now presented

as an example of sort computation. This is presented as an

iterative refinement of the vector V ( V_.t = M*V i ). The form of
the record used is "T.(R,C,M,V)", where T has four fields: the

row R, the column C, the matrix coefficient at row R and column

C, and the vector coefficient at position C of the vector. To

perform a matrix multiply, first multiply M times C in each

record, giving new record values "T.(R,C,M,V=M*V)". A sort

sum operation is performed using R as the key and summing over

M*V. This leaves one record for each R which contains the value

of the new vector at position R. At this point the matrix multiply

is complete, but if further iterations must be perform the new

vector coefficients must be distributed so the value of V corre-

sponds to the value of C, not of R. This is done by making another

set of records "Tr(RI=C,C_=R,M_=M,V_)" which contains a

record for every record in "T". V_ has been given no value yet.

Then form a set of records that is the union ofT and T r A sort

distribution is performed using R as the key and distributing the

values of V from T to T t. All record of T are deleted and a new

set of records for T are created of the form

"T.(R--C_,C=R_,M=M_,V=V_)" from the records of T_. Another

matrix multiply may now be performed since the values of V

correspond to the columns of M.

VIRTUAL LOCALITY

Virtual memory and virtual processors have become common

concepts. The concept of virtual memory allows the programmer

to imagine that there is as much memory as needed, alleviating

the need to account for physical memory constraints in designing

a program. It also allows him to imagine that he has complete

control of all physical memory. This concept is used in most

large computers, minicomputers, and the newest 32-bit micro-
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computers.Theconceptofvirtualprocessorsallowsthepro-
gammertoviewaproblemasthoughit wasexecutingonas
manyprocessorsasneeded,yetitmaybeusingfewerproces-
sors_.

The key point here is that virtual memory addresses are not

physical addresses, but appear to be, and virtual processors are

not real processors, but also appear to be. The programmer must
still deal with addresses and fixed locations of data and the

knowledge that he is using one or several processors. The

programmer still has to deal with a hardware view of his compu-

tational environment, that of memory and processing units, in

spite of the fact that it is a virtual hardware view. The author has

developed the concept of virtual locality to move the program-

mer further away from hardware architecture concerns and

closer to the perception of a computationally pure environment.

This is especially important, as well as particularly feasible,

when it comes to massively parallel architectures, such as the

MPP.

Virtual locality views data in computational units of records.

Computations are carried out on the data of these records accord-

ing to the groups to which the records belong (their locality).

These records contain fields, as in any traditional view of data

records. Groupscancontain anynumberofrecords. Recordsare

grouped according to any number of schemes, based on field

values. Because all computation is dependent only on the values

within the records and the interrelationship of those values, the

computation is independent of the record's location in the com-

putation environment before, during, and after the computation

and, it is also independent of the number of processors used to

accomplish the computation. This differs from the view of

computation in other massively parallel architectures that use

more traditional routing schemes, or, for that matter, any com-

puter architecture that depends on pointers or fixed addresses to

direct data to and from specific locations in the environment.

Virtual locality facilitates position-independent computation. It

only matters that the appropriate data comes together sometime

during the computational step. Generalized routing schemes and

traditional memory addressing schemes require that data is

placed where it can later be found. Therefore, it has to be

allocated space and can only be moved after all places that refer

to it have been changed. This makes dynamic allocation, re-

allocation, de-allocation and garbage collection difficult, if not

impossible in some circumstances. Position dependent compu-

tation is used in the implementation of virtual locality, but is not

seen by the programmer. With virtual locality, records of data

may be created and deleted at will without allocating them to

specific locations in the environment. Virtual locality is possible

through the use of the sort computation concept _. Sort computa-

tion defines the types of operations supported under virtual

locality and describes how they are implemented.

APPLICATION OF SORT COMPUTATION

Currently, image rotation, image registration, and computer

graphic generation by ray tracing have been implemented by the

author on the MPP using sort computation techniques. Three-

dimensional rendering of elevation maps has also been imple-

mented on the MPP using these techniques by a NASA summer

student, Jennifer Trainer, under the direction of the author.

However other applications exist that require the processing of

irregular arrangements of data. For example, the implementation

of pure LISP, which was designed and implemented by Tim

Busse of Science Applications Research and the author, requires

this capability.

The pure LISP is implemented by distributing the pointer pairs

that make up the LISP data structure across the processors of the

MPP. Sort computation is used to bring the pointer pairs together

according to the functions that must be performed on them, such

as the creation of a new pointer. The basic functions of pure LISP

were implemented (i.e., CAR, CDR, CONS, EQ, ATOM, COND,

APPLY, EVAL, EVLIST, and LAMBDA). The MPP ray tracing

approach' is based on an algorithm that finds the intersections of

light rays and objects in a 3-dimensional space. It is done by

recursively subdividing space, Records are created that keep

track of whether a specific ray or object intersects a subdivision

of space. If a subdivision of space is not intersected by both a ray

and an object, all records associated with it are deleted. Sort

computation is used to determine where this condition is true.

These two applications have been implemented on the MPP

using MPP Parallel FORTH.

CONCLUSION

Future plans in the area of application of sort computation

include the study of its use on data bases and for implementation

of a compiler inside the MPP array. Virtual locality is worthy of

further study also because it allows the simultaneous develop-

ment of parallel algorithms and hardware architectures, requir-

ing only a minimal amount of effort to port and test previously

developed algorithms on new architectures. Sort computation is

a feasible means of facilitating virtual locality. As with other

virtual concepts, care must be taken, while knowledge about it's

effective use and implementation in both software and hardware

develops.
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ABSTRACT

This paper presents a comparative study of three
parallel implementations of frequency domain least
mean square adaptive line enhancement algorithms
using parallel computers. Two models of the
Connection Machine + (CM-I) and (CM-2) and one
model of the Balance Machine ++ (Balance 8000) were
used in this study. Simulation results, speedup
factors and estimated spectra for algorithms based
on circular and linear convolution are presented.

INTRODUCTION

Recently considerable interest has focused on
adaptive line enhancement applications in communi-
cations, radar, sonar and control. The adaptive
line enhancer is an algorithm that detects and
tracks a moving spectral line in broadband noise

while enhancing the signal to noise ratio [7].
The algorithms can be implemented in both time

[I-2] and frequency [3-6] domains. Frequency
Domain Adaptive Line Enhancers (FDALEs) are used
for three important reasons. First, the structure
of frequency domain implementation is more suitable

for parallel processing than time domain implemen-
tation. Second, the amount of computation required
to process a fixed amount of data can be greatly
reduced compared to time domain implementation.
Third, the convergence properties of the frequency

domain process can be greatly improved compared to
time domain process. Furthermore, with the contin-
uing development of parallel processing architec-
tures and low-cost large scale integrated circuits,
the FDALE will become increasingly attractive.

This paper presents parallel implementations of
three least mean square FDALE algorithms based on
circular [3] and/or linear convolution [5-6] of
the filter delayed input and its impulse response.
The first algorithm is based on circular convolu-
tion only. The second algorithm is a constrained
least mean square algorithm that performs strictly
linear convolution. The third algorithm is an
unconstrained least mean square algorithm that
allows either linear or circular convolution,
whichever best minimizes the mean square error.

The Connection and Balance Machines were used to
simulate these FDALEs. The Connection Machine

(CM) is an array of processors arranged in a
hypercube network [9], [14]. This machine is
classified as a single-instruction multiple-data

machine (SIMD) using Flynn's classification [12].
A typical CM is composed of 16K to 64K processors.
In data parallel applications, each data element
is assigned to an individual processor. In cases
where the application requires more processors
than are available, a virtual processor mechanism

is used to simulate additional processors. The CM
is used in conjunction with a serial computer such
as a Symbollcs Lisp Machine or a Digital Equipment

Corporation Vax. The serial computer is the front
end for the CM. The front end computer sends
instructions to the CM. CM programs run on the
front end machine in dialects of C, Lisp and

Fortran 8X. Typically, a program's data resides
on both the CM (parallel data) and on the front
end (serial data). All code resides on the front
end. The results presented in this paper were
obtained using the *LISP. *LISP is a dialect of
Common LISP with extensions for parallel data and
functions.

The Balance Machine, a multiple-instruction
multiple-data machine (MIMD), can be configured
with as many as thirty 32-bit Intel 80386 micro-

processors and takes advantages of up to 1-M bit
dynamic random access memories, several custom
VLSI chips, and a particularly caching scheme to
execute up to 81 millions instruction per second

with a relatively low cost [11]. The user speci-
fies the number of processors used to implement
his algorithm. The results presented in this
paper were obtained using Balance 8000/21000
Fortran.

In the rest of this paper, the three FDALE algori-
thms are described and comparative study, simula-
tion results, speedup factors and estimated spectra
using the Connection and Balance Machines are pre-
sented.

FDALE ALGORITHMS

Algorithm I:

+ Connection Machine is a trademark of the Think-

ing Machine Corporation.
++ Balance Machine is a trademark of the Sequent

Computer Systems.

This algorithm performs circular convolution of
the delayed version of the input signal and the
adaptive filter impulse response [3]. The input
signal d(n) and the delayed version of the input
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signal x(n) are accumulated to form N-point data
blocks (Figure 1), where

x(n) : d (n - 8) (i)

where 8 is chosen so that d(n) and x(n) are
uncorrelated. These N-point data blocks of x(n)
and d(n) are then transformed by N-point Fast
Fourier Transforms (FFTs) to obtain X(k) and D(k)
respectively, where

X(k) : [X1(k ) X2(k ) ... XN(k)]T

D(k) : [Dl(k ) Dz(k) ... DN(k)] T

and T indicates transpose.

The input response transform values Di(k )

are subtracted from the values of the product of

the delayed input response transform Xi(k ) and the

weights at corresponding frequencies Hi(k ) to form

N error signals Ei(k ). Each weight is independ-

dently updated once for each data block according
to the following complex LMS algorithm introduced
by Widrow et al. [4]:

Hi(k+1 ) = Hi(k ) + g Ei(k) Xj*(k) (2)

where N is a constant that determines the rate of
convergence and the stability of this adaptive

process and Xj*(k) is the conjugate of Xj(k).

The weighted outputs are fed to an inverse FFT

transform to produce the output signal y(n). The
first algorithm is the simplest one. Unfortunately,
the use of circular convolution transforms a

linear time invariant filter into a periodic time
varying filter whose output is periodically
nonstationary for a stationary input [8].

dl

Figure I. First Algorithm Block Diagram

Algorithm 2:

This algorithm produces strictly linear convolution
of the delayed input signal x(n) and the adaptive
filer impulse response h(n) [5] (Figure 2). This
algorithm uses the overlap-save method with 5OZ

overlap [10]. Thus, the weights are padded with N
zeroes and both the (k-1)th and kth N-point delayed
input blocks are used. These 2N-point data blocks
are then transformed by 2N-point FFTs, where

HT(k) = frequency domain weight vector

= FFT [hT(k) O ... O] (3)

X(k) = diag {FFT[(k-1)th and kth delayed input

blocks]}

= diag {FFT[x(kN-N) ... x(kN-1) x(kN) ...

x(KN+N-I]} (4)

The frequency domain weight vector update equation
is

H(k+l) = H(k) + N FFT [V(k) 0 ... O]T (5)

where

V(k) : first N terms of FFT -1 [X*(k) E(k)] (6)

d_

2N |

Zero _nat_last

Figure 2. Second Algorithm Block Diagram
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A19ortthm 3:

This algorithm performs either linear or circular

convolution, whichever minimizes the mean-square
error [6] (Figure 3). This algorithm reduces the
number of FFTs per processed block from five to
three. The extra two FFTs are needed for the

second algorithm to impose a time-domain constraint

in which the last half of the time domain weights
are forced to zero to implement strictly linear
convolution between the delayed filter input and
the filter impulse response. Allowing the filter
the freedom to implement circular or linear con-

volution could reduce the mean square error in
cases of large A [8]. The frequency-domain
weight vector update equation is:

H(k+l) = H(k) + p X* (k) E(k) (g)

It has been shown [3-6] that when implementing
the time and frequency domain algorithms for
single-instruction single-data (SISD) machines,

the ratios of the real multipliers of the first,
second and third FDLMS algorithms to the real
multlpliers of the time domain LMS are

(3NIog,(N/2)+4N)/2N 2, (5(log2N)+4)/N and

(3(log=N)+4)/N respectively. For N=I024, These

ratios are 0.015, 0.053 and 0.033 respectively.
This indicates that the FDLMS algorithms execute

much faster than time domain LMS algorithm. In
addition, the independent updates of the weights

Hi(k ) of the FDALE make It more suitable for

parallel processing than the time domain adaptive
line enhancer (TDALE). As a result, the FDALE has
a better performance than that of the TDALE.

d_

%

Figure 3. Third Algorithm Block Diagram

SIMULATION RESULTS

The three algorithms were employed In the detec-
tion and spectral estimation of a narrowband

signal corrputed with white additive noise. The
input signal y(k) with normallzed frequencies

0.033 and 0.156 HZ is generated by adding a sinu-
soidal input s(k) to a white Guassian noise n(k).

Sample simulation results for the three algorithms
using the Connection Machines are presented in
Figures 4 and 5. Figure 4 is a plot of the execu-
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Figure 5. Estimated Spectra for 16K Data Samples
and Zero SNR.
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tion time of the three algorithms in seconds ver-
sus the input data size using the CM-I and CM-2
machines. Figure 4 indicates that the execution
time is a linear function of the input data size
when using a CM data parallel computer and the
first algorithm is the fastest algorithm followed

by the third algorithm and the second algorithm
respectively. This linear speed up is due to
"scaling up" the problem [13]. Figure 5 shows the
estimated spectra for 16K data samples and zero d8
signal to noise ratio. Figure 5 demonstrates the

close match between the estimated frequencies and
the actual frequencies and the third algorithm has
the best performance, especially for lower signal
to noise ratios, followed by the second and first

algorithms respectively.

The speed up factor for the Balance 8000 machine
is defined as the ratio between the time needed

for one processor to implement the algorithm and
the time needed for n-processors to implement the
same algorithm. This speed up approaches the
limit predicted by Amdahl's [15]. Figure 6 shows

the speed-up factors of the first algorithm using
the Balance 8000 for different number of processors
and N = 512 and 1024. A comparison between the
actual performance and the linear one is also
shown in Figure 6.

P = Number of Processors

Balance 8000

8.00

4.00

0. Oil
O.

I

|

4.100 I q
8.00

itOO0 Linear Speedup
lmmmi I 512 Points FF'r

.... I024._ Points FFT

Figure b. Speed Up Factor For the Balance 8000.

SUMMARY

In this paper, the fundamental concepts of three
parallel frequency domain adaptive line enhancers
were presented. Furthermore, the Connection
Machines and the Balance Machine were used to

simulate these three parallel implementation of
the frequency domain adaptive line enhancers.

Using the Connection Machines, a linear speed up
was obtained. The number of parallel processor
are proportional to the size of the data. With
the Balance Machine, Amdahl's limit is reached

since a fixed size problem is solved using more
processors.
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ABSTRACT

In this paper, we present optimal parallel algorithms for

finding geometric properties of digitized images on an optical

mesh. These include O(IogN) time solutions for identifying

and labeling figures, computing convexity properties, determin-

ing distances, etc. The proposed optical mesh consists of a two

dimensional array of processors which are interconnected

through an optical medium. Using free space optical beams,

the interconnection topology can be reconfigured dynamically.

The comput.ational lower bounds of a generic model reflecting

such an organization is shown. Unlike the VLSI models, there

are no planarity constraints, since the optical beams can cross

each other without any interference. We also study the rela-

tionships I)clwc(,n the shared memory models and the pro-

posed optical model of computation and its possible physical
imphm_ent ations.

INTRODUCTION

One of the widely used models of parallel computation is the

Parallel Random Access Machine (PRAM). The basic assump-

tion in this model is that in unit time each of N processors

can simultaneously access a shared memory (Ref. 20). The

unit time simulation of a N processor PRAM using electronic

inte,'ccmnections takes O(N "t) area on a VLSI model in which

processors are allowed to have nnbounded degree. A lower

bound on the tim(, to simulate one step of a PRAM on any

bounded degree network of N nodes using electrical intercon-

nects is f2(logTV) . The crossbar network is an architecture

that simulates one step of PRAM in O(logN) time, and can be

laid out in O(N 2) area. Even though several networks have

been designed (Ref. 8), many issues limit their potential appli-

cation in high performance parallel systems. Finding a switch

setting to realize a permutation on a rearrangeable O(logN)

delay network such as the Benes takes as much as O(log4N)

time using a cube connected computer or a perfect shuffle com-

l)uter wilh N processors (Ref. 14) . Also, the layout area of a

Bones network is not superior compared to the area require-

ment of lhe _\r input crossbar network.

This research _as SUl_l)orted in part by the National Science Foun-

dation under grant 111[-S710830 and I)y a grant from TR_,V.

In this paper, we study parallel architectures that use free

space optics as a means of interprocessor communications.

The replacement of the electrical interconnects with optical

beams has a significant impact on the performance of a VLSI

architecture (Refs. 9,10). This is due to the following two

important properties of free space optics. First, free space opt-

ical beams can cross each other with out any interference.

Also, the connections need not be fixed and can be redirected

(Ref. 3). This implies that using optical interconnects, one can

design area efficient, bounded degree VLSI architectures that

can simulate a unit delay mterconnection network.

We present efficient parallel algorithms for finding

geometric properties of digitized images on an optical mesh.

These include O(logN) algorithms for problems such as finding

connected components, determining the convex hull of all

figures, and nearest neighboring figure to all figures. Our algo-

rithms require a factor of O(logN) fewer processors compared

to the traditional electronic mesh based architectures (Refs.

13,15) An optical mesh can be looked upon as a two dimen-

sional mesh connected computer which is enhanced with a

reconfigurable optical interconnection network.

The rest of the paper is organized as follows. [n the next

section, we study an optical model of computation, and then

show a class of reconfigurable optical interconnection networks

in the third section. In the last section, we propose a set of

parallel geometric algorithms for digitized pictures using the

optical mesh. Our results substantiate the ])reference of opti-

cal interconnections over electronic medium as a means of

interprocessor communicatiom

AN OPTICAL MODEL OF COMPUTATION

In this section, we introduce an abstract optical model of com-

putation (OMC) to explore speed size relationship in using free

space optical beams, as opposed to wires in traditional elec-

tronics (Ref. 18), for means of intercommunications. This

model closely captures a currently implemeutable optical net-

work of processors, llence, the derived lower bounds on its

computational efficiency gives us a tool to analyze the

optimality of various l)hysical implementations of OMC in

solving problems.

Definition: An optical model of computation represents a

network of N processors each associated with a memory

module, and a deflecting unit capable of establishing direct

optical connection to another processor. The interproces-

sor communication is performed through a message passing

network satisfying the following rules similar to (Ref. 1):
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1) At any time a processor can send at most one

message. Its destination is another processor.

2) The message will succeed in reaching the pro-

cessor if it is the only message with that pro-

cessor as its destination, at that time step.

3) All messages succeed or fail (and thus are dis-

carded) in unit time.

To insure that every processor knows when its message

succeeds we assume that the OMC is run in two phases. In

the first phase, read/write messages are sent, and in the

second, values are returned to successful readers and

acknowledgements are returned to successful writers. We

assume that the operation mode is synchronous, and that all

processors are connected to a central control unit. In (Ref. 5),

the above definition is supplemented with a complete set of

assumptions for accurate analysis. The following are some of

the main ones.

1) The intercommunication is done through free

space optical beams.

2) A processor can perform a simple

arithmetic/logic operation in one unit of time.

3) A deflector is capable of redirecting an
incident beam in one unit of time.

4) An optical beam carries a constant amount of

information in one unit of time, independent

of the distance to be covered.

[n (Ref. 5), using the above assumptions the following relation-

ship can be derived:

AT =fl(I), (1)

where T is the time required to solve a problem given I as

the minimum required information to be transferred, and A is

the area occupied by tile processing layer.

A related model is VLSIO (Ref. 2), which is a three

dimensional generalization of the wire model of the two dimen-

sional VLSI with optical beams replacing the wires as com-

munication channels. Compared to the three dimensional

VLSI model of computation (Ref. 16), our model is more com-

putationally resource efficient. The simulation of many paral-

lel organizations using the OMC requires considerably less

amount of volume than its layout in a three dimensional VLSI

model. For example, the layout volume of a N processor

hypercube can be reduced from O(N a/2) to G_NlogN) when

using OMC with mirrors as deflectors [next sectionI, instead of

using a three dimensional VLS[ model of computation. Hence,

the following result can be stated;

Proposition: Any computation performed by a three dimen-

sional VLSI organization having N processors with degree d,

in time T, and volume V can be performed on OMC in

volume v, and time t, where dT/N<_t <_T , and Nd<v.

#i .........
A function f (n)is said to be _"_(g (n'})if th ..... ist positi ......

_t_ntsc _°_n0 s._, ,,,_trot., n >'_0,/(n )>_c.a (n).

A funct,on U is said to be O((/ (It ]} if tb.ere exist positive constants

• f(). _---- -- >.c and ,, 0 suet, that f (n)< C.g (n). for all n 0.

PARALLEL ARCHITECTURES

In this section, we present a class of optical interconneetion

networks as a realization of the OMC presented in the previ-

ous section. Each of the proposed designs uses a different opti-

cal device technology for redirection of the optical beams to

establish a new topology at any clock cycle, and represents an

upper bound on the volume requirement of OMC.

Optical Mesh using Mirrors

In this design, there are N processors on the processing layer

of area N. Similarly, the deflecting layer has area N and

holds N mirrors. These layers are aligned so that each of the

mirrors is located directly above its associated processor. Each

processor has two lasers. One of these is directed up towards

the arithmetic unit of the mirror and the other is directed

towards the mirror's surface. For a pictorial illustration see

(Ref. 6). A connection phase would consist of two cycles. In

the first cycle, each processor sends the address of its desired

destination processor to the arithmetic unit of its associated

mirror using its dedicated laser. The arithmetic unit of the

mirror computes a rotation degree such that both the origin

and destination processors have equal angle with the line per-

pendicular to the surface of the mirror in the plane formed by

the mirror, the source processor, and the destination processor.

Once the angle is computed, the mirror is rotated to point to

the desired destination. In tile second cycle, connection is

established by the laser beam carrying the data from the

source to the mirror and fi'om the mirror being reflected

towards the destination. Since the connection is done through

a mechanical movement of tile mirror, with the current tech-

nology this leads to an order of millisecond reconfiguration

time. Therefore this architecture is suitable for applications

where the interconnection topology does not have to be

changed frequently. In (Ref. 12), the design of various topolo-

gies have been studied to minimize the time complexity of

several problems for fixed period of computation.

Reeonfiguration using Acousto Optic Devices

In this organization, N processors are arranged to form a one-

dimensional processing layer and the corresponding acousto

optics devices are similarly located on a one-dimensional

deflecting layer. The size of each of the acousto optic devices

is proportional to the size of the processing array, leading to

an (9(N °) area deflection layer. Similar to the design using the

mirrors, every processor has two lasers, and each connection

phase is made up of two cycles. For a pictorial illustration see

(Ref. 6). In the first cycle, each processor sends the address of

its desired destination processor to the arithmetic unit of its

associated acousto optic unit using its dedicated laser beam.

The aeousto optic cell's arithmetic unit. computes the fre-

quency of the wave to be applied to the crystal for redirection

of the incoming optical beam t.o the destination processor. The

acousto optic device then redirects the incident beam from tile

source to the destination processor. One of the advantages of

this architecture over the previous design is its order of

microseconds reconfiguration time, which is dominated by the

speed of sound waves. The other advantage is its broadcasting

capability, which is due to tile possibility of generating multi-

pie waves through a crystal at a given time. Fu,'thermore, the
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abovecanbcextendedt.ointerconnectatwodimensionalgrid
ofprocessorsasfollows.

, . 1/2 1/2 .Proposition:Us,nga (N ×N ) processinglayer,and
(NI':-°×.N1/2)array"ofacoustoopticdevicesasthedeflecting
layer,onestepofOMCcanberealizedin O{logN) time and

O( N '2")area.

The area is obtained with similar arguments as in the one

dimensional case. The time complexity is due to the move-

ment of data using a standard divide and conquer technique as

in (Ref. 19). At the ith step a block size 2 _ is divided into

two blocks of half the size. Each subblock only contains the

data elements destined to its memory locations.

Electro Optical Crossbar

This design uses a hybrid reconfiguration technique for inter-

connecting processors. There are N processors each located in

a distinct row and column of the N ×N processing layer. For

each processor, there is a hologram module having N units,

such that the ith unit has a grating plate with a frequency

leading to a deflection angle corresponding to the processor

located at the grid point (i,i). In addition, each unit has a

simple controller, and laser beam. For a pictorial illustration

see (Ref. 6). To establish or reconfigure to a new connection

pattern, each processor broadcasts the address of the desired

destination processor to the controller of each of N unit of its

hologram module using an electrical bus. The controller

activates a laser (for conversion of the electrical input to opti-

cal signal), if its ID matches the broadcast address of the desti-

nation processor. The connection is made when the laser

beams are passed through the predefined gratings. Therefore,

since the grating angles are predefined, the reconfiguration

time of this design is bounded by the laser switching time

which is in the order of nano-seconds using Gallium Arsenide

technology. This architecture is faster than the previous

designs and further it compares well with the clock cycle of

the current supercomputers. One of the advantages of this

simple design is in its implcmentabi[ity in VLSI, using GaAs

technology. Unlike the previous designs, this can be fabricated

with very low cost and is highly suitable for applications where

full connectivity is required. In such applications, the proces-

sor layer area can he fully utilized by placing N optical beam

receivers in each of the vacant areas to simultaneously inter-

connect with all the other processors. This design can be

easily adopted to implement a neural network of process with

optical interconnects (Ref. 4) .

IMPLEMENTATION OF PARALLEL ALGORITHMS

As described in the previous section, OMC allows unit. cost

communications but assumes that the shared memory is

divided into modules. An OMC with N processors can simu-

late, in real time, an Exclusive Read Exclusive Write PRAM

having P processors and M memory locations, where N =

maximum {P,M}. On the other hand, a P processor EREW

I)RAM can simulate in real time any' P processor OMC.

lleuce, it is easy, to see that using N processor OMC in

O(log-V) time, the FFT of N points, and in O(Iog_'N) time

the bitonic sort of N elements can be performed.

In (Rcf. 7), simple efficient algorithms for simulating an

N processor PRAM on OMC using N/'logN processors are

presented. Each step of the EREW PRAM is simulated in

O(logN) time with a high probability, and in O(log2N) time

deterministically. In this paper, we present optimal algorithms

for solving problems in medium level image processing. An

optimal parallel algorithm is defined as one which its processor

time product is equivalent to the running time of the sequen-

tial solution. Due to space limitations only the proof sketchs

explaining the main ideas are presented. The details appear in

(Ref. 6). Also for an introduction to the basic techniques used

in the design of the following algorithms refer to a simple

optimal template matching algorithm shown in (Ref. 6).

Optimal Geometric Algorithms

In this section, we present efficient. O(logN) algorithms for

problems such as finding connected components, determining

the convex hull of all figures, and nearest neighboring figure to

all figures. The input, to our algorithms is an (NXN) image

where each of N 2 points is called a pixel and can be either a 0

or l. Two adjacent pixels are connected if they both hold a 1.

The connected l's form a figure. We define the following:

Optical Mesh: An optical mesh of size N ×N has a

processor layer with 2-dimensional array of processors

which can intercommunicate in unit-time using their

corresponding optical device residing on the deflection

layer of same size. A simple implementation of this is

possible using mirrors which was discussed in the previ-
ous section.

Given a 0/1 image a fundamental task is to identify figures in

the image. Figures correspond to connected l's in the image

(see (Ref. 17)). The labeling problem'is to identify and associ-

ate an unique ID with the connected l's in the image.

Lemma 1: Given a N×N 0/'1 image, all figures can be

labeled in O(logN) time using an (NXN)-optical mesh.

Theorem 1: Given a NXN 0/1 image, all figures can be

labeled in O(logN) time using an (N,/logt"eN X N/logl/-_N)-

optical mesh.

Proof sketch: In this, we assign a logt/2N X logl/2N block of

image to each processor, and sequentially label the figures

within these regions. For each of these blocks, we continue

with its boundary information which has O(logl/2N) pixels. In

the next step, we merge these blocks together until the block

size becomes log\ XlogN. Since the input, size is larger than

the processor count by' O(logL'eN), we simulate the loglogN

divide and conquer merging in the following manner. In each

region of size log\'×logN there are log3/'2N boundary points.

At the ith iteration of merging, this reduces to (logY/2N)/2 i .

Therefore the total boundary points to be merged over the

loglogN iterations is O(loga/"N). Using Lemma 1, we label

O(logN) boundary points of each iteration at a time, using

log\ processors. Hence, the number of iterations to simulate

loglogN merging is O(logl/2N ). This leads to

O(logL'2NloglogN) time complexity to reduce the image size

to match the processor count. Using Lemma 1, the remaining

N×N pixcls are labeled with a N×N optical mesh in

O(logN ) time.

Convexity is an important attribute in image processing and

vision; many other problems can be solved once the convex

hull of figures is obtained. We use the following definition of

149



convexity(Ref.13):A setofPEsissaidto beconvexif and
onlyif tilecorrespondingsetofintegerlatticepointsisconvex.
Givenaset.SofPEs,theconvexhullofS,denotedHull(S),is
thesmallestconvexsetofPEscontainingS.
Theorem2:Givena N XN 0/1 image, the extreme points of

all the figures can be enumerated in O(IogN) time using an

(N/Iogt/_N × N/logU_N )-optical mesh.

Proof sketch: For each logN ×logN portion of the given 0/l

image, it is easy to enumerate the convex hull of all its figures

in O(IogN) time, using a (logN ×l)-optical mesh. After this

reduction step, tile basic idea of the algorithm is to construct a

list for each of the figures simultaneously, and while construct-

ing it., delete those boundary points which are not extreme

points. Once the extreme points are found, they can be

enumerated using the standard all parallel prefix sum in

O(logN ) time.

Another interesting problem is to compute the distances

between all figures in a digitized image. In the following we

use the I t metric. However, it can be modified to operate for

any l_ metric.

Theorem 3: Given a N ×N 0/1 image, Tile nearest figure to

all figures can be enumerated in O(togN) time using an

(N/logl/'+N × N '[ogl/2N )-optical mesh.

Constant Time Geometric Algorithms

One of the most attractive properties of optics is superposi-

tiOnm This property suggests that the resultant disturbance at

any point in a medium is the algebraic sum of the separate

constituent waves, tlence, it enables many optical signals to

pass through the same point in space at the same time without

causing mutual interference or crosstalk. Using this property

in (Ref. ll), they showed how a single memory element can be

read by many processors at the same time. In this paper we

employ this characteristic to allow concurrent writes if all the

requesting processors want to write a "l'. This leads to the

constant running time of the following geometric algorithms,

under the assumption that broadcasting can be done in con-

stant time:

Corollary: Given a (N£/2XNt/2) image, using an (NXN)

optical mesh, in O(1) time,

1. For a single figure, its convex hull and the smallest

enclosing box can be found.

2. For each figure, tile nearest neighboring figure can be

identified.

CONCLUSION

In this paper, we studied the computational limits in using

optical inte'rconnects under a proposed optical model of com-

putation. Motivated by this model, we presented three possi-

ble physical architectures to realize the unit time intercom-

munication delay assumed in PRAM. A direct simulation is

possible using the proposed optical mesh using mirrors. A fas-

ter architecture is the optical array using acoustic optic devices

with broadcasting capability. A considerably less expensive

design which is currently implementable with VLSI technology

is the electro optical crossbar. This is an optimal design for

fully connected networks with a reeonfiguration time in the

order of nanoseconds. We showed the superiority of using opt-

ieal interconnects by presenting efficient algorithms for finding

the geometric properties of digitized pictures.
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ABSTRACT

A parallel version of a well-known e-approximation scheme for 0/1
knapsack problems is presented. The model of computation for the

parallelization is a shared memory machine in which processors
have exclusive read, exclusive write access to memory (an EREW

PRAM). The scheme separates the knapsack items into two sets,

one of which is used in a dynamic programming-based optimization

procedure, and the other of which is used in a greedy selection

process. A dominance relation exists for the knapsack problem

which is used to limit the growth of feasible solutions during the

dynamic programming procedure. The dominance relation permits a

simple representation of the feasible solutions which aids in the

parallelization of the dynamic programming procedure across all

feasible solutions in parallel during the process of considering a new

item. The algorithm uses max{n,32/_3-8/e} processors and takes

O(n) time. For moderate values of e and values of n which are quite

large (tens of thousands of items), the algorithm is realizable on

currently available, massively parallel computer systems, such as

the Connection Machine System.

Keywords: knapsack, approximation, SIMD, shared memory,

dynamic programming.

1. INTRODUCTION

The 0/1 integer knapsack problem is defined by a set of n

objects having positive integer profits Pi and weights w i, and a

positive integer knapsack capacity M. The problem is concerned

with maximizing the profit P=_i xzTai subject to a weight constraint

_,i xiwi <_M, where x i in {0,1} for i=0,1 ..... n. An instance of the

knapsack problem consists of an assignment of values for the profits,

weights and the capacity. A feasible solution to a problem instance

is a set of xi values which satisfy the capacity constraint by

indicating whether an item is to be included in the knapsack. This

well-known optimization problem is NP-Complete [GJ79], and

consequently, considerable interest has been generated in

developing algorithms which obtain approximate solutions [LE79;
HS78; IK75; SS75].

An c-approximate solution (0 < f < 1) for an instance of the

0/1 knapsack problem is a feasible solution whose profit P satisfies

P*-P __ eP*, where P* is the maximum profit attainable for the

problem instance. An approximation scheme for the knapsack

problem is one which takes an e as a parameter and for each

instance of the knapsack problem finds an e-approximate solution.

lbarra and Kim [IK75] presented an approximation scheme for the

knapsack problem which has both time and space complexities

that are polynomial in n and l/e, i.e. which is a fully-polynomial

approximation scheme [HS78]. Lawler [LE79] presented

modifications to the ideas of Ibarra and Kim that improved the

time and space bounds.

There has been a growing interest in parallel computation

and in the parallelization of optimization techniques and

algorithms. This interest has extended to the adaptation of

knapsack approximation algorithms to parallel models of

computation [GRK86; GW88; LSS87]. These parallelizations have
been for MIMD [LSS87] as well as SIMD [GRK86; GW88] models of

computation

The algorithm to be presented here, like that in [GRK86], is

an S|MD parallelization of the e-approximation scheme of Ibarra

and Kim. Although both algorithms are SIMD parallelizations of

the same basic strategy, their approaches and actual parallel

models of computations differ. The algorithm in [GRK86] is a

recursive implementation of a dynamic programming technique

applied to a scaled profit version of the entire problem instance.

The algorithm presented here is a more direct implementation of

the original dominance-based dynamic programming approach of

Ibarra and Kim, using scaling of the profit values as well as an item

separation technique. The item separation partitions the knapsack
items into two disjoint sets of relatively large and small items,

with set membership determined relative to a suitably chosen
threshold value. The dominance-based dynamic programming

technique is applied to a scaled problem involving the large items.

Feasible solutions from the large item optimization are augmented

with small items, with the small items selected to augment a

feasible solution using a greedy approach.

The SIMD model which is used assumes that processors have

exclusive-read, exclusive-write access to a common memory (i.e. an
EREW PRAM model). (The model used in [GRK86] allows

concurrent reading of memory by processors, but exclusive writing,
i.e. a CREW PRAM model.) Processors are assigned to manipulate

data in a data-parallel fashion using one processor per array index.
To insure that data is accessed in an EREW fashion, processors

which are actively participating in a computation step will

reference the data in a uniform addressing fashion. For example,

each active processor i will reference data item i+k, where the

offset k is the same for all processors.

The analysis of the algorithm will be similar to that

typically given for serial algorithms in that arithmetic

operations, comparisons, and memory references are counted as unit

time operations. However, the same operation performed in

parallel by many processors will only be counted as a single

(parallel) instruction execution. The assumption that all of the

operations mentioned take unit time is not strictly true in actual
machines, but has been adopted to simplify the analysis of

algorithms. It has recently been argued by Blelloch [1987] that
since memory references in the shared memory models are taken as

unit time operations, other useful primitive operations should also

be allowed as unit time operations. Scan, or parallel prefix

operations [KRS85; BG87], are among the candidates as useful

primitive operations, since they can be implemented with less

circuit depth and in comparable circuit area than a general shared

memory circuit [FF83; LT84]. A scan operator takes an associative

operator (_ and a sequence of elements [al,a2,-.,an], and returns the

CH2649-2/89/0000/0151501.00 © 1988 IEEE
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sequence[al,(al@a2) ..... ((al@a2@...@an_l)@an)]. The scan

operations used in the algorithms will be plus_scan, which uses
addition to obtain the sequence of partial sums, copyscan to

replicate a data item a specified number of times (a plus_scan with
all items but the first contributing 0), and max_scan to find the

maximum of n items. A scan operation can also be run in parallel on

subsequences of an array, and will be called a segmented scan

operation.

Scan operations are logarithmic time operations in the usual

EREW PRAM model. Taking the scan operations to be unit time

operations yields a parallel model of computation which will be

called the scan model. The algorithm will be analyzed in both the
EREW and scan models.

The EREW PRAM, and scan model, knapsack approximation

scheme to be presented requires O(n) time and max{n,32[E3-8/e}

processors. This time requirement is greater than that of the CREW

PRAM algorithm of [GRK86], which is O(Iog3n + Iog2nlog(1/e)).

However, this O(n) time requirement is not unreasonable. A more

interesting measure is the number of processors required by these

two algorithms. The CREW model algorithm requires n2'5/e 1"5

processors, in its worst case. For n--lO00 and e=l/lO, the EREW and

scan algorithms require 31920 processors, while the CREW

algorithm may require up to 109 processors. For e=1/10 and a

number of processors equal to 216, the CREW algorithm of [GRK86]

can only be guaranteed to handle instances of knapsack problems
with fewer than 350 items, while the EREW and scan algorithms

could handle problem instances of size 216 . The processor

requirement for the algorithm of [GRK86] can quickly exceed the

capability of current technology. However, the processor

requirement for the algorithm presented here is within the realm

of current technology, and allows for problems of considerable size

to be realistically attacked, assuming moderate values of e. The

Connection Machine System of Thinking Machines Corporation has

up to 2 I6 processors, and supports virtual processors into the

millions. Although the memory in the Connection Machine is local

to each processor, one can program it in the EREW memory reference

paradigm by using interprocessor fetch and send operations to

simulate the shared memory read and write operations, and by

designing algorithms to not have collisions at any processor during

the memory reference operations. It was with the Connection

Machine in mind that the EREW PRAM parallelization of the v-

approximation scheme was initially designed.

2. E-APPROXIMATION SCHEME

The approximation algorithm to be parallelized is the c-

approximation scheme of lbarra and Kim [1975], using the scaling

refinements due to Lawler [LE79]. The c-approximate solution to a

knapsack problem instance is obtained by first separating the items

into two sets of relatively large items and relatively small items.

The item separation is performed using scaling and threshold

factors which ensure that one-half of the relative approximate

error is allocated to each of the two calculation stages. These

stages correspond to computations involving each of the two sets of

items [LE791. The threshold and scale factors are determined by

using an estimate PO of the optimal profit value for the knapsack

instance. This estimate satisfies PO <-P* <-2Po where P* denotes the

optimal profit value for the problem instance.

The large item computation uses a dynamic programming

approach to find an optimal solution to a knapsack instance that

consists of the items with scaled large profit values and has

capacity equal to the original capacity. To restrict the growth of

the number of feasible solutions during the large item computation,

the following dominance relation is used. Let $1 and $2 be two

feasible solutions (i.e. sets of elements whose weight sums do not

exceed the knapsack capacity). The feasible solution $2 dominates

$l, written $2>$l if P(S1)<-P(S2) and W(S1)->W(S2), where

P(S)=XieS Pi, and W(S) =Z, ieS wi. It should be noted that if Sj >

Si and if Sk is a set of indices disjoint from both Si and Sj, then Sj _,,

Sk > Si _ Sk.

During the large item computation, a sequence of feasible

solutions is maintained whose profit and weight sums are in

increasing order and for which no solution is dominated by any

other in the sequence. As each item is considered, the dominance

rule is applied to preserve the properties of the sequence of feasible

solutions. The last solution in the sequence is actually the optimal

solution to the scaled large item problem instance. At the end of

the large item computation, the entire sequence of feasible solutions

is retained, not just the last in the sequence.

Each of the feasible solutions from the large item

computation has its remaining capacity augmented by small items.

This augmentation of the solutions is done using a greedy approach.

The e-approximate solution to the problem instance is the one with

greatest profit value after the large and small item computation

stages.

The algorithm for the E-approximation scheme is

summarized in the following steps:

I.) Find PO such that PO<_P*$2Po, set the scale factor

K=(e/2)2PO, and the threshold factor T=(e/2)PO.

23 {item separation} Separate the items into large and small

sets, the large items being those for which pi>T. Arrange the

items so that the large item set precedes the small item set. For

the large items set qi=/-pi/KT, the scaled profit values.

33 {Select a minimal set of large items to consider} Arrange the

large item set in nonincreasing order of qi, and within each qi

group in nondecreasing w i order. Select the first (8/E2)/qi

items of each qi group as candidates.

4.) {large item optimization} Perform the dominance-based

optimization of Ibarra and Kim on the minimal set of large

item candidates, producing a sequence of feasible st_lutions

whose profit and weight sums are nondecreasing (and
consequently for which no solution dominates another).

5.) {Augment feasible solutions with small items} Arrange the

small items in nonincreasing order of pi/wi ratios; add a small

item to a feasible solution if there is sufficient capacity

remaining the feasible solution. Select the feasible solution

with the greatest profit value.

Theorem 1. The algorithm outlined is an e-approximation scheme
for the 0/1 knapsack problem.

That the process outlined above is an &approximation

scheme was shown by Ibarra and Kim [IK75]. The particular

scaling and threshold values used in step 1) are due to Lawler

ILE79]. Additional details concerning the steps of the algorithm

will be presented in the following section, where the
parallelization strategy is presented.

3. PARALLELIZATION OF THE E-APPROXIMATION SCHEME

The first step in the parallel algorithm can be accomplished

by sorting the items into nonincreasing profit/weight ratios so that

pI/Wl->p2/w2->...->pn/W n, and next determining the largest m such

that Pl +...+ Pm -<C but pl+...+pm+Pm+l > C. PO is then taken to be

max{pI+...+pm, max{pi: m<i_<n}} [LE79]. An EREW sorting

algorithm using n processors, such as an adaptation of the bitonic

merge sort [QM87], will be assumed for this and for subsequent

sorting steps. The time to sort n items using n processors in the

EREW model is taken to be O(log2n). The CREW model algorithm

from [GRK861 uses a time estimate of O(Iog n) for sorting n items
using n processors, and is based on the algorithm in [AKS83]. As

pointed out by Leighton [LT84], the limit obtained in IAKS831 is an

asymptotic limit and the constant of proportionality is so large
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that this sorting strategy becomes infeasible from a technological

standpoint. For this reason, the more realistic time estimate for

sorting of O(log2n) using n processors is used here.

In the scan model of computation, a sorting algorithm can be

used that is a parallel version of the radix exchange sort [KD73]. If

the sort keys are m bits long and m is of the same relative order of

magnitude as log n, then a radix exchange sort can be implemented
in the scan model which uses O(m) = (3(log n) operations [BG87]. In

this case, the constant of proportionality is reasonably small.

Further, this sorting strategy is also applicable when floating

point representations of numbers is used. This parallel radix sort is

the sorting algorithm assumed in the scan model analysis.

The rearrangement of the items in step 2, the item separation

phase, can be accomplished by first using n processors to enumerate

the items in each set. This requires parallel prefix summation

(plus_scan) operations in which each of the items in the set being
enumerated contributes a 1 while the other set's items each

contribute a 0. The rearrangement can then be easily accomplished

by adding the number of elements in one set to the other's
enumeration values and using these values to indicate the new

positions for the items. The enumeration steps require O(log n) time
in the EREW model and 0(1) time in the scan model. The

rearrangement step and its preliminary calculations take 0(1) time

in both models of computation.

The large items are those whose profit values satisfy pi>T.

Consequently, the minimum sealed profit value, and the minimum

scaled profit of any feasible solution in step 4, satisfies

qi = fPi/K 7> ]-T/K 7= ]-2/e7.

The largest possible scaled profit obtainable is determined by

P*/K_<8/e 2. Hence, no more than (8/e2)/qi items with scaled profit

value qi can fit in any feasible, large item solution. This justifies

the selection of the large item candidates in step 3.

The rearrangement of the large items for the purpose of

selecting a minimal set of large item candidates can be performed

by first sorting the large items using the values {(8/e2)-qi)W+wi as

the sort keys. Here, W is the maximum of the weights wi of the

large items. This will arrange the large items into decreasing order

of qi, and within each segment of items having the same scaled

profit qi, the items will be in nondecreasing order of w i. A

segmented plusscan of 1 's is used to obtain an enumeration of the

numbers of elements in the qi segments in parallel. Next, a simple

comparison of each item's segment index with the number of items

allowed to be in the segment is performed to determine the items in
each segment which should remain active for the large item

optimization. The time requirements for step 3 are O(log2n + log n)

in the EREW model, owing to the sort and the segmented plus_scan

operation, and O(Iog n) in the scan model.

The feasible solutions in the dominance-based optimization

on the large items are indexed by the possible profit values in the

scaled problem. These index values are, in addition to 0, between

2/e and 8/e 2. It can be shown that the maximum number of items in

any of the scaled large item solutions is bounded above by 4/e.

Consequently, the feasible solutions in the large item computation

can be maintained in 8/e2-2/e sections of arrays with each section

being of length 4]e. A group of similarly indexed array sections is

used to maintain the list of indices of the large items placed into

the feasible solution. In addition to the indices of large items

placed into a solution, there must also be a flag to indicate which

is the next available position for an index, and the capacity

remaining for a particular feasible solution. Each feasible solution

will be managed by 4/6 processors. To insure EREW memory access,

each processor assigned to manage an array section (i.e. a scaled

feasible solution) will have its own copy of the capacity remaining

in the knapsack for its feasible solution, as well as its own copy of

the actual, non-sealed profit for its feasible solution.

The general form of the large item computation is as follows:

for each large item candidate do

let i' denote the item's index

for all s such that O_<s__(8/e2-)-qi ' and F(s)¢_

and W(s)+w i'<_M do

if F(s+qi ')=_ or W(s+qi')> W(s)+wi" then

replace F(s+qi') by F(s), add index i' to F(s+qi'),

add wi" to W(s+qi')

This algorithm is a direct parallelization of the dominance-based

optimization originally given by Ibarra and Kim [IK75]. For

convenience, a feasible solution is denoted by F(s) and its weight by

W(s), where the scaled profit of the feasible solution s is its index.

Any test involving a feasible solution indexed by s is performed by

all 4]e processors which manage the feasible solution, and is done

in parallel. This is possible since the necessary flags and weight

sums are replicated so that each processor has exclusive access to its

own copy. The key to the SIMD parallelization is this data
replication together with the fact that the feasible solutions can be

checked for the addition of the next large item independently; this
is the conditional in the if statement. When an item can be added

to a feasible solution and the resulting new solution dominates

another in the list, the dominated solution is replaced in a single

step by using 4/e processors. The dominance relation guarantees

that all of the necessary updates can also be done in parallel and in
an EREW memory reference fashion.

The number-of processors needed for the large item

computation is (4/e)(8/e2-2/e). There are max{n, (8/e 2) log(4/e)}

large item candidates, and hence this determines the time

requirement for step 4.

The implementation of the small item augmentation of the

feasible solutions in step 5 of the approximation scheme is carried

out in two stages. In the first stage, the process for obtaining the

final collection of feasible solutions does not attempt to remember

the indices of any small items which -ivould have fit into the

remaining capacities of the solutions. In this way, all of the
feasible solutions can test the same small item simultaneously for

inclusion, by having the profit and weight of the item broadcast to

all feasible solutions in parallel. After the feasible solution with

the largest profit over both the large and small items is selected, a

greedy algorithm is again performed on the small items. However,
on this second execution of the greedy algorithm, the indices of the

small items which augment the large item solution are saved.

Step 5 iterates over the small items. It can be seen that steps

4 and 5 together can iterate over all of the items, and hence the

time requirement for these two steps together is O(n). The

following theorem summarizes the time and processor requirements

for the parallel E-approximation scheme.

Theorem 2. The parallel G-approximation scheme takes

O(n+log2n+log n) time in the EREW model and O(n+log n) time in

the scan model. The scheme requires max{n, (4/e)(8/e2-2]e)}

processors in both parallel models of computation.

4. CONCLUSIONS

An SIMD algorithm has been presented which is a parallel

e-approximaiton scheme for the 0/1 knapsack problem. The

algorithm implements a dominance-based dynamic programming

technique in an exclusive read, exclusive write shared memory

model of SIMD programming. The number of processors needed by

the algorithm is within current technological bounds for moderate

values of e and for problem instances into the tens of thousamds of
items.
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Abstract

We consider the problem of designing massively fault tolerant

message routing schemes for large parallel systems. Our notion

of faults is extremely flexible and applies to all situations where a

component is unavailable to participate in message communications.

We focus our attention on the performance of schemes which use

only local information to make local decisions. A framework for the

analysis of fault tolerant routing schemes is presented and is used

first to analyze the efficacy of minimal path routing methods.

We derive fault tolerant muting schemes by application of a

technique called sidetracking. Viewed as making local decisions, a

sidetracking scheme attempts to decrease the distance to the desti-

nation; if this is not possible, then the packet is routed randomly

so as to increase the distance as little as possible. For single mes-

sage routing on a hypercube, we show that the performance of a

sidetracking scheme is near optimal, successfully routing with high

probability and low average excess delay. We also present applica-

tions of the sidetracking technique to single message routing on a

two dimensional mesh, and to multiple message permutation routing

on a hypercube.

Keywords: Fault tolerant routing, distributed memory

multiprocessors, hypercube computer, mesh computer, oblivious

routing

As the size of parallel computer systems grows larger, so does

the probability of component failure. Since the corresponding mean

time to failure is likely to be short, off-line fault diagnosis and the

subsequent replacement of failed units is not an attractive alternative

for dealing with the problem. Rather, we would like to be able to

continue system operation in the presence of such failures, To do

this, we must identify the failed components and then avoid their

usage. In this paper, we examine the fundamental problem of mes-

sage communications, studying it in the context of faulty parallel

systems.

A basic choice in a (message) routing algorithm is the amount

of information about the system that each processor must possess.

in a large parallel system, methods which require each processor

to have global knowledge of the system incur massive overhead,

both in the space required to store such information and in the time

*Supported in part by NSF Grant No. DCR-85077851 and a Fellowship from

the Unisys Corporation.

"lSupported in part by NSF Grant No. DCR-85077851 and a DEC Incentives in

Excellence Award.

required to update the information to reflect changes in system status.

Hence, we examine local routing methods, which require processors

to have knowledge only of the status of neighboring processors and

communication links. We are motivated by the belief that simple

algorithms, operating under simple assumptions, can ensure high

probabilities of successful message routing in the presence of faults.

1 Preliminaries

We study two specific parallel systems in this paper: hypercubes

and two-dimensional meshes. A hypercubc contains 2 '_ processors

addressed by n-bit strings, and any two processors are connected

by a (bi-directional) communication link if their addresses differ

in exactly one bit position. A two-dimensional mesh contains 7__

processors addressed by integer pairs (x,y) with 0 < x,y < n - 1,

arranged so that the processor with address (.r_, yj) is connected to

the processor labeled (x2,Y2) if either xl = x2 and [Yl - Yet :

1 or if Ix1 - x2I = 1 and Yl = Y_. Both systems arc regular

(fixed degree) networks and can be viewed as special cases of a

product graph known as the k-ary n-cube. Viewed in this manner the

hypercube is a 2-ary (or binary) n-cube and the mesh is an mary 2-

cube. Both of these systems are distributed memory, packet switched

systems in which communication time is assumed to predominate,

and local processing time can be ignored. In a packet switched

system, messages are transmitted in units called packets; packets

being routed from one processor to another are temporarily stored

in the memory of intermediate processors and are later forwarded

to their destinations. In this paper, we will concern ourselves solely

with short messages, i.e. those which are no longer than one packet

in length.

To keep the routing decisions simple, we concentrate our analysis

on oblivious routing schemes, in an oblivious scheme, the path

taken by a message depends only upon its source and destination.

Such routing schemes are also called non-adaptive as the path taken

by a given message is not responsive to other message traffic in

the system. One such routing scheme is deterministic routing in

which obliviousness means that for each souree-destination pair there

is a unique mute which any message with that source-destination

specification must take. Another routing scheme is random routing

and is based on Phase B of Valiant's probabilistic routing scheme
[3]. In this case, obliviousness means that for each source-destination

pair there is a fixed probability distribution (independent of any other

pair) that specifies for each path from the source to the destination

the probability that the path will be taken. For these routing schemes,

we consider initially the case of minimal length paths.

CH2649-2/89/0000/0155501.00 © 1988 I EEE
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Inboth hypercubcs and meshes, local routing decisions are made

based on the status of all neighbors which lic on minimal paths
between the current location and the message destination. On the

hypcrcube, deterministic muting chooses to traverse the lowest num-

bered available dimension while random routing selects uniformly
among the available dimensions. On a mesh, there arc two basic

classes of routing algorithms: direction uniform and path uniform.

Using a direction uniform approach, deterministic routing always fa-

vors the x-direction (if it is available), while random routing chooses

uniformly between the x-direction and the y-direction. Using a path

uniform approach, deterministic routing favors the direction with the

largest distance to go, breaking ties in favor of the x-direction, while

raladom routing chooses between the directions in proportion to the

distance remaining to route in each.

We consider two basic routing problems. The first problem is

routing a single message from an arbitrary source to an arbitrary

destination. At the other extreme, we consider the problem of full

permutation routing. Initially, there is a message at each processor,

each with a distinct destination address; the task is to route every

message to its destination simultaneously.

We model the amount of fault information available to proces-

sors in two ways. Model 0 (respectively, Model 1) assumes that

individual processors do not know (respectively, do know) which,

if any, of their immediate neighbors (processors and/or communi-

cation links) are faulty. In our study, a fault is assumed to render

the processor or link non-functional for purposes of communicating

messages. As such, we may also consider communications hot spots

as processor faults, and our results also apply to routing in congested

parallel systems. In this paper, we consider only processor faults,

but our results may be extended easily to apply to systems with

communication link faults.

The final component of our framework for the analysis of fault

tolerant routing schemes is the modeling of fault distributions. In

this model, faults are distributed independently and binomially, with

each processor having a fixed probability, p, of failure. We assume

that the distribution of faults is chosen before any routing occurs and
that this fault pattern remains fixed for the duration of the routing

attempt. While this assumption is useful in our analyses, it is not re-

quired by the routing algorithms themselves. We start by analyzing

the a priori probabilities of successful routing of a single, indivisible

message under each of our possible sets of assumptions. We obtain

results which depend upon the size of the system (number of proces-

sors) as a parameter. We then derive asymptotic results by allowing

system size to grow arbitrarily large. In most of these cases, the

asymptotic bounds are achieved by the time system size is one thou-

sand processors. Following this, we introduce our technique called

sidetracking and analyze the behavior of routing schemes obtained

by its application.

2 Single Message Routing

The single message muting problem is to deliver a message sent

from a non-faulty source to a non-faulty destination. Under the

assumptions of Model O, our first muting information model, indi-
vidual processors have no knowledge of the fault status of any other
processors in the system. Hence, minimal path message routing

succeeds if and only if all processors on the chosen path from the
source to the destination are non-faulty. If the source and destination
are d steps away, then the probability of successful message routIng

is (1 - p)d-l. This result holds for both deterministic and random

routing. On the hypercube, for antipodal source and destination pro-
cessor, we denote this probability as

p°(n,p) = (1 - p)n-i .

Since limn_o_p°(n,p) = O, we see that the no-information model

is not a useful one for deriving massively fault tolerant routing
schemes.

The second routing information model, Model 1, assumes that

processors know the fault status of their immediate neighbors. Rout-
ing schemes using this assumption make their local decisions from

the set of all non-faulty neighbors of the processor. On the hyper-

cube, routing using one-step local information yields a great im-

provement over routing methods which have no fault knowledge.

The corresponding probability of successful message routing for an-
tipodal source and destination processors is

n

pl(n,p ) = I-I( 1 _ pk).
k=2

Using real analysis, we can show that limn_ pl(n,p) converges.

By computing the values (which are shown in Table 1) we see that

the probability of successful message delivery is high even for an

exceedingly large number of faults. In particular, with 50% of the

processors faulty (p = 0.5), a single message successfully reaches
its antipodal destination 57.76% of the time. We note that these

asymptotic values are attained in all cases before n = 10. In other

words, for hypereubes with more than one thousand processors, the

probability of successful single message minimal path routing is es-

sentially independent of system size. A derivation of these results

and a more detailed discussion of fault tolerant single message mut-
ing on a hypercube is contained in [21.

For single message routing on the mesh, we have presented four

basic minimal path routing strategies: deterministic direction uni-

form (denoted DD), random direction uniform (RD), deterministic

path uniform (DP) and random path uniform (RP). As was the case

for the hypercube, we can derive closed form solutions for the proba-

bility of successful message routing using each of these schemes. For

maximally distant source and destination processors, using Model 1,
the direction uniform solutions are:

DDt(n,p) = (1-p)_'_-3_ n- + i pi
i=0

and

RDl(n,p)
n-2 ( ) / 2" n-l+ii=0 i (1 - p)"-_-_ .

Unfortunately, because of the fixed degree of the processors, we are
able to show that all four muting algorithms have an asymptotic

success probability of zero. In fact, most of the probabilities are
nearly zero by the time n = 32, or by time mesh size is about one

thousand processors.

We next analyze the behavior of sidetracking, an oblivious mut-
ing method which combines the concepts of local information and

randomization. Using sidetracking, and in the one-step local in-

formation muting model, a message will be routed forward using
random muting. If the message reaches a blocked processor (no non-

faulty neighbors along a minimal path to the destination) it will be

sent to a non-faulty neighbor, chosen uniformly at random from the
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setofnon-faultyneighbors.Wecontrastthesidetrackingapproach
withtheschemeknownasdeflection routing. While both schemes

are non-minimal path schemes, deflection muting is an adaptive mut-

ing method whose goal is to ensure that messages are not delayed

by waiting in queues. To this end, a message will be muted along a

forward edge if one is available; if not, the packet will be sent along

a backward edge. We use simulation experiments to determine the

performance of sidetracking schemes, analyzing the probability of

successful muting and the expected path length of a muted message.

The empirical performance of the sidetracking algorithm demon-

strates convincingly its efficacy as a fault-tolerant muting scheme.

On the hypercube, for the case of single message message muting,

we find that, in the limit as the cube dimension grows larger and

for a fixed probability of processor failure, the probability of suc-

cessful message routing, S(n,p), tends to 100%. In addition, the

delay incurred by muting along non-minimal paths is small; with

one-half of the processors faulty (p = 0.5), the average excess path

length for a cube of dimension n = 20 is less than 4 steps. On the

mesh, for single message muting, sidetracking is unable to provide

any asymptotic performance improvement as, in the limit, its suc-

cess probability also tends to zero. However, in meshes of small

size, where successful muting is possible, sidetracking results in a

substantial performance improvement. The results discussed in this

section are summarized in two tables: hypercube results in Table 1

and mesh results in Table 2. For sidetracking, the maximum path

length is the number of muting steps allowed before a message will

be declared not routed. The respective minimum path lengths are 20

steps for the 20-dimensional hypercube, and 62 steps for the 32 x 32

mesh. Note that the cube results are for a hypercube of over a million

processors and the mesh results are for meshes of over a thousand

processors (using random path uniform routing).

3 Multiple Message Routing

For multiple messages, the worst case delay incurred by using obliv-

ious muting schemes is high. For both hypercubes and meshes, the

worst case time required to route any permutation is on the order

of the square root of the number of processors in the network [1].

This worst case occurs since bad bottlenecking can be forced at a

single processor. However, the use of randomization helps us to

achieve better average case muting time. It does this by spreading

out the message congestion. In particular, on a hypercube, muting

a full permutation in a system with no faults, empirical studies (see

[4_) show that minimal path random muting achieves near optimal
results,

On the hypereube, we extended our simulation program to han-

dle the case of multiple message muting. We studied the problem of

muting a full permutation of the non-faulty processors of the system.

Note here that, even though we have assured that all of our sources

and destinations are non-faulty, they are no longer necessarily an-

tipodal. The results of our experiments, this time for hypercube

of about one thousand processors, are presented in Table 3. The

values presented are averages over 100 iterations of each experi-

ment. A mutable message is one whose source and destination are

in the same connected component. The values for the percentages

of mutable and muted messages are out of the percent of non-faulty

processors (for the particular value of p). The results obtained show

that the strong fault tolerant properties observed in the single mes-

sage case have largely been carried over to the multiple message

case. In particular, the average message delay for individual mes-

sages due to either time spent waiting in message queues or the use

of non-minimal paths are impressively small. For instance, when

p = 0.4, 99.9% of the messages are routed and the average message

waits only 0.3 steps in queues and is muted only 1.8 extra steps.

The only drawback is that time to complete the muting of all of the

messages has increased greatly to 81.2 steps. Overall, these results

show the viability of the sidetracking scheme as a massively fault

tolerant multiple message muting scheme.

4 Summary

The basic conclusion to be drawn from our study is that the combina-
tion of randomization and local information is an effective one when

it is applied to muting. For routing a single message on a hypercube

in the presence of faults, we l'tave shown the following asymptotic

behavior. Using minimal path random muting with no local infor-

mation, the probability of successful message muting (p°(n,p)) is

0%. Using minimal path random muting with one-step local infor-

mation, the probability of successful message muting (pl(n,p)) is

quite good, but tails off rapidly for a high probability of processor

failure. Finally, using sidetracking (or non-minimal path random

muting with one-step local information), the probability of success-

ful message muting (S(n,p)) is 100%. For single message muting

on a two-dimensional mesh, because of the fixed degree of the pro-

cessors, the asymptotic muting success probabilities all tend to 0%.

Lastly, we presented results that showed the efficacy and viability

of sidetracking as a massively fault tolerant scheme on a hypereube.
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Dim.

20

20

2O

20

20

20

20

20

20

Failure

P
.10

.20

.30

.40

.50

.60

.70

.80

.90

Table

No lnfo.

p°(n,p) %
13.5

1.4

0,1

0.0

0.0

0.0

0.0

0.0

0.0

98.9

94.9

87.3

75.6

58.0

35.8

14.0

1.8

0.01

Sidetracking

S(n,p) %
100.0

100.0

100.0

1130.0

100.0

99.8

95.0

50.0

0.3

Avg. Path Length
(Maximum = 400)

20.04

20.20

20.65

21.62

23.99

30.48

51.29

82.99

86.44

1: Hypercube Single Message Routing Success Probabilities

n

32

32

32

32

32

Failure

P
.10

.20

.30

.40

.50

No Info. l-Step Info. Sidetracking Avg. Path Length

RP°(n,p) % RPl(n,p) % RP(n,p) % (Maximum = 186)

0.0

0.0

0.0

0.0

0.0

48.1

6.1

0.3

0.0

0.0

89.8

44,2

5.8

0.1

0.0

66.81

78.45

89.96

87.78

0.00

Table 2: n x n Mesh Random Path Uniform Routing Success Probabilities

% Routable Messages

% Routed Messages

Total Time Steps

Excess Path Length:

Average

Standard Deviation

Message Queue Delay:

Average
Standard Deviation

Processor Failure Probability, p

0.0 0.1 0.2 0.3 0.4 0.5 0.6 [ 0.7 0.8 I 0.9
i

100.0 100.0 100.0 100.0 99.9 99.8 98.8 92.9 60.9 5.5

100.0 100.0 100.0 99.9 99.9 98.6 90.7 61.7 22.1 4.7

9.6 12.0 20.9 42.2 81.2 102.6 114.0 123.2 108.9 32.3

0.0 0.1 0.2 0.7 1.8 4.3 8.1 11.8 9.6 1.5

0.0 0.5 1.1 2.7 5.6 10.2 15.0 18.2 16.4 6.0

0.1 0.1 0.2 0.2 0.3 0.4 0.7 1.9 3.0 0.9

0.4 0.4 0.4 0.5 0.5 1.4 3.1 7.6 10.3 3.7

Table 3: Hypercube Multiple Message Simulation Results (n = 113)
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LOAD BALANCING FOR MASSIVELY-PARALLEL

SOFT-REAL-TIME SYSTEMS

Max Hailperin*

Knowledge Systems Laboratory, Computer Science Department
Stanford University, Stanford, CA 94305

ABSTRACT

Global load balancing, if practical, would allow the effective

use of massively-parallel ensemble architectures for large soft-
real-time problems. The challenge is to replace quick global
communications, which is impractical in a massively-parallel
system, with statistical techniques. In this vein, we propose a
novel approach to decentralized load balancing based on statis-
tical time-series analysis. Each site estimates the system-wide

average load using information about past loads of individual
sites and attempts to equal that average. This estimation pro-

cess is practical because the soft-real-time systems we are in-
terested in naturally exhibit loads that are periodic, in a statisti-
cal sense akin to seasonality in econometrics. We show how
this load-characterization technique can be the foundation for a

load-balancing system in an architecture employing cut-
through routing and an efficient multicast protocol.

Keywords : load balancing, real-time, time-series analysis.

INTRODUCTION

Our research group, the Stanford Knowledge Systems Labora-

tory Advanced Architectures Project, is exploring the construc-
tion of massively-parallel, object-oriented, knowledge-based,
soft-real-time signal-interpretation systems. It seemed clear
early on that some sort of adaptive load-distribution scheme

would be necessary to allocate resources to such dynamic sys-
tems. Otherwise, in order to assure acceptable real-time perfor-
mance, the system could only be lightly loaded, and the large-
scale signal-interpretation problems the massive parallelism
was intended to allow would not be possible. The remainder of

this section explains why we desire a scheme which globally
balances loads by migrating objects, and how we can exploit
the somewhat periodic nature of our systems' loads to do global

balancing in a manner appropriate to thousands of processing
elements.

Much discussion in the load-distribution literature recently has
centered on the choice of load balancing vs. load sharing (Ref.
12). While load balancing strives to keep all sites equally load-
ed, load sharing merely tries to prevent unnecessary idleness.

*An expnnded version of this paper was published as Stanford Computer Science
Department Technical Report STAN-CS-88-1222. This material is based upon work
supported under a National Science Foundation Graduate Fellowship. Any opinions,

findings, conclusions or recommendations expressed in this publication are those of

the author and do not necessarily reflect the views of the National Science Founda-
tion. This work was also supported by DARPA Contracts F30602-85-C-0012 md

MDA903-83_C-0335, NASA Ames Contr_'t NCC 2-220-S1, Boeing Contract

W266875, and Digital Equipment Corporation. I thank Anoop Gupt& Bruce Delagi,

Harold Brown, John Hermessy. and the entire Advanced Architectures Project for
their assistance.

Load balancing is appropriate to object-oriented real-time sys-
tems because

real-time systems need to prevent long waits for process-
ing--load balancing, by reducing the variance as well as
the average of waiting times better achieves this; also,

• migrating objects to balance current load tends to also bal-
ance the future arrival of additional work at sites.

Traditionally, decentralized adaptive load-balancing systems
have been local: they balance loads in small neighborhoods
(the neighborhoods may be logical, rather than physical), and
rely on repeated local adjustments to achieve global balance.
(For example, see the diffusion scheme in Ref. 11.) We find

this inappropriate to our circumstances because

• modern interconnection networks employing cut-through or

wormhole routing reduce the importance of locality (Ref. 7),

• local techniques can fall prey to oscillation and wave-front-

like propagation in the face of non-ideal conditions, and

• local techniques have difficulty responding quickly enough
for dynamic and time-critical systems.

A global load-balancing system must somehow allow each site
to estimate the current (or near-future) system-wide total load,
in order that it may acquire or jettison sufficient work to bring

its own load to the system-wide average. This seems incom-
patible with the constraints of a massively-parallel system: a
site in a massively-parallel system must wait a considerable
time to acquire global knowledge.

This apparent contradiction can be reconciled by using a sto-
chastic time-series model to use prior load information to pre-
dict current loads. However, this approach is useless in most

computer systems, as their loads are not very predictable.

Luckily, the real-time systems we are interested in (and many
others) exhibit a different behavior. Their loads are periodic--

not rigidly so, but rather in the same loose, statistical sense as
many economic variables are seasonal. This periodicity is in-
duced by sampled or scanned inputs and by sample-to-sample

or scan-to-scan consistency in the outside world. Periodicity
makes the loads more predictable, at least for lead times not
greater than the period. As the period is generally relatively
long, each site can have complete knowledge of loads at least

through one period ago. This allows reasonably accurate pre-
diction of current (or near-future) system-wide loads.

CH2649-2/89/0000/0159501.00 © 1988 IEEE
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Noticethatthestatisticalnatureofthisapproachmakesit ap-
propriatetomassively-parallelsystemswiththousandsofpro-
cessingelements:

• The large number of sites makes more straightforward
methods employing global communications impractical.

• On the other hand, the large number of sites is necessary to
make the statistical methods valid.

We are not suggesting this approach for real-time systems

which are rigidly periodic; more direct use can be made of their
periodicity.

AN EXAMPLE TIME SERIES

In this section we examine the evolution over time of the sys-

tem-wide load in one of our real-time systems---an aircraft
tracking and classification system (Ref. 14). We show that a

simple stochastic model reasonably approximates this time se-
ries, that it is consistent with a common-sense understanding of

the system, and that it allows moderately accurate prediction
without recent complete information.

The solid line in Figure 1 shows the load over a ten-period in-
terval out of the larger time series which was analyzed. Each
period is ten time quanta long, and the load value for each
quantum is an average total of task queue lengths over that

quantum.

f$

15

12

'id

1

I00 sfo _ s_o 3_ ..5o 3co M'o 3so 3_o 400

time IrnsJ

Figure 1. Example Time Series. A sample of a load time
series, with forecast from data through one period earlier.

Notice that the pattern gradually shifts from period to period.
Also, notice that as the observed activity diminishes, the sys-

tem's performance varies from not quite keeping up with the in-
put to having a relatively long period of quiescence between
cycles. It is characteristic of real-time systems that they are
sized so as to perform acceptably during peak periods, even if
this means idleness at other times; this allows the periodicity of

the input to show through as a periodicity of the load.

Stochastic Model

We analyzed this series using the methods of Box and Jenkins
(Ref. 3), and identified as a suitable first-cut model for it a mul-
tiplicative integrated moving average (IMA) process of orders

(0,1,1) x (0,1,1)t0. This model has the form:

:t = 2t_ 1 + ,_t_ 10 -- Z¢_l l + el/ -- 0Ot_l -- e(lt_10 .at- 0e{lt_ll, (l)

where z: is the system-wide load, at is a white-noise series, and

O and (9 are parameters. The structure of this process is more
t

evident when written using the backwards shift operator B:

(1 - B)(1 - Bl°)zt = (t - OB)(I - oBl°)at. (2)

Adding the constraint that loads must be non-negative improves
this basic model.

This model, while suggested by statistical evidence, is also plau-
sible in terms of the mechanism of the system. The non-periodic
component of the model essentially states that the load persists,
except that it is subject to random perturbations. Some fraction

(0) of each random perturbation is of short-term effect only,
while the remainder lasts until counteracted; this fits well with a

birth-death view of processes. The periodic component of the
model is identical in form, and can be similarly justified: the air-
craft under observation (and thus the load pattern) remain con-

stant except for random perturbations, some fraction (1-t9) of

which are long-lasting entries or departures from the field of ob-
servation.

This model belongs to the broad class of stochastic processes

known as ARMA (autoregressive--moving average) processes. It
is interesting to ask why this particular ARMA process should be
chosen--might others not fit as well? The answer is partially that

this is the simplest periodic ARMA process whose periodic and
non-periodic components are both:

• non-stationary (i.e., they have no fixed level),
• stable (i.e., they don't grow explosively), and
• homogeneous (i.e., everywhere self-similar except for level).

Forecasting

The non-periodic component of the model is that which is con-

ventionally used for aperiodic computer systems; it gives rise to
the familiar exponentially-weighted average forecast function.

The periodic component in effect adds an exponentially-weighted
average of corrections to this forecast, derived from the experi-
ence at corresponding points in earlier periods.

Depending on the relationship between 0 and O, the heaviest

weight in the forecast may either be on the most recent value, or

on the one a period ago. In the aircraft tracking case (and many
others, we speculate), there is more consistency from period to
period than from instant to instant (as aircraft are more inertial
than processes).

Forecasts can also be computed directly from the difference equa-
tion we used to define the model. In either case, forecasts for

greater lead times can be calculated by repeated use of the step-
ahead formula. (By lead time we mean the time from when the
total load is last known to when the forecast is for.)

Since the period (in this case, the scan time of a radar) is long rel-
ative to the communication latencies of the system, it is reasona-
ble to suppose that each site can have complete knowledge of all
other sites' loads at least up until one period earlier, with dimin-

ishing knowledge thereafter. It should be possible in principle to
make some use of the more recent, incomplete, information to
improve the forecast, given a model of the load distribution with

load balancing. In the next section we address this problem and
show a heuristic solution. However, Figure 1 shows that even
forecasts made using only data up through one period in ad-

vance are usually moderately accurate.

How Typical Is This Example?

Though this section presented a case study of a single time se-
ries taken from a single application, we believe the basic fea-
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turesarecommontoothersystemsaswell.Preliminaryresults
fromexperimentationwithapassiveradarinterpretationsys-
tem(Ref.4)confirmthisbelief.TheIMA(0,1,1)x (0,1,1)p
modelusedheremaywellsuitmanysuchsystems,thoughits
suitabilityshouldofcoursebetestedineachcase.Aswellas
testingthesuitabilityofthemodeltoaparticularapplication,it
isnecessarytotunetheparametersusingsampletimeseries.
Systems with more than one period, for example from hetero-
geneous sensors, would necessitate a straightforward extension
of the model.

One potential stumbling block in generalizing this technique to
more realistic systems is that higher-level processing tends to

be triggered by significant changes in the input (or by the lack
of expected changes), rather than by the input itself. For exam-
ple, a system that not merely tracks aircraft, but also attempts
to deduce possible objectives, would reconsider the objective
of an aircraft that sharply turned, or that failed to turn when it
was expected to. This reduces the scan-to-scan consistency of

the load. It remains to be seen how troublesome this is; clearly
this depends on how much of the processing is special-case.
When this issue came up in a discussion with a group familiar

with actual systems, the consensus was that the load on
present-day systems is indeed quite periodic (Ref. 13).

INCOMPLETE INFORMATION

The simple stochastic model presented in the preceding section
only allows load information old enough to be complete (i.e.
available from all sites) to be used. In this section we refine
our model to allow incomplete information (i.e., more recent
loads from some sites) to be employed. We formulate the

problem, show an exact but impractical solution, and then
present provably good practical heuristic approximations.

The Problem

In order to understand what use a site can make of recent but

incomplete information, we must refine our model to include
how the system-wide total load is divided among the N sites. A
simple, plausible version of this is to assume that the sites are

independent instantaneously, but in the longer-term are suc-
cessfully balanced. Formally, the model we have in mind is

:t-x + :t-lO -- zt-lt -- Oat-1 -- Oat-lo + OOat-ll

:,,t = ai_, + N (3)

where we use zi,t for the load of site i at time t (with zt = Y_izi,t)

and similarly for ai.t and at (the ai.t are independently normally
distributed, with variance O2a).

As long as all zi,t are known, the ai,t carl be calculated, and thus

used for forecasting. When the information is incomplete, the

deviation of the known zi,z from the step-ahead forecasts can no

longer be attributed solely to their corresponding ai,t, but rather

will also include the persistent fraction of earlier unknown per-
turbations. The problem is to find the expected division be-
tween these two sources of perturbation, as the expected value

of each ai,t should be incorporated into the forecast in its own

way.

Exact Solution

This problem can be solved by applying Bayes's theorem:

• We are given as a prior distribution for the ai.t that they are

independently normally distributed with some variance _.

We make observations which imply a joint likelihood for

the ai,t that is uniform where certain linear combinations of
them (given below) equal the known zi,t and zero else-
where.

• We would like to find the posterior joint distribution of the
ai,t, specifically its expected value, for use in forecasting.

The non-zero regions of the likelihood function can be found
by rewriting the equation for rid in terms of the ai.t alone, us-

ing the summation operators S = (1+ SB) and $10 = (1+ SloB10):

((1 - O)SB + (1 - O)SloB 1° + (1 - O)(1 - -O)SSaoB it)a,
Zid : act + N

(4)

The posterior distribution can readily be written using Bayes's
theorem, provided one is willing to leave some messy integrals

in it. Unfortunately, this leaves numerical integration as the
only way to find the needed expected value. This seems to be
too much work to expect a load-balancing system to perform
each time interval. What is needed is a pre-posterior analy-

sis--a general analysis done in advance, into which specific
numbers can be plugged at run time. Unfortunately, we know

of no such approach to this problem in the general case. In the
next subsection we consider heuristic approximations appropri-

ate to our intended.implementation. The analysis above serves
as the standard by which the heuristics are judged, as well as

suggesting them.

Heuristic Approximations

The simplest heuristic is to simply assume that the full devia-
tion of each known load zi,t from its step-ahead forecast is

purely its corresponding ai.t. This heuristic is actually the truth

(given our model) for the first time-quantum with incomplete
information, and can be shown to be a conservative approxima-
tion provided there is less than a period of incomplete informa-

tion. By a conservative approximation, we mean that this heur-
istic is guaranteed to be more accurate than simply ignoring the

incomplete information. This is because mistaking the retained
portion of prior perturbations for current perturbation leads to
it's being erroneously re-multiplied by (1 - 0), i.e. underesti-
mated.

We can improve this approximation by taking advantage of one
feature of our intended implementation. We suggest a random-

ized style of information spreading known as "rumor monger-
ing" which spreads each site's load information to an exponen-

tially widening fraction of the other sites. Thus the amount of
load information a site has drops off exponentially with recen-
cy, and only the earliest incomplete load information is of any
real significance.

In particular, for realistic parameters (e.g. a spreading factor of
eight) the only significant improvement that could be made in
the above simple heuristic would be to better account for the
deviations observed in the second incomplete-information

time-quantum. Moreover, this division between the first two

incomplete-information time-quanta need not make use of in-
formation from later time-quanta, as such information would

be very weak under these assumptions. This leaves a tractable
two-quanta version of the general problem of the preceding
subsection.

The aij from the Nn non-reporting sites of the first quantum can

be lumped together, as can those from the Nr reporting sites of
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thesecondquantum.Thisisbecauseofthesymmetryamongst
them.Wewillcallthecontributionoftheformertothesecond-
q.uantadeviationsX and that of the latter Y. Our prior distribu-
uons for them are independent, normal, both have mean zero,
and (by elementary probability theory) have the variances

N 2

•\_7,. (6)

We know that X and Y sum to the observed deviation, 8, of the

second-quanta loads from their step-ahead forecasts. Therefore,
the posterior distribution from Bayes's theorem gives us the fol-
lowing posterior expected values:

j_ .l" f " • ff ,g

t'.'(.\'3 = f-_-_ e__/. __l__rl:l.,,_d x (7)

-- ,. ('0)
I:'( Y ) = _'cr__+ a _,

Thus we can readily at run time use the observed values of 5,

Nn, and N r to calculate a very good approximation to the best

forecast possible with the available information.

PRECISION OF FORECASTS

In this section we analyze the potential for practical utility of
our load-characterization _heme. We show that for the large
numbers of sites characteristic of massively-parallel architec-
tures, our scheme provides load estimates which are accurate

enough to be useful for load balancing.

We can use the model of Equation 1 to calculate probability
limits of forecasts--that is, the region around the forecast in

which the actual system-wide load will lie some specified frac-
tion of the time. Additionally, the more detailed model of
Equation 3 specifies how the individual sites' loads can be ex-

pected to be distributed about the system-wide average load.
What is most interesting is combining these two, in order to de-
termine

• what fraction of the sites can be expected to be over- or un-
der-loaded at some significance level, and

• how much relative error can be expected in the amount of
work transferred between sites, due to erroneous forecasts.

Happily, we show that the accuracy of the forecasts relative to
the standard-deviation of the site loads goes up with the square-

root of the number of sites, so that for massively-parallel sys-
tems the uncertainty in the forecasts is unproblematic (assum-
ing the validity of the model).

Probability Limits of Forecasts

The conditional probability distribution of the system-wide
toad about its forecast value is simply the sum of those of the az
not included in the forecast. The error in the forecast will thus

be nonnally distributed with mean zero and variance increasing
with lead-time. For the IMA (0,1,1) x (0,1,1)p model, if the

forecast is made using complete information only, with lead

time l < p, the variance is

v(t) = (1 + (t- 1)(1 -O)2)N_. (lO)

We can use the above formula to calculate approximate proba-

bility limits for the forecasts by substituting an estimate for _a.

If the system-wide load sample standard deviation is s, then we
can estimate that with probability e the actual load differs from

the lead I forecast by more than u_s'_l+ (1- 1)(1 - 0) 2, where

ue/2 is the e/2-tail-area point of the unit normal distribution. No-
tice that these bounds are for the total toad---the standard devi-

ation, and hence probability limits, for the average load are

smaller by a factor of N.

Comparison with the Distribution of Site Loads

Our model asserts that the loads of the individual sites at any

time are normally distributed about the system-wide average
load with standard deviation era. We can compare this with the

standard deviation of the lead I conditional probability distribu-

tion of the average load, which we derived in the previous sub-

section. The latter is larger by a factor of -_1 + (l - 1)(1 - 0)2/

_N; the factor of _]N results from averaging N independent de-
viates.

This implies that for large systems the forecasts will be accu-
rate enough to be useful. For example, our example system
could be spread among 1024 sites, even one-period-ahead fore-
casts would have a factor of 27 lower standard deviation than

the site loads. Thus virtually all apparent over- or under-loads
would be statistically significant, and the relative error in the
amount of work transferred would be small (roughly 1/27).

LOAD-BALANCING MECHANISM

In this section we outline a load-balancing scheme employing
the load-characterization methodology of the preceding sec-

tions. Our scheme relies on a "rumor mongering" style of in-
formation spreading (Ref. 9), which is appropriate to our archi-
tecture. We show that the mechanism not only allows sites to

assess their load with respect to the system-wide average, but
also allows overloaded sites to reliably find sufficiently under-
loaded sites to which objects can be migrated.

If each site stores its knowledge of all sites' load histories, then
they can spread their information around by a process of "ru-
mor mongering"--that is, by randomly sharing information

(Refs. 10, 1, 2, 9). Naturally, the histories can be compressed
by discarding information old enough to be scarcely relevant
and by combining together loads from all sites where they all
are known. Some information may be young enough to rele-
vant to forecasting, but old enough to be well-known. This in-
formation can be retained but not passed on; (Ref. 9) has a

good discussion of such issues.

Our CARE ensemble architecture (Ref. 8) uses a cut-through

interconnection network, so latency is not proportional to dis-
tance (in the absence of contention). Additionally, it supports
an efficient multicast protocol (Ref. 5). Therefore, we suggest
that the information spreading be achieved by each site periodi-

cally multicasting its information to a random sample of the
other sites. While the number of sites that each site will hear

from in any given period varies, it can be shown that the distri-

bution (a binomial distribution, rapidly approaching a Poisson
distribution) is such that a paucity of information will be rare,

even with a quite moderate sample size, e.g. eight.

/ -_ L._

162



Uponreceivingaload-informationmessage,asiteshouldinte-
gratetheinformationintoitsownknowledge,andthenusethe
time-seriesmodel(provideda priori based on experiments
with the particular system) to estimate the current system-wide
average load with probability limits. It should then compare
this predicted average with its own current load, and with the
load of the sender at the time of the sending. If the recipient
appears significantly underloaded and the sender appears sig-
nificantly overloaded, a request for work should be sent back.

This is a combination of random gossiping to distribute the in-
formation needed to decide whether and how much work to

transfer, together with polling/bidding to match up the partici-

pating sites. As with all bidding schemes, some precautions
are needed to avoid races. The underloaded site should not

place any other requests for work until it receives work or an

apology from the overloaded site. As the inter-arrival time for
messages from overloaded sites should be high relative to the
round-trip message time, few conflicts should occur.

It should be rare that an overloaded site cannot find enough to-
tal underload among the sites it samples to match its own over-
load. For example, suppose that the loads are normally distrib-
uted (as they are in the model of Equation 3), and that the

sample size is eight. Of the eight sites sampled, it can be ex-
pected that four will be underloaded. The expected value of

the absolute value of a normal deviate is 2/-_2_, or about .8

standard deviations, so the four underloaded sites will on the

average have approximately 3.2 standard deviations worth of
underload. But the originating site must really be far out on the
tail of the distribution to have more than 3.2 standard devia-
tions worth of overload.

The only aspect of load balancing not addressed by this mecha-
nism is the choice of which objects to migrate. Here again the

real-time nature of the system must be addressed. In general
neither the highest- nor lowest-priority objects are best migrat-
ed, so as to neither unfairly advance a low-priority object nor
hold up (due to migration time) a high-priority object. Chang
addresses these issues in (Ref. 6).

REFERENCES

1. Yeshayahu Artsy, Hung-Yang Chang, and Raphael Finkel.
Processes migrate in Charlotte. Technical Report 655,

Computer Sciences Department, University of Wisconsin-
Madison, August 1986.

2. Amnon Barak and Amnon Shiloh. A distributed load-balan-

cing policy for a multicomputer. Software-_Practice and
Experience, 15(9):901-913, September 1985.

3. George E. P. Box and Gwilym M. Jenkins, Time Series
Analysis." Forecasting and Control. Holden-Day Inc., 1976.

4. Harold D. Brown, Eric Schoen, and Bruce A. Delagi. An
experiment in knowledge-based signal understanding using

parallel architectures. Technical Report STAN-CS-86-
1136, Department of Computer Science, Stanford Universi-
ty, October 1986.

5. Gregory T. Byrd, Russell Nakano, and Bruce A. Delagi. A
dynamic, cut-through communications protocol with multi-
cast. Technical Report STAN-CS-87-1178, Department of

Computer Science, Stanford University, September 1987.

6. Hung-Yang Chang. Dynamic scheduling algorithms for dis-
tributed soft real-time systems. Technical Report 728,

Computer Sciences Department, University of Wisconsin-
Madison, 1987.

7. William J. Dally. Wire-efficient VLSI multiprocessor com-
munications networks. In Advanced Research in VLSI : Pro-

ceedings of the 1987 Stanford Conference, pages 391-415.
The MIT Press, 1987.

8. Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and
Greg Byrd. An instrumented architectural simulation sys-

tem. In Artificial Intelligence and Simulation. The Diversity
of Applications. The Society for Computer Simulation In-

ternational, February 1988.

9. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart,

and Doug Terry. Epidemic algorithms for replicated data-
base maintenance. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, pages

1-12, August 1987.

10. Zvi Drezner and Amnon Barak. A probabilistic algorithm

for scattering information in a multicomputer system. Tech-
nical Report CRL-TR-15-84, Computing Research Labora-
tory, University of Michigan, March 1984.

11. Robert H. Halstead, Jr. and Stephen A. Ward. The MuNet:
A scalable decentralized architecture for parallel computa-
tion. In Proc. 7th Annual Symposium on Computer Archi-

tecture, pages 139-145, May 1980.

12. Phillip Krueger and Miron Livny. Load balancing, load
sharing and performance in distributed systems. Technical
Report 700, Computer Sciences Department, University of
Wisconsin-Madison, August 1987.

13. Personal communication, September 10, 1987. Discussion
with members of MIT Lincoln Laboratories Machine Intel-

ligence Group.

14. Russell Nakano and Masafumi Minami. Experiments with a
knowledge-based system on a multiprocessor. Technical
Report STAN-CS-87-1188, Department of Computer Sci-

ence, Stanford University, October 1987.

163





EFFICIENT ALGORITHMS FOR MASSIVELY PARALLEL COMPUTERS

I. DESIGN OF STABLE COMPUTATIONAL SYSTEMS
USING LINEAR SYSTEMS MODELS

Harold M. Hastings
Department of Mathematics

Hofstra University
Hempstead, NY 11550

Ivan Kadar
Grumman Corporation

Mail Stop B35-35
Bethpage, NY 11714

ABSTRACT

The authors investigate the stability of massively parallel com-
putations using a linear systems approach. Stability is impor-
tant for several reasons. These include bounding the response
of the algorithm to numerical noise so that the typically small
amount of local memory can be used efficiently, as well as de-
signing algorithms and even hardware to be fault tolerant. Both
Lyapunov stability (insensitivity to small changes in data and
to noise) and structural stability (fault tolerance in hardware
and software) are studied. The methodology is motivated by
neural network modeling but may have larger applications.

Keywords." Lyapunov stability, structural stability, massively
parallel computing.

INTRODUCTION

Approach

We chose to study the stability of massively parallel computa-

tion using linear systems for several reasons. Here and below, a

linear system is a vector equation of the form

x(t+l) = Mx(t), (1)

where x(t) and x(t+l) are column vectors of length n and M is a
square matrix of size n x n. An iterated linear system or nonau-
tonomous linear system is specified by a sequence of matrices
M(t), and vector equations of the form

x(t+l) = M(t)x(t). (2)

Our model for the stability of computation consists of random
linear systems of the form (1) or random iterated linear systems
of the form (2). Such systems are described by the following
parameters of the matrices M or M(t):

size n

connectance C of the associated digraph of interac-
tions-this digraph contains an edge
from j to i whenever M(i,j) is nonzero,
and

distribution of nonzero entries of M, frequently in par-
ticular

its mean _2and variance .

See References 1--6. The role of connectance is frequently to
specify that there is one system and not two or more disjoint
systems (Ref. 7).

Foremost among our reasons for this approach is that the stabil-
ity of large systems has historically been studied with linear
systems (Refs. 1-5). Many systems can be approximated by
linear systems near equilibria. In particular, many algorithms
(Gauss-Siedel iteration, finite element techniques, etc.) involve
iterated linear maps. Much of neural network algorithms also
involves linear maps (Refs. 8-9).

The response of an algorithm to a small amount of noise in-
volves a small perturbation to the algorithm. Such perturba-
tions are frequently studied via linear approximations.

The limits of cellular automaton models are partial differential
equations, and frequently diffusion equations--which are line-
ar. Thus, linear systems arguments may also be useful in study-
ing massively parallel hardware. The particular relevance of
the linear systems approach may easily be seen in the following
representation of the graph associated with a linear system (1)
and an iterated linear system (2), Figures 1 and 2, respectively.
Figure 2 accurately represents data flow in a parallel computa-
tion with processing elements (PE's) I, 2 ..... n using the vertex
(j,t) to represent PE j at time t and an edge from (j,t) to (i,t+ 1)
for each nonzero entry in M(t) representing the flow of data
from PEj at time t to PE i at time t+l.

j o

.ill
FIGURE I. Part of the digraphof a linear system
with M(i,j), M(j,j), M(j,k),and (M(k,j) nonzero.

Also,M(j,i) = M(i,k) = M(k,i) = 0.
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I t+2

I t+l _(j,t+l

t I
/

• (i ,t) t .(k,t+2)

FIGURE 2. Part of the digraph of an iterated linear
system, illustrating sheets for times t, t+l, and t+2.

Here M(t) (j,i) and M(t+l) (kd) are nonzero.

Theoretical results for linear systems are available, and may
suggest the local behavior of nonlinear systems.

We shall investigate Lyapunov and structural stability of large,
random linear systems, as neutral starting points for this type of
modeling.

Stability Definitions

We informally review the definitions of Lyapunov and structu-
ral stability and refer the reader to Reference 10 or a similar
text for precise definitions.

An equilibrium of a system is (Lyapunov) stable if the system
returns to that equilibrium when started from nearby points.

A system is structurally stable if nearby systems display the
same dynamics (have similar stable equilibria, etc.). Bifurca-
tions are the opposite of structural stability.

STABILITY OF RANDOM LINEAR SYSTEMS:
A REVIEW

Historically, the first result was due to Gardner and Ashby
(Ref. l) who studied the behavior of fully connected systems
with fixed distributions as a function of size. They found that
Lyapunov stability decreases with increasing size. Their results

are in qualitative agreement with a standard stability bound,
which follows from the Gerschgorin Circle Theorem that states

that the size of the eigenvalues of a matrix M is bounded by its
maximum row sum, where a row sum is the sum of absolute

values of entries in a row. Consequently, systems (1) and (2)
are Lyapunov stable if all row sums are less than 1.

The maximal row sum of M is also its L1 matrix norm. A simi-
lar result holds for other matrix norms, but these are much

harder to compute or estimate. However, the Gerschgorin

bound overestimates eigenvalues of typical random matrices
wherein the nonzero entries have mean 0. The Gerschgorin

bound does yield a useful asymptotic bound for suitably con-
nected systems with nonzero mean (Ref. 4); the criterion is

p.nC < 1. (3)

May (Ref. 2) conjectured a more useful criterion for random
linear systems of mean 0, following results of Wigner (Ref. 6).

In this case, the conjectured asymptotic stability criterion is

ot2nC < 1. (4)

This bound is much more delicate, and requires suitable techni-
cal hypotheses (Refs. 4-5) due to Cohen and Newman and Ge-
man. Cohen and Newman showed that bound (4) also holds for
iterated linear systems. Their argument also extends to bound
(3) for iterated linear systems.

These results may be summarized loosely in the statement that
with fixed interaction rules, Lyapunov stability decreases with
increasing complexity (nC).

However, if interaction strength decreases sufficiently fast with
increasing complexity, for example in the mean 0 case, if

= _ (4EQ), (5)

then Lyapunov stability increases with increasing complexity
(Ref. 3, see also Ref. 11 for background).

Structural stability behaves in a more complex manner. In par-
ticular, one needs the mean interaction to decrease faster than

linearly with increasing complexity:

It = o(nC). (6)

Criterion (5) holds for many highly distributed representations

(neural networks) and interactions. Therefore, Lyapunov stabil-
ity typically increases with complexity in such systems. Struc-
tural stability, however, requires careful design considerations
because for random systems one usually only obtains

p = O(nC), (7)

a weaker condition than condition (6) faster than linearly with
increasing complexity.

It is thus a key requirement that design translate fault tolerance
questions into Lyapunov stability questions by designing large
parallelism and redundancy.

EXAMPLES

We describe several examples and interpretations (possible ap-
plications) of the above results.

Large Parallel Computers

In this case, Lyapunov stability may be interpreted as response
to noise, which may typically be increased by a highly distrib-
uted representation and many weak interactions. Structural sta-
bility (including fault tolerance) is more difficult to handle, and

requires careful limitations of complexity or built-in redundan-
cy, which implies scaling rule (6).

Neural Networks (highly distributed representations)

As explained above, Lyapunov stability may be interpreted in
terms of stable responses to small changes in inputs, and the

above calculations provide a theoretical basis for the empirical
fact that highly distributed' systems provide such stable re-
sponses. In addition, adaptive programming as in neural nets
can provide smactural stability with respect to hardware and

software problems.
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Stable Algorithms

We simply remark that many computation schemes such as
Gauss-Seidel iteration and finite element methods for diffusion

equations are probably both Lyapunov and structurally stable.

CONCLUSIONS

One can begin to usefully investigate stability of large compu-
tational systems using approaches from the study of other large
systems. This idea begins with Gardner and Ashby (Ref. 1).
Highly distributed interactions and representations can increase
stability.
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(Extended Abstract)

Due to the polymorphism of the N-Cube intercon-

nections, the N-Cube Computers have applications in

numerous applications. The computer architecture is also

one of the most promising for massively parallel process-

ing in the future. Both algorithms and software tools for

these parallel computers are in demand. To investigate

techniques of designing parallel algorithms for this type of

machines, we studied solutions for a class of geometric

problems on the N-Cube parallel computers. The

geometric problems are the Convex Hull Problem, the

Line Intersection Problem, and the Nearest Neighbors

Problem. These problems have found applications in

VLSI design, Computer Graphics, Image

Processing/Pattern Recognition, and Robotics. The

selected problems are also known to be related to many

other problems of theoretical as well as practical impor-

tance. Efficient solutions of these key problems have

immediate applications and can lead to solutions of other

problems.

i) The computer is polymorphic:

It has been demonstrated that the Boolean N-Cubes

can be programmed to simulate many other parallel archi-

tectures: linear arrays (for systolic, pipelined operations),

meshes, trees, Pyramids, etc., where each of the architec-

tures has identified application areas. Thus, the cube archi-

tecture is open to many applications, which is a great

advantage over many other parallel architectures.

ii) The Boolean N-Cubes have a recursive structure:

An N-cube can be recursively divided into two iso-

morphic subcubes. This property matches very well with

the recursive programming techniques ( e.g. Divide-and-

Conquer (Ref. 1) ). Thus the N-Cube computers are a

natural choice for designing recursive algorithms. Further-

more, the experience gained with the N-Cube computers

should be of value to future system architects as well as

programmers of current parallel computers.

2. The Geometric Problems

Key words: Parallel Algorithms, Hypercube, Geometric

Problems, Divide-and-Conquer.

1. Introduction

The Boolean N-Cubes, (or, N-Cubes, Hypercubes,

for short) are parallel computers with the hypercube inter-

connection between the processors (Ref. 3). These paral-

lel computers are becoming popular due to their relatively

low costs (compared to other supercomputers like Crays)

and vast potential. It is believed that this potential is

derived from the following two structural advantages:

CH2649-2/89/0000/0169501.00 © 1988 IEEE
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The problems studied fall in the domain of Compu-

tational Geometry (Refs. 4-5), a recent branch of Analysis

of Algorithms (ReL 3). Each of the problems (Convex

Hull, Line Intersection, and Nearest Neighbor) actually

has a cluster of related problems.

(1) the Intersection Problem is to determine whether two

geometric objects (points, lines, polygons, etc.) share a

common point. For example, the Line-Intersection Prob-

lem is to determine intersections of a set of lines segments.

This problem has many variations, by specializing on the

type of queries (e.g. reporting all instances or detecting

one instance of intersections), or the type of objects

involved (e.g. vertical/horizontal lines, half-planes,

polygons, etc.).
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The problem of detecting intersections in a set of N

line segments arises naturally in many applications. The

solution can be applied to an important problem in graph-

ics known as hidden line elimination when using a 2-D

device to display 3-D objects. Also, an algorithm for

finding intersection of vertical and horizontal line seg-

ments obviously can be used in design rule checking of

VLSI layout. The problem also has application in pattern

recognition and robotics where geometry is involved.

(2) the Convexity Problem is to determine prol_rties

related to convexity. For example, the Convex ttull Prob-

lem is to determine the convex hull for a set of points.

There are many variations to this particular problem,

where either the points may be dytmmicatly or statically

specified, or the point set may have some special proper-

ties ( e.g. the points lie on a simply connected polygon).

The Convexity Problems, especially the problems related

to computing convex hulls, have applications in Pattern

Recognition and Statistics (Ref. 5). Thus, efficient algo-

rithms for these abstract problems have immediate uses in

the applications mentioned above.

(3) the Proximity Problem is to determine the neighbor-

hood of given objects, based on the specified melrics. For

example, the Nearest-Neighbor Problem, the Euclidean

Minimum Spanning Tree Problem, and the Triangulation

Problem, and the computation of the Voronoi Diagrams

are in this category. The Proximity problems can be

applied to Pattern Recognition, Finite Element Analysis,

and path planning of robots (Ref. 5).

3. Existing Results

The geometric problems have received considerable

attention, and many results have appeared recently. (For

instance, there have been several conferences devoted

entirely to Computational Geometry,) However, most of

the results are geared toward sequential processing only.

Comparatively, still very few upper bounds and virtually

no lower bounds exist for parallel algorithms. We confine

our survey to the parallel algorithms which are available

in the more recent literature. Preparata and Lee (Ref. 4)

give an excellent survey on the sequential algorithms.

(1) Convex Hull Algorithms

Chow (Ref. 13) was among the first to develop

parallel algorithms for the geometric problems. Using a

shared memory model, she showed that the convex hull of

a planar point set can be determined in O(Iog2N) time.
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The number of processors is bounded by N. In (Ref. 19),

Miller and Stout showed that the convex hull of a digi-

tized picture input can be found in 0(3/1:2) time on an N-

node mesh. In (Ref. 20), Miller and Miller presented a

Hypercube algorithm for computing Convex Hulls for an

M x M digitized picture input. Using N processors, the

algorithm has a worst-case complexity of

O(M2/Ntc+P2+M_3tsjr+MZ'3t_), where P denotes the

number of "candidates" for the vertices on the convex hull;

tc and t,/, denote, respectively, the time required for a

computation step on the individual proces_r and the time

required for sending (or receiving) a unit-length message.

Note that, in both cases, the input points are represented

by finite integer coordinates, which is a valid assumption

in the applications they are concerned. However, it is a

relatively strong assumption, and must be considered

when doing comparisons.

(2) Intersection Algorithms

In (ReL 18), Miller and Stout give asymptotically

optimal (O(Nl_2)-dme) algorithms for using mesh com-

puters to determine intersections among line segments and

among polygons. Using a different approach, Jeong and

Lee (Ref. 15) also give optimal results on mesh computers

for the same problem. No N-Cube algorithm is currently

available.

(3) Parallel Algorithms for Proximity Problems

Using the shared-memory model, Chow (Ref. 13)

showed that the Voronoi diagram can be computed in

O(log3NloglogN) time using N processors, where N

denotes the number of input points. Aggrawal et al. (Ref.

11) presented an O(log3N) time parallel algorithm to

solve the same problem with O (NlogN) total space. Chow

also presented an O(log4N) algorithm on the Cube-

Connected-Cycles using O(logN) storage space per pro-

cessor. Lu (Ref. 16) showed that O(Nl'21ogN) time is

sufficient to compute Voronoi diagrams on an N _'2 x N _'2

mesh computer, with constant space requirement on each

processor. Recently, in (Ref. 15), Jeong and Lee improved

the time bound to O(NU2), which is already optimal for

the mesh computers. Currently no N-Cube algorithm for

the Proximity problems is published.

The development of Pyramid computers, originally

intended for image processing, pattern recognition, and

computer vision applications, also led to the discovery of a

cluster of geometric algorithms (Refs. 21-23). A pyramid

of size N is defined to have an N t/2 x N _'2 mesh connected

computer as its base, and Iog4N levels of mesh connected

computers above (Ref. 21). Assuming the input to be an



N 1:2 x N 1:2 digitized picture, Miller and Stout (Ref. 22)

showed that the nearest neighbor problem can be solved in

0 (N 1:2) steps.

4. New Results

We will present new algorithms for the following

three problems on the hypercubes:

(1). Convex Hull Problem: specify the convex hull for a

set of N points.

(2). Nearest Neighbor Problem: Find a nearest neighbor

for each of the N planar points.

(3). Line Intersection Problem: Detect intersection for a

set of N input lines.

For input of our algorithms, it is assumed that the N

data points have been evenly distributed on the M proces-

sors, where M = 2 k for some integer k, and the output are

also represented in the distributive manner. Our algo-

rithms are based on the divide-and-conquer approach

(Ref. 1). Specifically, a problem is solved recursively by

subdividing the input data into two subsets which are allo-

cated on two subcubes until a primitive case is encoun-

tered, then combining (again rccursively) the two partial

results by using the communication links between the two

subcubes.

(1). new Convex 1lull Algorithm

The algorithm is based on a new set of decision

rules which enable us to determine, in a distributive

manner, the common tangents between two convex hulls.

The total time complexity of the new algorithm is

O(log2N) in the worst case, where N, the number of of

input data points, is equal to M, the number of processors

available. In the case M<N, we also present a generalized

algorithm which achieves 0 (Nlog (N/M)) time complex-

ity.

(2). new Nearest Neighbors Algorithm

We present a new O(log2N) time algorithm for

finding the nearest neighbor for each of the N points on

the plane. In the k-dimensional case, the algorithm has a

time complexity of O(logkN) for k > 2. Since it takes

only O(logN) time to find a minimum on the hypercube,

the Closest-Pair Problem can also be solved in the same

time complexity.

(3). new Line Intersection Algorithm

Assuming there are N planar line segments, the

worst-case time complexity of our new algorithm for

vertical/horizontal lines is O(log3N). For input lines of

general orientations, it takes O (logaN) amount of time in

the worst case.

Compared to the previous results, the improvements

achieved in the new algorithms are significant. The tech-

niques developed here may also be applied to solving

other problems of similar character. We will also discuss

possible extensions to these results. In particular, two key

issues will be addressed:

i). How to distributively represent and manipulate

different data types on the hypercube architecture, and

ii). [-low to synchronize the processors so that maximal

parallelism can bc achieved.
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ABSTRACT

Many problems involving distances between points have natural
solutions in terms of the Voronoi diagram. In this paper, we
describe an efficient algorithm for calculation of the Voronoi

diagram over one and two-dimensional lattices. The algorithm
proceeds by propagating the location of Voronoi points through
the lattice using a distance doubling strategy. This algorithm is

designed for implementation on a fine-grain parallel computer
such as the Connection Machine. We show how the algorithm
is extended to calculation of distance-from-region computations
and the use of non-standard metrics.

Keywords: Voronoi Diagram, Distance Doubling, Parallel
Algorithms, Computational Geometry.

BACKGROUND

Consider a finite subset of the points on a lattice, to be called the

Voronoi point set. We are interested in dividing the lattice into
sets of points which are closer to a common Voronoi point than
to any other. Each set is called a Voronoi polygon and the

corresponding Voronoi point is its polygon center. The
tesselation of the lattice into Voronoi polygons the Voronoj

_. Our task is to associate with each point on the lattice a
label which denotes the point as a member of a specific Voronoi

polygon. The Voronoi diagram plays a central role in many
aspects of computational geometry (Ref. 1), and two-
dimensional distance problems (Ref. 2). In this paper we
consider the calculation of the Voronoi diagram for one and two-

dimensional lattices only.

The computational model we follow is based on the Connection
Machine (CM). We assume a fine-grained SIMD parallel
machine implementation with a hypercube connectivity
architecture incorporating very efficient communication among

adjacent processors. By fine-grained parallelism we assume that
a single processor (physical or virtual) is associated with each
point in the lattice.

Define the processor address of a point as the address of the

processor associated with this point. The lattice address of a
point is its cartesian coordinate representation on this lattice. A
natural processor to lattice mapping for one-dimensional lattices
is to use a gray-code mapping so that adjacent points in the
lattice correspond to adjacent processors. For the two-
dimensional lattice case, we use a coordinate-wise gray-code.

The gray-code representations just described are standard
representations on the CM, and address conversion between
representations is supported in hardw_u'e.

The traditional strategy for computation of the Voronoi diagram
over a two-dimensional lattice on the CM is based on a "brush-

fire" algorithm (Ref. 3) where the distance of each point on the
lattice to its nearest Voronoi point is iterativelv improved in a

layer by layer manner. The algorithm begins by setting tile
distance estimate to infinity except at the location of the Voronoi
points where it is zero. Processors retrieve the distance of their
left neighbor D(left), and compare D(left) + 1 with their present
distance estimate. If lower, then D(left)+l becomes the new

distance estimate. The right, top, and bottom neighbor is
queried and the distance similarly updated. A more accurate

estimation procedurequeries in addition diagonal neighbors and
compares D(diag) + ",/2 to the present distance estimate. This

query sequence is continued until the distance estimates for the
whole lattice do not change over a full cycle. We will denote
this procedure as the classical brush-fire algorithm.

VORONOI POINT ADDRESS PROPAGATION

The first improvement we propose is based on propagating the
processor address of Voronoi points rather than the distance to
this point. Suppose that each processor contains a parallel
variable (pvar in CM nomenclature) called addr. The contents
of this pvar at each iteration is the processor address of what is
estimated as being the closest Voronoi point. The variable addr

is initialized to the processor address for all Voronoi points and
some special value such as "nil" everywhere else. At the end of
processing, the value of addr will be the processor address of
the nearest Voronoi point at each point in the lattice.

The propagation sequence is the same as in the previous

algorithm except that neighbors are queried as to their value of
addr rather than the distance to the Voronoi point. Each
processor then converts processor addresses to lattice addresses,
compares the distance to this new Voronoi point and decides if
this distance is smaller than the distance to the present Voronoi
point estimate, and updates addr accordingly. In our later

discussion we will refer to this algorithm as the updated brush-
fire algorithm.

Since this algorithm calculates the Euclidean distance, or in fact
any other metric, to a Voronoi point, the resulting tesselation of
the plane does not have the distortions due to the distance

approximations required by the earlier algorithm. Also,
propagation of the Voronoi point location tesselates the lattice
directly, since the processor address of each Voronoi point can
be used as a unique label for the corresponding Voronoi

polygon.

In Figure 1 we show two typical images, which present the
lattice tesselation after classical brush-fire propagation and the
updated brush-fire algorithm. This example points out the
distortions from Euclidean distance generated by the classical

algorithm.

The convergence properties of either algorithm can be studied
via the analysis of the Voronoi polygon radius under a certain
metric. The 4-distance of a point A to its polygon center P is
found by considering all paths connecting A and P which reside
wholly inside the Voronoi polygon. The minimum under the

4t.

CH2649-:2/89/000(]/0173501 OO © 1988 IEEE

173



/

(a) (b)

Figure 1 - (a) Voronoi tesselation using classical brush-fire algorithm. (b) Tesselation using
new algorithms.

Manhattan metric we define as the 4-distance of A to P. Finally
the _of a Voronoi polygon is the maximum 4-distance

over all points A in the polygon to the center P.

It is clear that after N full cycles all points at a 4-distance of N
will have received the final distance for the classical brush-fire

algorithm or the correct Voronoi point processor address in the
updated brush-fire algorithm. Therefore the convergence
properties of the two algorithms is governed by the Voronoi

polygon with the largest 4-radius. In fact, the number of
iterations is essentially this radius.

The brush-fire propagation strategy just described will be
sufficient in situations where the distribution of Voronoi points
yields uniformly small Voronoi polygons. However, the case
where the diameter of any one Voronoi polygon is large will
result in most processors becoming idle for large periods of
time in the later iterations of the algorithm as the propagation

reaches the outer boundaries of this largest polygon.

In the next section we discuss a new algorithm which again
propagates the processor addresses rather than the distance itself
so it maintains the accuracy of the updated brush-fire algorithm.

The main advantage of the new algorithm is that it propagates the
processor address of Voronoi points using a doubling strategy to
speed up the propagation process in situations unfavorable to
brush-fire algorithms. The distance doubling strategy is well
suited for implementation on the CM.

DISTANCE DOUBLING FOR VORONOI DIAGRAM
COMPUTATIONS

We discuss first the one-dimensional problem since it shows the
basic ideas of the algorithm and is actually used as a component
of the two-dimensional case.

One-Dimensional Voronoi Diagram Extraction

The first step of the algorithm is identical to the updated brush-
fire algorithm in one-dimension. Initially each processor queries

the value of addr of its left neighbor and deposits it in pvar
candidate. Each processor then compares the distance to the
point represented by its own value of addr vs the point

represented by candidate. If the distance is lower then candidate
becomes a better estimate of the nearest Voronoi point. The
query is now performed of the right neighbor. The speedup

occurs in the subsequent iterations. The algorithm transmits addr

to processors at a distance of 2, then 4, etc., at each stage
doubling the distance of transmission. The algorithm ends after
log2nx where nx is the number of points in the lattice. The

reason that we can guarantee convergence of the one-
dimensional algorithm after log2nx iterations is that the Voronoi

"polygons" are line segments, and therefore the distance

doubling strategy is bound to "visit" every point on this polygon
in less than log2N iterations where N is the length of the

Voronoi polygon, and N must be less than nx.

The strategy of distance doubling is an emerging standard
approach to achieving speedups in hypercube-connected

massively parallel computers (Ref. 3,5,6) and is closely related
to the primitive scan operators introduced by Blelloch (Ref. 4).

Since processors at a distance 2 n are neighbors on the
hypercube, this transmission can occur very quickly. After n

iterations, all points at a distance 2 n or less from the
corresponding Voronoi point have been correctly labeled. The
formal algorithm is described below (we use the notation
introduced in Ref. 5):

nx: number of points in lattice
k: address of each processor
mask[k]: TRUE if a Voronoi point is located at address k,
FALSE elsewhere

addr [k]: address of nearest Voronoi point to lattice point
associated with processor k.

for all k in parallel do
addr [k] = nil
if mask[k] = TRUE then

addr l kl = k
fi

od

for j=0 to log2nx do

for all k in parallel do

candidate [k] = addr [k - 2 J ]

if distance to candidate [k] < distance to addr [k] then
addr [k] = candidate [k]

fi

candidate[k] = addr [k + 2J ]

if distance to candidate [k] < distance to addr [k] then
addr /k] = candidate lk]

fi
od

od
Two-Dimensional Voronoi Diagram Extraction

In the case of two-dimensional lattices, the associated Voronoi

polygons are no longer line segments; informing each point in
the polygon of the location of the polygon center is more
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involved. The issue is how to perfom this information

transmittal efficiently. The ease or difficulty of this transmittal
depends on the shape of the Voronoi polygons involved. We
consider first the case of scattered Voronoi 0oints where the

associated polygons are 4-connected.

If a polygon is 4-connected then there must be a 4-connected

path between the polygon center and every point in the polygon.
Again, we use a pvar addr which at convergence contains the
address of the nearest Voronoi point. After applying the one-
dimensional algorithm along each row which contains a Voronoi

point, all points in each Voronoi polygon which are connected
horizontally with the polygon center will have the correct center
location in addr. The second step is to apply the one-
dimensional algorithm on each column. After this point, all

points which are connected to the polygon center by a path in the
polygon consisting of one horizontal leg followed by a vertical
leg will have the correct value of addr. We see that alternating
horizontal and vertical iterations will update those points with
successively more complicated paths leading to the Voronoi
polygon center.

In the previous section we used the 4-distance metric to analyze
the convergence property of the brush-fire algorithms. We can
define a step distance which similarly controls the convergence

of the distance-doubling algorithm. Define the step length of a
4-connected path as the number of horizontal plus vertical runs
in a path. The step distanc¢ of a point A in the Voronoi polygon
centered at P is the minimum step length over all paths
connecting A and P which reside wholly in the Voronoi

polygon. Thus in Figure 2, the step distance from A, B, and C
to P is 1, 2, and 4 respectively. Finally the step radius of a
Voronoi polygon is the maximum step distance over all points in
the polygon to the center P.

Figure 2 - Voronoi Polygon with Center at P.

It is clear from our earlier discussion that after N iterations, all
Voronoi polygons of step radius less than N will have been
correctly updated. The reason for the expectation of faster

convergence is that for large Voronoi polygons, the step distance
between two points is much smaller than the 4-distance, while

the distance doubling paradigm updates points along each row or
column quicker than brush-fire propagation.

PERFORMANCE COMPARISONS

We considered several test cases in order to evaluate the

performance of the new algorithm via comparisons to the
classical and updated brush-fire algorithms. The results are

summarized below. Images were generated with Voronoi points
distributed randomly over a 512 by 512 lattice. Five trials were

generated for each Voronoi point density and the computation
time averaged. All experiments were performed on a CM-2 with
8k processors. Similar results were observed for 128 by 128
and 256 by 256 lattices.

60 T

o.... _;
_0 ,o 1_o 640 2s60

Figure 3 - Computation time for Voronoi diagram calculation as
a function of the number of Voronoi points.

From the above figure, we can see that the distance doubling
algorithm is substantially faster than either brush-fire technique
as the number of Voronoi points decreases. As the number of
points increases, the size of the largest Voronoi polygon
decreases, so that the brush-fire techniques require fewer
iterations. Therefore, for dense Voronoi diagrams, the brush-

fire techniques are preferable. Note that the updated brush-fire
algorithm is comparable to the classical algorithm even though it
provides better accuracy.

GENERALIZATIONS

Distance-from-Region Computations

In our earlier discussion, we considered the Voronoi diagram
problem of finding distances to scattered points. In many cases
of interest, it is necessary to calculate the minimum distance not

to a set of points but to a set of regions or more specifically the
minimum distance to the boundary of a set of regions. Such a

computation can be performed in our formulation by considering
each point on the boundary of each region as an Voronoi point.
Thus after convergence each lattice point will know the location
of the nearest boundary point.

In some situations, it is also necessary to know to which region
a given point is closest. Given that a point knows the processor
address of the nearest boundary point, a common label needs to

be provided to all boundary points of the same region and that
label propagated along with the address location.

For this application, we encounter the situation that a Voronoi
polygon may not be 4-connected. This occurs if three Voronoi
points are aligned diagonally, resulting in a Voronoi polygon
consisting of a diagonal line. Such a configuration is likely to
occur in the distance-from-region case. In this situation, we

have found it adequate to first perform a propagation be
performed in each diagonal direction to accommodate those

polygons and then continue with alternating horizontal and
vertical propagations.

In Figure 4, we show a distance-to-nearest-region computation
using the new algorithms.

Voronoi Diagram Computation Under Non-Standard
Metrics

The fact that the location of the Voronoi point rather than the
distance to this point is the information propagated allows for the

application of either the updated brush-fire or distance-doubling
algorithms to a variety of distance functions. In fact we can

associate a different distance function with each Voronoi point.
For example, there could be associated with each Voronoi point

a weighing factor such that the "distance" to this Voronoi point
is first weighed prior to comparison with the distance to another

Voronoi point. We have generated some experiments with non-
standard metrics in order to understand the possible
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(a) (b)

Figure 4 - (a) Three regions for distance computation.b) Euclidean distance to nearest
region.

(a) (b)

Figure 5 - Voronoi tesselations of the same point set under different metrics
generalizations of the procedure developed here. As an example
of the possible generalizations, we generated the Voronoi
diagram under two different distance functions for the same
Voronoi point set as in Figure 1. Figure 5a shows the use the
distance metric D = max(ldxUdyJ). Figure 5b shows the use of
the weighed Euclidean metric.

SUMMARY

In this paper we introduce two new algorithms for the
calculation of the Voronoi diagram over one and two-
dimensional lattices. Both new algorithms propagate the explicit
location of the nearest Voronoi point rather than the distance to
the point and so are more accurate than traditional methods. The
first algorithm is based on brush-fire propagation while the
second algorithm relies on distance-doubling. We find that the
distance-doubling algorithm is more efficient than the classical
algorithm for the case when at least one Voronoi polygon is
large. It was found that there is little penalty in using the the
updated brush-fire algorithm over the traditional algorithm.
Generalizations of the algorithm to distance from region
computations and non-standard metrics are also presented.
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Abstract

We consider the channel routing problem of a

set of multi-terminal nets in the knock-knee model.

We develop a new approach to route all the nets

within d + a tracks, where d is the channel density,

and 0 < a < d, such that the corresponding layout

can be realized with three layers. Both tile rout-

ing and the layer assignment algorithms have linear

time sequential implementations. In addition both

can be implemented on the CREW-PRAM model

in O(_ + logn) time, with p processors, 1 _< p < n,

where n is the size of the input.

1. Introduction

Routing plays a central role in automated VLSI layout sys-

tems. This problem has been intensively studied in literature

(e.g. [CJ],[MP],[P],[PL],[O],[RF]). Because of the combinatorial

nature of routing, most of the corresponding optimization prob-

lems turn out to be NP-complete (for example see [S]). tlowever

good heuristics have been used effectively to generate good lay-

outs. In this paper, we continue our research efforts in devel-

oping efficient parallel programming techniques to handle var-

ious routing problems. Our goal is to develop routing strate-

gies that will result in parallel algorithms whose running time is

O(t(_) +f(p)), where t(n) is the best known sequential time, p is

the _umber of processors, and f(p) is a non decreasing function

that reflects the routing cost on the given parallel model. The

routing produced by these algorithms is expected to be as good

as the best known sequential algorithms.

We consider the channel routing of multi-terminal nets in

the knock-knee model. Provably good approximation algorithms

(sequential) have been reported in [MPS],[SP] and more recently

in [GK]. The basic strategy used is the well known greedy strat-

egy applied either one column or one row at a time. IIowever,

it has been shown recently ([delaT]) that the routing produced

by several variations of this strategy are P-complete, and hence

there is little hope for parallelizing these strategies efficiently.

We provide a new strategy which obtains provably good routing

(which is in general different from those obtained in [SP],[MPS]

1Supported in part by NSA Contract No. MDA-904-85II-0015,

NSF Grant No. DCR-86-00378 and by the Systems Research Center
Contract No. OIR-85-00108
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and [GK] methods), such that the routing algorithms has a lin-

ear time sequential implementation. Moreover, the algorithm

is fully parallelizable in the sense that it can be implemented

on a Concurrent Read, Exclusive Write (CREW) PRAM model

in O(_n +logn) time with p processors, 1 _< p _< n, where n

is the size of the input. We are assuming that all terminals lie

in the range [1,N], where N = O(n). h modified version of

the algorithm will guarantee that the number of tracks is d + a,

0 < a < d, where d is the density of the channel. In particular,

for two terminal nets the modified version provides an optimal
solution.

All our results are stated for the shared memory model.

lIowever, our algorithms have fast implementations on fixed-

interconnection networks such as the mesh or the hypercube.

For example, all the algorithms stated in this paper can be im-

plemented on a ,¢'-ff x v/-ff mesh in time O(v/-ff) where n is the

input length.

2. Definitions

We borrow some of the basic definitions of channel routing

from [SP],[PL]. A net N is an ordered pair of integer sequences

((PbP2,'" "Pk),(ql,q2,'''qh)) where the pi's are the lower ter-

minals and the qi's are the upper terminals. Without loss of

generality, we assume that k+h >_ 2. If k+h > 2, then the

net N is said to be a multiterminal net, otherwise N is a two-

terminal net. An instance of a general channel routing problem

(GCRP) is a channel consisting of rectangular grid, and a set of

nets, each of which specifies a subset of terminals which lie on

the grid points of the (horizontal) parallel boundaries. The goal

is to route the wires such that the channel width is as small as

possible.

Let il = ((Pi,"',Plk,),(qi,''',qih,)) be a set of nets. Let

li = min(pi,q[ ) and rl = max(p_,,qih,). The interval [li,rl] is

a lower bound to the horizontal track demand of N i. _Ve can

transform the GCRP into a fictitious two-terminal net channel

routing problem, where each net Ni is replaced by Ni* and li and

rl are referred to as the left and right terminals of this fictitious

net respectively. The local density d_ at x is defined to be the

number of nets [li, ri] such that l i < x < r i. The density d

is given by d = max_(d=). It is clear that d is a lower bound

for the nfinimum number of horizontal tracks and we call d tbe

essential density of the GCRP. The type of terminals within a

column (entry, exit or continuing terminals) define the state of



tilecolumn.All the possible states of a column are shown ill

Figure 1.
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Figure 1: States of a cohmul

3. Channel Routing

Given an instance of a GCRP of essential density d, our

goal is to determine a wiring of all the nets within 2d tracks.

In addition, tile resulting layout should be realizable in three

] ayers.

The algorithm developed in [SP] produces lhe layout cohmm-

by-column. The overall strategy is similar to the approach of the

'greedy router' of [RF]. Unfortunately this approach seems to be

inherently sequential. Our method is quite different and consists

of the following main steps:

1. Create two sets of chains S_ and &. Each set consists

of a partition of the nets into d chains satisfying certain

properties to be outlined later. In particular, the nets ill

each chain define a set of nonoverlapl)ing intervals. Ini-

tially a net has two symmetric segments above and below

the track ,_/ = 0.

2. Assign a track number fronl the upper d tracks in tile

channel to each chain in 5;u and a track nlllUber frOlll tile

lower d tracks to each chain in Si. Then wire all the nets

for all the columns simultaneously.

The algorithm produces a layout which maintains the following

property:

Property 1. Any net Ni which is active in colu,nn c has two

strands 9 = tl(i) > 0 and 9 = t2(i) < O.

We shall summa,'ize tile algorithm Create Chains developed in

[C,1] which partitions a set of nets into d chains, where d is the

density of tile corresponding CliP. This algorithm will be used

later on to obtain the initial sets of chains.

Algorithm Create Chains

Input: terlninals [i's and ri's of all tile nets Ni, N2,'", N,_.

Output: d chains of nets, where d is the density of the CRP.

1. Mark all the terminals. For each left terminal li of a net

Ni, set p(li) = r 2 such that ra is the nearest right terminal

of some other net to the righ! of Ni. If two such terminals

exist, then pick tile one whose corresponding net is of tile

same type as N,. llowever if no such r a exists, then set

p(li) = 0. Silnilarl.v define p(r, ) for each right teruiina].

2. If p(li) = I"2 and p(ra) - li then set succ(N.i) = N, and

unmark ra and li. Create a reference point k between rj

and I i .

3. Let R], R2,'" ", It',,, be the iulervals determined hy tile ref

erence t)oiuts. For each l?i ('reatl, lists L(lli) and R(R_)

consisting of all the marked left and right terminals in R,.

.l. Create links belween corresponding terminal pairs in It'(/t'_)

and L(Ri+I). Unmark all those termimds thus linked and

merge intervals R2i-1 and R2i. P,epeat this step until only

one interval is left.

Lemma 1 [CJ]. The number of chains created by the above

algorithm is exactly d, where d is the channel density. This al-
n

gorithm can be implemented on a CREW-PRAM in time O(_ +

logn) with p processors, 1 _< p < n. []

The above chains are then modified in Algorithm 'Modify Chains'

[CJ] so that they have tile following property. Let ¢ be any col-

umn. Then either

1. c is empty, or

2. c contains only one entry terminal, or

3. e contains two entry terminals of nets Ni and Nj. Let

N_ =< c, bi >and Nj =< ta,c >. The following two cases

can then arise:

* If Ni has an exit terminal and Nj has an entry ter-

minal in c, then they both belong to the same chains

and one is a successor of the other.

• Suppose both Ni and N i exit at c. The other case

is dealt with similarly. Let N[ = suce(Ni) and N_ =

suce(Nj). Then they either have their entry terminals

on the same column or the column of N[ or Nj which

is closer to e has only one entry terminal.

We will now outline each of the main steps of our algorithm.

The algorithm below creates initial chains of nets in sets S_

and St which will be modified later to satisfy certain desired

properlies.

Algorithm Initial Chaining

Input: terminals /,'s and r,'s of all the fictitious nets N_, N_,

Output: two sets Su and St with each set containing a partition of

the fictitious nets into d chains, where d is the essential density.

1. Using algorithm Create-Chains outlined above, obtain d

chains where d is the essential channel density.

2. Duplicate tile d chains thus obtained into two sets S,, and

,5't each of which correspond to the upper and lower halls

of the channel. The chains in the two sets will be modified

independently later on to satisfy certain properties.

As an example consider tile general channel routing instance

shown in Figure 2. The chains produced are shown in Figure 3.

-,+ I,

_-@U¢ ¢ .0 , ,

rate**

Figure 2: An instance of a GCRP
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N1 _ NS-'-'I_ N1 0

N 2 _ N5"_4_ N1 1

N3 _ NT-_I_ Ng

N 4 _ N s

Figure 3: Chains created by Algorithm hfitial Chaining

Lemma 2. If there exists a column c containing an exit-terminal

Ni and an entry-terminal N 3, then N 3 is the successor of Ni ill

one of the chains. Property I will also be satisfied• D

The above chains can he used to wire all the nets in 2d tracks but

the corresponding layout may not be realizable in three layers.

So we have to modify the chains in both the sets S, and S_.

A column e, is said to be a terminoting column, if

1. c has an exit terminal of Ni, or

2. e is tile closest successor entry column of net Ni, and Ni

has exit termiuals in a cohmm _ whose stale = -J (see
-1

figu re below ).

M L J L M -[-

-1 F -I T ] F

c e c _ c

All other columns are said to he non-tcrminatin 9. We associate

the pair < c, .\', > to each terminating column, and refer to it

as a tcrmilmting pair. A terminating pair < c, N_ >, is said to

be an upper (lower) terminating pldr if

• Net N, has an exit terminal on the upper (lower) boundary

iU C or

• Ni lermiuates in c, and the successor of Ni is Su (oct) has

its first upper (lower) terminal in c.

To satisfy tile lhree layer wirabiliry, the chains in the sets Su

and 5) are modified so as to satisfy the following property:

Property 2. Let ci be any column. Then either

I. ci is non-tormillating, or

2. if ci is associated with a lower (upper) terminating pair

< ci, -Yi >, then either

a. the coluntn c', containil_g the first upper (lower) termi-

nal of N[ = suee(Ni), in 5;_, (.5"1) is non-terminating,

O r

b. column c'_ = column c,.

The follo_ing algorithm outlines how to modify the chains ocu

so that the above property hohts. For modifying the set St we

can essentially use the same algorilhln with the obvious modil'i- :

cat ions.

Algorithm Chain Modification

Input: state of columns and initial chain set S_.

Output: new set of chains S_ satisf.ving Property 2.

1. Ifa column has an upper exit terminal of a net Ni, and

is also the first upper terminal of the net, then delete ?(i,

from its chain in S_,, unless the column is of

stale = -]Ni

-3
.J_

2. Mark all columns of state(c) =
-3

_lNi

3. Now consider all columns of state(c) = _.iN i . Two cases
arise for such columns.

a. Column contains an upper telminal labeled Ni, which

is both the first as well as the last upper terminal.

Let _i = pred(Ni) in S,_. Modify S_ by setting the

succ(N,) = Ni and sncc(_ri) = ohlsuce(Nj). Let ci

be the column to the right of c such that ei contains

the closest entry terminal of succ(Ni) among its two

successors. Mark ei only if the entry terminal is a

lower terminal.

b. For the remaining columns of state(c) = -IN not

considered tn the previous step, we process as follows.

Let ci and c7 be the nearest columns to the right of

c, such :that they contain the entry terminals of the

successors of Ni and Nj. Mark these columns if the

entry terminals are the lower terminals.

4. For each marked column create an ordered pair < c,d >

where c_ contains the first upper terminal of N[ = suce(Ni)

and ?(i is the net which terminates in column c.

5. Group the pairs < c,c _ > into maximal groups < co, el >,

< Cl,C2 >, "",< ek,ck+l >. Let Ni denote the net which

ternfinates in column ci. Update the successors of these

nets by setting the new successor of N i to be the previous

successor of Ni-1 for all 0 < i _< k. In addition, set the

new successor of No to be the previous successor of N_:.

As an example consider the chains in Figure 3. The new set of

chains created by the above algorithm are shown in Figure 4.

NI_ N 8 N3 -_41b

N4-'--_ N3---_ N7"--"I_" Ng"_" NI 0 N4--"_

N2 --"t_ N 5 NI_

N6_ Nt 1 N2_

N 7 --"1_ N 9

N10

N 6

N 5 _N 1

S S
u I

Figure 4: Modified sets of chains

Lemma 3. Algorithm 'Chain Modification' modifies the chains

such that the new set of chains satisfies Property 2. Moreover the

algorithm runs ill O(_+logn) lime with p processors, 1 _< p _< n,
on the CREW-PRAM model. []

After having obtained the modified sets of chains we proceed to

do the wire layout details of which are left for the full paper.

The wire layout for our example is shown in Figure 5.
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Figure 5: Wire layout for the example

Theorem 1. Given an instance of a GCRP of essential

density d, it is possible to wire all the nets using 2d tracks in

time O(_ + logn) on a CREW-PRAM model with p processors,

1 < p < n, where n is the size of the input.

The wire layout produced by the above algorithm can be

laid out in three layers. [PL] provides necessary and sufficient

conditions for wiring a layout using three layers. The routing

produced by our algorithm satisfies the following property:

Property 3. Any column irrespective of its type will have at

most two knock-knees, with a diagonal \ on the bottom and a

diagonal / above it.

Using the wiring algorithm given in [CJ], we can realize the wire

layout produced by onr algorithm in three layers.

Theorem 2. Given an instance of a GCRP, it is possible

to determine a three-layer assignment of the routing, in time
O _(_ + logn) on a CREW-PRA.M model using p processors,

1 < p < n, where n is the size of the input. []

3. References

[CJ] Chang, S. and J. J_J£, " Parallel Algorithms for Chan-

nel Routing in the Knock-Knee Model," Proceedings of

the International Conference on Parallel Processing, 198S,

pp.18-25.

[delaT] de la Torre, P., "On parallelism and some generalisa-

tions of the line packing problem," Unpublished manuscript

1988.

[GK] Gao, S. and M.Kaufmann,"Channel Routing of Multi-

terminal Nets." Proc. of the 19th Ann. ACM Symposium

on Theory of Computing, pp.316-325, 1987.

[MI'] Melhorn, K. and F. Preparata, "Routing Through a

Rectangle," ,IACM, vol. 33(1), Jan. 1986, pp. 60-85.

IMPS] Melhorn, K., Preparata, F., and M. Sarrafzadeh, "

Channel Routing in Knock-Knee Mode: Simplified Algo-

rithms and Proofs," Mgorithmica, 1986, pp. 213-221.

[O] Ohtsuki, T., "Layout Design and Verification," Advances

in CAD for VLSI, vol. 4, North-llolland, 1986.

[P] R. Pinter, "River routing: methodology and analysis,"

Proceedings of the third CALTECII Conference on Very

Large Scale Integration, March 1983, pp. 141-163.

[PL] Preparata, F. and W. Lipski, "Optimal Three-Layer

Channel Routing," IEEE Trans. on Computers, C-33,

1984, pp. 427-437.

[RF] Rivest, R., and C. Fiduccia, " A Greedy Channel Router,"

Proceedings of the 19th Design Automation Conference,

1982, pp. 418-424.

[S] Sarrafzadeh, M., "Channel-Routing Problem in the Knock-

Knee Model is NP-Complete," IEEE Transactions on CAD,

vol. 6, 1987, pp. 503-506.

[SP] Sarrafzadeh, M., and F. Preparata, "Compact Channel

Routing of Multiterminal Nets," Annals of Discrete Math.,

no. 25, April 1987, pp. 255-279.

180



SPARSE MATRIX VECFOR MUIJTIPIJCATION ON PO1.YMORPlllC-TORUS

ttungwen Li

IBM Research

Almaden Research Center

650 Harry Road, CA 95120

Ming-Cheng Sheng
IBM Research

Thomas J. Watson Research Center

Yorktown tteights, NY 10598

ABSTRACT

A sparse matrix is a two-dimensional irregular static data

structure representing a wide class of physical and engineering
problems. Its solution for the massively parallel fine-grained
SIMD computers has not been as satisfactory as desired because
matching an irregular data structure to a fixed architecture

topology usually results a high percentage of idle processors hence
low system utilization. This paper describes a two-stage algorithm
for sparse matrix vector multiplication on the Polymorphic-torus,
a reconfigurable massively parallel fine-grain architecture, to dem-

onstrate how reconfigurability helps to alleviate the matching dif-
ficulty. The first stage of the algorithm is the structured
condensation which converts the irregular sparse matrix into a
more uniform and much denser data structure, while the second

stage demands the architecture to reconfigure itself to fit the con-
densed data structure. The algorithm highly increases the system
utilization of the SIMD machines and has a lower bound in

arithmetic operation count.

I. INTRODUCTION

Sparse matrix solving is an important problem for parallel
processing because it represents a very' large class of problems in
engineering and physical simulation applications that need tre-
mendous computing power.

As the name implies, the sparse matrix is of irregular
connectivity and therefore is not well-suited for SIMD parallel
processors with very regular topology (e.g. mesh and tree) because
many processors can he idle due to the mismatch of the matrix

connectivity and the hardware network topology. It is also felt that

sparse matrix solving is not suited for fine-grained SlMD parallel
processors with very simple (eg. bit-serial) At Us because floating
point operations are usually needed to maintain the numerical

stability and tloating-point operations incur high cost for bit-serial

processors. Computers in this category includes DAP [1], MPP
[2], the Connection Machine [3] and the Polymrophic-torus
[4-6].

There are, however, two major reasons to study the sparse

matrix solving on massively parallel fine-grained SIMD process-
ors: first, the size of the matrix is ever increasing, which demands
parallel processing even more, and, second, the advance of the

VI SI technology allows the integration of several hundreds of
bit-serial processors in a single chip, which makes fine-grained

parallel processing more cost-effective. Although the problem size
and the integration size tend to push toward a direction in favor
of the fine-grained parallel processors, they, unfortunately, also

push the degree of the mismatch between the sparse connectivity
and the interconnection network at the same proporli.on. The
mismatch problem remains a hurdle.

In a related prior work on I)AP [7, _], the worst-case com-
plexity of multiplying an nxn matrix with a dense vector of length
n on a NxN processor array is O((n/N)a). 1"his result can be im-

proved by the reconfigurability provided by the Polymorphic-
torus architecture in two approaches: (1) the connectivity of the

sparse matrix can be converted to fit the architecture, and (2) the

architecture can reconfigure itself to fit the sparse connectivity.

This paper deals with both approaches and advocates a combina-
tion of both to deliver the best result.

2. POLYMORPHIC-TORUS ARCHITECTURE

The polymorphic-torus [4, 5] is a VLSl-oriented massively
parallel fine-grained SIMD architecture with a two-level intercon-

nection network. In a N2-processor Polymrophic-torus system,
processors are physically arranged as an NxN two-dimensional

torus with each processor located in the coordinate [pidx, pidy]
where l<pidx, pidy<N. Usually, N is taken as a power of 2 for
the sake of control simplicity. A second level of switches is woven
intimately with the torus at each node (Figure I) to facilitate effi-
cient graph matching with very low wiring complexity.

Such a two-level approach for connecting allows the K phys-
ical ports of each processor be wired statically by one network

(e.g. the torus in this case) and dynamically by programming a
second network (e.g. a crossbar switch in this case). By system-
atically selecting the active proces_rs and arranging the switches

of the second network, efficient graph matching can be derived.
We called this methodology the polymorphic concept.

The polymorphic methodology is a form of reconfiguration;

however, it emphasizes that the switch setting of the second net-
work is a function of the local condition of each processor. A
conditional short-circuit function is uniformly provided for the
switches of the second network in each processor. This fimction
is represented as

IF (condilion) TIIEN SttORTPORT { ports}.

When the condition is met, any arbitrary, ports of a processor can
be logically wired together by the switch as if they are a sil;glc
entity at the same logic level. For example, the processor selecd,,r,
and the switch setting shown below

IF (pidx= 0) TILES SHORTPORT {E, W};

creates a bus along the 0-th row of processors where pidx ?, lhc
row coordinate of a processor. Thus, a variable in any proce_.¢or,
say processor [0, fl], can be broadcast to all others in the mw
along the bus.

Each processor of the Polymorphic-torus is equipped with a
large amount of memory not only for data storage bul also tor

extending the connectivity of the architecture. The memory is
segmented into layers, each of which is in fact a replication of the
same processor connectivity as the most front layer. When the

problem size (e.g. matrix size) is larger than the processor array
size, more layers are used to represent the problem Using the
memory, we can create more virtual processors than N 2 and each
virtual processor carries a virtual coordinate [layer number, pidx,
pidy].

3. STRUCTURED CONDENSATION

This section describes a sparse matrix representation in Section

3.1 and a condensation algorithm in Section 3.2 to convert the
representation into a format better suited for the Polymorphic-
torus.

3.1 Sparse Matrix Representation

Traditionally, a sparse matrix is represented by three arrays:
(1) an Element array, E, which holds the values of the nonzero

CH2649-2/89/0000/0181501.00 © 1988 IEEE
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entriesof the matrix; (2) a Row Pointer array, RP, and (3) a

Column Index array, C1; the latter two arrays store the
connectivity of the sparse matrix.

The construction of the three arrays can be illustrated in Figure

2. The element array E is built by manning in a row-major order
but only the nonzero entries are recorded. For a matrix with n

rows, the RP array contains n+ i items in which the i-th item
points to the position of the first nonzero entry of the i-th row in
the E array. The n + I-th item which is one greater than the
number of nonzero entries in the matrix is regarded as a delimiter.

For example, the third item in RP (i.e 4) points to the 4-th item
in array E (i.e. 4.0) which is the first nonzero entry of the third
row. The CI array has as many items as the E array and each item
contains the column position of the corresponding element in the
array E. For example, the column position of 4.0 is 3.

3.2 Condcnsaflo, Algorithm

The purpose of the Condensation algorithm is to convert the
representation of the sparse matrix to a format better suited for the
Polymorphic-torus. In specific, the goals are

(I) to assign only the nonzero entires of the matrix to processors
so that the converted format is denser and the utilization of the

SIMD system can be increased;

(2) to preserve the connectivity of the sparse matrix; and

(3) to related the RP and CI arrays to the virtual coordinate of the
processors (i.e. [layer, pidx, pidy]) in the Polymorphic-torus.

The above algorithm consists of two phases. In the first phase,

the RP array is checked to determine the length of a logical row
(i.e. row_size). Due to the sparsity, the number of nonzero entries
in a row of the sparse matrix is usually small. Therefore, multiple
matrix rows can be bound to a single processor row, to obtain a
denser data structure. Furthermore, the length of a logical row is

always chosen to be a power of 2 to simplify the control. Figure
3 depicts the multiple-row binding.

CONDENSATION(RP, E, N)
int RP[],N; _' N: side size of processor array */
float Eft;
{

int i=O: /* dummy variable */
int row-O; /* total no. of rows in the matrix *[
int max=0; /* maximum length of row in the matrix */
int row size,=l; I* size of a logical row */
int pointer=l; /* pointer to the beginning of next row */
int counter=-1; /* counter of elements in array E */
int layer=0, pidx=0, pidy---0; _' virtual coordinate */
struct quadruple {/* data structure of mapping form */

float element;/* nonzero value and virtual coordinate */
int layer, pidx, pidy; }

quadruple mapping[];
boolean start;/* flag used to indicate the starting of a logical row */
/* Phase 1 */ _ check RP array to count the no. of rows and
determine the maximum length of row */
while (RP[i] !=NULL) {

if ((RP[i]-RP[i-I]) > max)
{ max=RP[i]-RP[i-l]; }

i=i+l; }
row=i;

if (max > N') exit(); _' row lentgth larger than array size, exception */
/* Determine the size ofa Iogzcal row */
/* for malrix side size greater than processor an'ay side size: */
/* Try to map multiple matrix row into a processor row. */
if (row > IV)[

while ( rowsize < max ) { row_siz_row_size*2;) }
/* for matrix side size smaller than and equal to processor array side
size */
else { row siz¢= N; ]
/* Phase 2 *//* read Element array and determine the coordinate
of binding processor */
i=O;
While (E[iI!=NULL) {

/* binding element */
mapping[i].element=E[i];
mapping[i] .layer=layer;
mapping [i] .pidx--pidx;
mapping[i+ +].pidy=pidy;
if (+ +counter=- =RP[pointer]) {/* beginning of a new logical row */

start=TRUE;/* binding a new logical row below */
while ( start II(RP[pointer]= =RP[pointer+ 1])){
/* while loop also detects empty rows */

pidy=((pidy/mw size)+ 1)*row_size;
if (pidy > = N) { f* jump to a new physical row */

pidx=pidx+ 1;
/* folding to next layer while fills up a array plane */
if (pidx= =N) [ pidx=0; layer+ + ; }
pidy=ff, }

start=FALSE; pointer+ + ; ) ]
else{ pidy+ + ; }

]
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The second phase of the algorithm calculates the virtual

processor coordinate for each element in the E array. An example
of this calculation is shown in Figure 4, which uses the matrix in
Figure 2 as input. For example, the first element is bound to

processor [0, 0, 0] (layer= 0, pidx = 0, pidy = 0). A "counter" is
increased to cheek whether the next element belongs to a new

matrix row. If not (i.e. the case of both 2nd and 3rd elements),

"pidy" is increased while layer" and "pidx _ remain unchanged.
When a new matrix row begins (i.e. 4th element), decision is made
whether a new processor row needs to be started. If yes, "pidx" is
increased to reflect the binding. This process continues until one

layer is completely fdled then layer" is increased so that a second
layer of memory is needed as a virtual processor array. For sim-
plicity, the algorithm listing handles only the single-layer situation.

Although simple, the condensation algorithm is powerful and
delivers denser result than the method in DAP [7]. in compar-

ison, the condensation algorithm "squeezes" the matrix in the

"pidy" direction while the method in DAP [7] squeezes the matrix
in the direction of layer'. The difference in the condensation

philosophy lies in the difference in the architectural support. For
DAP, to fully utilize the row/column highway capability, the
placement of a non-zero element is con£med to both row and
column directions. For the Polymorphic-torus, the "short-circuit"

capability allows us to move the non-zero elements more freely.
With more freedom in moving the non-zero elements, the
condensation algorithm yields a denser matrix, which leads to a

higher utilization of the SIMD system.

4. CONDENSED MATRIX VECTOR MULTIPLICATION
ALGORITHM

One advantage of the condensation algorithm is that the non-
zero entries in the same row of the matrix are bound into the same

row of the polymorphic-torus. By embedding a sum tree for each

matrix row in the Polymorphie-torus [4, 5], the summation of the
product terms from row/vector multiplication can be performed
in an optimal logarithmic time. The other advantage is that a
global bus can be formed among all processors so that variables
(e.g., the vector elements) can be broadcasted in a unit time.

The purpose of this algorithm is to compute X' = AX, where
A is a condensed nxn sparse matrix with nonzero entries au con-
tained in the E array and column index j in the CI array;X is a"

nxl vector containing xj and X' is the updated X. Iterative
methods are used for sobTmg and the inputs to this algorithm are
(I) the size of the logical row,

(2) initial guess ofxp with xjs located at the first locations of each
logicalrow;

(3) the element array, EL], bound to processor [layer, pidx, pidy]
according to the condensation algorithm; and

(4) the column index array, CI[], distributed in the same way as
the E array.

Condensed Matrix Vector Multipllcation(n_.ci,row_size,x)
int row_size, n; /* s_e of lo_cal mw and side size of matrix */

int ci; _' column index of aij distributed as described */
float&x; I* aijandxj*/

(
int i; /* dummy variable */
int x_index=0, y_index=0; p index of l_Ocessor which broadcasts zj */

int distance=l; /* relative distance used in logarithm tree sum */
boolean bteml_TRUE; /* TRUE while holds a partial sum */
float ftemp;

/* Phase 1: Distribute xj "1
for(i--l; i < =n; i+ +){

SYNC {/* global synchronization */
if (ci- --i) {/* check column index to determine whether to receive
x */

/* get x from the first processor in the i-th logical row */
ftemp=x of [x_index, y_index]; }

{
/* up to beginning of next logical row */
y_index=yindex + row_size;
if (y_index> = N)[y_index=o; x_index=x_index + !; }

)
/* Phase 2: Multiplication "1
x=a*ftemp;
/* Phase 3: Summation by tree sum */
for (i=0; i <log row size; i+ +){

SYNC {/* giobaq synchronization */
/* accumulate partial sum by left sibling */
if ( btemp && (pidy[i]= ,,4))) [ _' ccheck the i-th bit of pidy */

x---x+x of [pidx, pidy + distance]; }
}
else{

btemp=FALSE; }
distance=distance*2; }/* increase distance for higher level */
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the output of the algorithm is the updated x p for the next it-
eration in a complete matrix solving. Furthermore, the new xls are

in the same place as the old xjs.

The complexity of the algorithm can be analyzed in accord-
ance with the three phases of the algorithm as follows. In the first

phase, the distribution phase, the variables x/in the dense vector,
are broadcast in sequence to processors that hold all. This phase

needs O(n) steps for an nxn matrix. Note that aglobal bus is
configured for the broadcasting, and the sender to and the receiv-
ers from the bus are determined simultaneously and locally in each

processor by using the Column Index (CI) bound to each
processor at the condensation stage. In the second pha_, a
floating-point multiplication is performed locally in every

prncessor to produce a product; this takes one floating-point
multiplication step. Finally, in the third phase, new x;s are ob-
tained by accumulating the corresponding partial prodticts. This

third phase takes O(log(logical_row size) ) floating-point addition
steps because all corresponding partial products for each x i are
allocated in the same processor row by the condensation algo-
rithm and furthermore n sum trees (one for each condensed matrix

row) can be embedded simultaneously in the Polymorphic-toms.
For simplicity, only the single-layer case is handled by the above
algurithrn. When multiple layers are presented, the complexity is

in proportion to the number of layers.

The speedup of the algorithm is contributed by the capability
of rcconfiguring a global bus and many sum trees adaptive to the

size of the matrix row after the condensation. In fact, the recon-

figuration required in the sparse matrix vector multiplication is
dynamic and dependent heavily on the local conditions. The

polymorphie feature strongly emphasizes such a local and data-
dependent reconfiguration. It is therefore understood that the

speedup is attributed partially to the dynamic recortfigurability and
partially to the condensation. The merit of this two-stage ap-
proach is discussed further in the next section.

5. DISCUSSIONS

5.1 Higher Density

The condensation process converts the sparse matrix into a
dense data structure whose density implies low number of idle

processors and high system util_ation. Furthermore, it allows a
larger matrix to be solved in a small processor array.

Compared with the layer-oriented condensation used in DAP
[7], our condensation method packs matrix along pidy-direction
(or row direction) and gives higher density. In fact, it is extremely
difficult, if not impossible, for the layer-oriented condensation to

yield a full matrix. The layer-oriented method used in DAP can
be used in the Polymrophic-torus because the column#ow
broadcasting capability is supported both in DAP and the

Polymorphic-torus as discussed. Vice versa, our condensation al-
gorithm is applicable to the PAP architecture, however the effi-
ciency will be lower because the PAP lacks the capability of
embedding simultaneous sum trees. In summary, the
condensation results in higher density but requires a corresponding

reconfigalrability for the best speedup.

5.2 Polymorphic

The choice of condensing a sparse matrix along the row di-
rectlon is driven by the polymorphic feature of the Polymrophic-
torus, namely, multiple sum trees can be formed adaptively to the
condensed matrix rows for a logarithmic-time summation and a

global bus can be formed with a unit broadcast time. Contrasted
with MPP, the polymorphic feature is superior in the following

aspects:

(I) the complexity of the broadcasting phase for MPP is O(n*N)
if the new xts are circulated within the array and is O(n) + T if the

xjs are circu'lated via the central controller, where T is the time to
movc the entire matrix through the staging memory. In the latter
case, T becomes the dominating factor;

(2) the complexity of the summation phase of MPI' is

()(logical row size) in comparison with O(Iog(Iogieal row size))
of the Polymorphic-torus.

Aspects (1) and (2) also reveal the value of the polymorphic fea-

ture added to the plain mesh network.

The algorithm for the Polymrophle-torus is also applicable to
MPP and can increase its its system utilization due to the high

density achieved by the condensation, Compared with the
worst-case arithmetic operation count O((n/N)) of PAP, the
arithmetic operation count for the polymorphic-torus (O(1) for

multiplication and O(Iog(logical row size)) for addition) produce
a faster solver, llowever, our O(n) cost in the broadcasting phase
may be inferior to that of PAP (O((n/N)t)) for a large N. Nev-
ertheless, considering the relative low broadcasting cost to the cost

of the floating-point operation (e.g. 1:9 in DAP), our algorithm
is more suitable for bit-serial SIMD machines that incur a high
arithmetic cost.

5.3 Ideal Architecture

It is appropriate to ask what is the ideal SIMD architecture
and algorithm for the sparse matrix vector multiplication. We
expect the algorithm/architecture mapping to bear the following
features:

(1) a matrix row is mapped onto a group of processors that can
be structured as a tree;

(2) a matrix column is mapped onto in a group of processors that
can be structured as a bus; and

(3) the condensed structure is full.
Such a mapping then allows for a O(1) broadcast, a O(I) multi-
plication and a O(Iog(row_size)) summation, which is the lowest

complexity of the sparse matrix vector multiplication. Moreover,
there is no idle processor in the SIMD system. Such an ideal
mapping remains as an open research topic.

6. CONC1.USION

We have presented a sparse matrix vector multiplication algo-

rithm on the Polymorphic-torus, a reconfignrable massively par-
allel fine-grained SIMD architecture. We emphasized in the paper
how reconfigurability, or the polymorphic feature, can help to
match the sparse connectivity onto a regular network topology.

We advocate a two-stage approach.

The first stage, the condensation process, is an algorithm that
converts the sparse connectivity into a more uniform data struc-

ture suitable for the topology of the polymrophic-torus. More
specifically, many matrix rows can be packed into a processor row
such that there are fewer idle processors and the system utilization
is higher.

The second stage performs the condensed matrix vector mul-
tiplication. This second stage requires the Polymrophic-torus to
reconfigure itself to match the condensed data structure resulted

from the first stage. The polymorphic feature allows all multipli-
cations be done in unit time while the summation is done in log-
arithmic time, which is optimal.

The condensation algorithm is applicable to other SIMI) ma-
chines such as DAP or MPP. When applied to MPP, the utiliza-
tion of MPP is higher due to the higher density achieved by the
condensation. For its application to I)AP, thcre can be no im-

provement because the DAP lacks the requircd companion
reconfigurability and the condensation algorithm does not effec-
tively use DAP's capability in row/column broadcast.

In a more general view, what has been exploited in this paper
is a methodology of mapping a static irregular task graph into a
massively parallel fine-grained SIMD architccturc with regular
network topology. We feel that it is difficult either to demand the

algorithm designer and/or compiler to translate the sparse
connectivity directly down to the nctwork or to demand the ar-
chitecture to reeonfigure itself to match the irregular task graph.

Rather, we advocate that the mapping process be done in a com-
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promisedway,i.e.,the irregular task graph is converted to a more
uniform one while the architecture is given more reconflgurability

to meet the converted task graph.
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Figure I. Two-level lnterconnection Network of the Polymrophic-Torus

L 0.0 1.0 0.0 0.0 2.0 0.0 0.0 0.0

3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 4.0 0.0 0.0 5.0 0.0 0.0
0.0 6.0 0.0 7.0 0.0 0.0 0.0 0.0

A- 0.0 0.0 0.0 8.0 0.0 0.0 0.0 0.0

0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 2.0 0.0 3.0

Row pointer] Colunm Index rcprescnlatl,m:
Elemenl array: F,[ ] = 1.0. 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 1.0, 2.0, 3.0;
Row pointer array: RPC] ffi I, 3, 4, 6, g, 9, 10, 11, 13;
Coloumn index array: CI[] = 2, 5, I, 3, 6, 2, 4, 4, 2, 7, 6, 8:

Figure • Saprse Matrix Representation.
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0 1.0 1 0 0 2.0 0 0 0

3.0 o [ o o 0 o o o

0 0 14.o 0 o s.o 0 o
t

0 6.0 0 7.0 0 0 0 0
{

0 0 I0 8.0 0 0 0 0

0 9.0 o 0 0 0 0 0

0 0 0 0 0 0 1.0 o

0 0 0 0 0 2.0 0 3.0

(a) a 8x8 sparse ma',fix with maximum row lenglh equal to 2 (max= 2).

1.0 2.0 0 0 0 0 0 0

3.0 0 0 0 0 0 0 0

4.0 5.0 0 0 0 0 0 0

6.0 7.0 0 0 0 0 0 0

8.0 o O o o o 0 0

9.00 O 0 O 0 O O

I,O o 0 o o o o o

2.0 3.0 0 0 0 0 0 0

(b) matrix is adjusted in row direction and row size = 2 is determined.

1.0 2.0 3.0

4.0 5.0 6.0 7.(_

R.O 9.(I

, 1,0 2.0 3.0

(C) mapped into a 4x4 array, two logical row,_ are bmmd to a array row.

1:igurc 3. Ilmding of Multiple I _gical Ro_s.

N = 4; l* 4x4 array */
max = 2; /* maximum lenglh of row */
row=8; /'no. of row*/

row size= 2; 1" size of logical row 'hi

i 0 I 2 3 4' S 6 7 fi 9 I0 11

Eli] IO 20 3.0 40 SO 60 75 8.0 9.0 I.O 2.0 3.0

pointer 1 I 2 3 3 4 4 S 6 7 8 8

R P[pointer] 3 3 4 6 6 8 8 9 10 II 13 13

counlcr 1 2 3 4 5 6 7 8 9 10 11 12

layer 0 0 O 0 0 0 O 0 0 0 0 0

pidy 0 I 2 0 I 2 3 " 0 2 0 2 3

p!dx 0 0 0 1 I I 1 2 2 3 3 3

Figure _, Execution Snapsho! of Matrix in Figure.,_.
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ALMOST LINEAR SPEED-UP

OF DISTRIBUTED DISCRETE EVENT SIMULATIONS

Boris D. Lubachevsky
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Murray Hill, New Jersey 07974

ABSTRACT
As yet the problem of distributed discrete event simulation has
found no commonly accepted solution. The paper presents a
new distributed simulation algorithm which explores the
topology of the simulated system using precomputed minimum
propagation delays between subsystems. The algorithm also
uses opaque periods which are the delays caused by the non-
preemptive states these subsystems can enter. The algorithm
provably achieves O(N/logN) speed-up when run on an
appropriate physically realizable N-processor parallel computer.
No other algorithm for distributed discrete event simulation has
been theoretically shown to achieve this level of efficiency.
Experiments show speed-ups of greater than 20 on 25
processors of a shared memory MIMD computer and greater
than 1900 on 2 TM processors of a SIMD computer.

1. INTRODUCTION

The goal of simulation is to reconstruct the time history
of a system under investigation. Efficiency in a serial discrete
event simulation means an efficient implementation of a priority
queue, which is a well studied problem. In contrast, it is not
known how to design and validate an efficient distributed
discrete event simulation algorithm in the general case.

Several approaches have been proposed for the problem
including Time Warp [5], Deadlock Detection]Resolution [1],
Deadlock Avoidance [4] and other techniques [11,10].
However not much is proven about these algorithms. The few
empirical investigations on today's small parallel processors [2,
3, 12[ do not unquestionably confirm their efficiency and
sealability.

We argue that in order for a distributed discrete event
simulation to be efficient, the topology of the simulated system
should be explored. A new algorithm is presented which
employs precomputed minimum propagation delays between
subsystems and the opaque periods which arc the delays caused
by the non-preemptive states these subsystems can enter. It is
proven that on an appropriate physically realizable parallel
processor the algorithm achieves almost linear speed-up for a
large class of simulations. Specifically, it is shown that if N
processing elements (PEs) execute the proposed simulation
algorithm in parallel, and if the simulated system exhibits
sufficiently many events, then, on average, processing one
event requires the O(logN) instructions of one PE. This implies
a O(N/logN) speed-up for a stationary event stream.

The practical efficiency of the proposed algorithm is
shown by simulating several examples, in particular,
asynchronous multiple-loop queuing networks, a task which is
usually considered difficult for parallel programming.
Experiments on a shared memory MIMD bus computer
(Sequent's Balance) and on a SIMD computer (Connection
Machine) show speed-ups of greater than 16 on 25 PEs of a
Balance, and greater than 1900 on 214 PEs of a Connection
Machine.

In [6, 7, 8] examples of application of an earlier version
of the algorithm were described. This paper presents new
examples, an improved formulation of the algorithm, and its
efficiency proof.

2. EXAMPLES

Four examples are considered: 1) a queuing system, 2) an
Ising model, 3) a timed logic simulation, and 4) billiards. In
the first three examples, the discrete events occur in a fixed
network, which is an nx n grid on a torus in examples 1 and 2.
In example 4, events occur in random space locations.

A queuing system. A node of the network is a server
with an attached input queue buffer of infinite capacity. An
idling server is constantly trying to change its status to serving
by removing a job from the input buffer and starting scrvice.
The service durations can be deterministic or random. Their
distributions are arbitrary except that the durations are bounded
from below by c_ time units, er > 0. When the service is
completed, the job is either deleted from the system or sent into
the input queue of one of the four neighboring .servers. After a
job is served, the server assumcs an idling status if no more
jobs remain in its input queue or, if at least one job is left in
the input queue, the server removcs one job from the queue
and resumes a serving status.

Asynchronous Ising model. Each node hosts a physical
atom. The atom at node i has a magnetic spin s(i): s(i) = + 1
or s(i)= - 1. The spins attempt to change at asynchronous,
discrete, and random timcs. Attempted spin change arrivals for
a particular atom form a Poisson point process. Arrivals for
different atoms are indcpcndent, the arrival rate is the same for
each atom.

When an attempt arrives, the new spin is dctcrmincd,
using the spin values of the given atom and the ncighboring
atoms just before the update time. A random "coin tossing"
may also be involved in the determination.

Well-known among physicists is the Monte-Carlo
algorithm [9] for Ising simulations. In this algorithm, spins are
chosen for update in a serial order. Algorithm I9] is
traditionally believed to be inherently serial. Contrary to this
belief, our algorithm is an exact and efficient parallel
countcrpart to [91.

Timed logic simulation. A logic element has scvcraI
inputs and several outputs. A network of such elemcms is
considered in which, except for several external inputs and
outputs, each element input is an output of another clement.
At each time each input or output has a signal value of 0 or 1,
the signals of all outputs of a given element are the same and
rqay only change simultaneously. The changes, if they occur.
arc instantaneous and are identified with the discrete events. If
the value of an input to an element changes at time t, then thc
values of all outputs at time t + delay may change according to
a specified law, e.g. according to the logical function the
element represents. Here delay is a positive value specified for
each element before the simulation. A complication of the
model is that the delays can be different not only for different
elements, but also for different changes, e.g. the "rise" dclay,
when output changes from 0 to 1 may be smaller than the "fall"
delay when the output changes from 1 to 0. As a result, a
change in an output scheduled by a change in an input may be
canceled later when another input change arrives.

Billiards. Identical balls are moving on a surface of a
"orus. Ball collisions are the events. The two velocities after a
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collisionareeasilycomputedgiventhe two velocities before the
collision, assuming no change in total momentum and energy.
The billiards simulation is an easily understandable prototype
for many important simulation problems, e.g. simulation of
hard-sphere molecular dynamics in statisticaL physics.

3. ALGORITHM

In a simple form of the algorithm, a server, atom, logic
element, or square on the billiards space is represented by a
separate PE. PEi maintains the pool of tentative local events Hi.
Each event e E H i is a pair e = (contents, time). PEi
processes its events one at a time, during which it modifies its
own pool Hi, and/or the pools l-Ij of its neighbors (in the
simulated network).

For the queuing network, it can be shown that the
positive lower bound o on the service times induces the positive
minimum propagation delays and that opaque periods
correspond to service periods which can not be preempted by
other activities.

In the lsing model example, the minimum propagation
delays are zero. However, it has been shown [7] that
substantial opaque periods do exist and these make possible
efficient parallel simulations.

In the timed logic simulations, the minimum propagation
delays are well defined, but determining the opaque periods is
somewhat different from the previous two cases. For example,
an OR-gate with the signal 1 at one input is guaranteed to
remain opaque until this input changes.

In the billiards simulation, opaque periods do not exist
while the minimum propagation delay requires the assumption
that there is a speed limit for the balls. If v is the average ball
speed, and n is the number of balls, then the exact upper speed
limit is vn '_. If the number of balls is not specified no fixed
speed limit can be guaranteed. But because the tail probability
of large speeds is very small, the algorithm which relies on the
assumption that speed limit is a constant, say Cv with a suitably
large C, would be broken rarely. A simple check-point
technique works when it breaks: the speed limit is adjusted, and

the simulation is repeated starting with the latest check point.

Figure 3.1. An algorithm for distributed discrete event simulation

1. while floor < end time do {
2. compute estimate cx(i) of the earliest time, when the history

at node i can be affected by the other nodes ;

3. synchronize ;
4. while the minimum of event times at node i, 7",.,satisfy

T, <_ floor + B and T i < (z(i) do {
5. process events e with locally minimal time, Ti ;

if required, schedule new events for I_ or other FIj

and/or delete some events from _ or other FIj;
6. delete the processed events from

and compute new Ti ;

};
7. synchronize ;

8. floor := min Ti ; broadcast floor to all nodes ;
1_ iK N

9. synchronize ;

}

A form of a general algorithm which uses both the minimum
propagation delays and the opaque periods is shown in Fig.3.1.
Observe that the algorithm is synchronous while the simulated
system may exhibit events asynchronously. The algorithm uses
the minimum propagation delays in tandem with the bounded
lag restriction. The latter means that the difference in the
simulated time between the events processed concurrently must
not exceed a predetermined positive constant, say, B. Initially
floor = 0. Each PEi is supposed to execute the program in
Fig.3.1 on behalf of its node, i.

If the number of available PEs is less than the number of

nodes, one PE may be assigned several nodes. In this case,
whenever the algorithm prescribes independent actions by
different nodes, a PE takes the nodes it carries in turn and
performs the actions in turn. For example, to process events
(Steps 4, 5, and 6), a PE takes an i, processes events in Fll and
modifies Ti as long as conditions in Step 4 are met; then the PE
takes next i, etc. When the PE exhausts all i in its subnetwork,
it invokes synchronization, Step 7. Synchronization,
minimization in Step 8 and some other actions require
cooperation among the PEs. A way to implement such
cooperative actions is described in Sec.4.

We suggest two methods for computing estimates et(i).
One method uses formula

(3.1) or(i)= min {d(j,i)+ min{Tj, d(i,j) + Ti } },
) _ s*(i.B))

j_i

where d(i,j) is the minimum propagation delay from node i to
node j, and SI(i,B) is the incoming reachability sphere of
radius B, i.e. the set of nodes j such that d(j,i) <- B. Note
that delay d(i,j) must be precomputed so that the triangle
inequality

(3.2) d(i,j) + d(j,k) > d(i,k)

holds for any three nodes i, j, and k.

According to (3.1), each node i computes its a(i)
independently of the other nodes. A different method to

compute ct(i), wherein different nodes and the PEs carrying
them cooperate, is presented in Fig.3.2. Here a(i) are updated
in several iterations cooperatively by all PEs.

Figure 3.2. Dynamic algorithm for computing a(i)

2.1. a(i) := +oo; _(i) := Ti;
MIN__ := floor ; a_CHANGED := 1 ;

2.2. synchronize ;
2.3. while MIN__ < floor + B and oc CHANGED= 1 do {
2.4. new__(i) := min {d(j,i-) + _(j)} ;

J _ neighbors (i)

2.5. if(new_[3(i) < a_i_)i{
changed_c_(i) := 1;
a(i) := new__3(i);

} else changed_a(i) := 0 ;
2.6. synchronize ;
2.7. _(i) := new _(i);

2.8. MIN__ := lminN 13(i) :

a CHANGED := max changed ct(i) ;
-- 1_ i-< N

broadcast cxCHANGED and MIN__ to all nodes ;
2.9. synchronize ;

The convention for interpreting the code in Fig.3.2 is the
same as for the code in Fig.3.1: For each step between
synchronizations, a PE executes a loop over all nodes i within
its subnetwork. Auxiliary variables f_(i), changed_a(i), and
new 13(i) are employed by the algorithm. After k iterations
13(i)-becomes an estimate for the earliest time when existing
events can affect node i after traversing exactly k links in the
graph.

4. O(LOG K)-TIME, O(K)-SPACE TREE ALGORITHMS

For synchronization barriers, [6] suggests the use of a
binary tree implemented in hardware. On a shared-memory
parallel computer we can implement the barrier using a
pointer-tree in the shared memory. Fig.4.1 presents the C-
language code of the barrier routine.

The idea of the algorithm is simple. Let K be the number
of PEs. Each PE must have its individual identification peid
in the range 0 to K- 1 and must invoke the routine with this
identification. Let us first assume that K is a natural power of
2. The algorithm works in tours. At the first tour the K PEs
form K/2 pairs, each pair electing a winner for the second tour.
At the second tour the K/2 winners form K/4 pairs and so on
until after logzK tours one winner remains. The way of pairing
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PEs is predetermined, and so is the winner in each pair. The
final winner signals the end of algorithm by changing
flag[ROOT][turn]. All the PEs can see this flag changed. If K
is not a natural power of 2, then the tree has
[K/27 + [[Iq/2_/2_ + ..- + 2 + 1 nodes and some PEs at

some tours are without a companion. Pointer arrays
companion[ ] and next[ ] reflect the structure of the tree and
are initialized in the shared memory before the simulation starts
(the code of initialization routine is omitted). The case K = 9

is represented in Fig.4.2.

Figure 4.1. Barrier tree-synchronization

# define ROOT 19 /* for 9 PEs */

shared int flag[ROOT+ 1][21, companion[ROOT+ 1],
next[ROOT+ 1];

static int turn = 0;

void sync(pe_id)

int peid; /* pe_id is in the range 0 to 8 for 9 PEs */

{
int index;

index= pe id;

do {
fiag[index][turn] = 1 - flag[index][turn] ;
while

(flag[companion[index]][turn] != flag[index][turn]);
/* wait until

(fla_companion[index]][turn] = = flag[index][turn]); */

index = next[index];

} while(index);

/* index = 0 means the pe looses the tour */

while (flag[ROOT][turn] != fiag[pe_id][turn]);
/* wait until

(flag'(ROOT][turn] = = flag[pe_id][turn]); */
turn= l-turn;

}

Figure 4.2. The tree and the pointer arrays for 9 PEs

19
lff ''j/ 18

,/ l'6
/ xi'10 17"_12 II3

i 0 1 2 3 4 5 6 7 8 9

next[i] 9 0 10 0 11 0 12 0 13 14

companion[i] 1 0 3 2 5 4 7 6 8 10

i 10 11 12 13 14 15 16 17 i8 19

next[i] 0 15 0 16 17 0 18 19 0 0

companion[i] 9 12 ll 13 15 14 16 18 17 19

Array flag is initially zero. It then alternatively takes ox_
values 1 and 0 to signal arrival of PEs to synchronization point,
in the same time reinitializing itself before next invocation.
Variable turn also takes on values 0 and 1 pointing alternatively
to different copies of the array flag. Two copies of this array
are used instead of one to prevent a deadlock.

Note that the presented solution works efficiently for a
CREW (concurrent-read-exclusive-write) shared memory
parallel computer. It is easy to modify the code into an
efficient EREW version.

Clearly, this procedure takes time O(logK) and requires
memory space of O(K). These are asymptotically minimal
values for both parameters.

For minimization or maximization and broadcasting, [6]
suggests the use of the same hardware binary tree as for the
barrier, As for the barrier, the same software pointer-tree in
the shared memory can be used for these purposes.
5. EFFICIENCY PROOFS

It is assumed below that one node is carried by one PE,
so N = K. Similar argument applies for the cases where there
are fewer PEs than nodes N, provided that the maximal number

of nodes per PE is O(1) when N --_ oo A key property which
assures the efficiency of the algorithm is:

(#) sphere S_(i,B) contains only a finite number of
nodes, finitely bounded from above independently of N

Thus, we can not efficiently simulate, say, a fully connected
network, with small propagation delays between any pair of
nodes. On the other hand, the simulations in which events
occur is a space of a low dimension with substantial propagation
delays between distant nodes, are feasible, Using (#) and
other mild assumptions, we show that each PE spends O(1) at
each iteration, not counting synchronizations, computing, and
broadcasting the minimum in Step 8. The latter requires
O(logN) instructions per each PE. Enough "distributability" of
the activity in the simulated system is required for the
simulation to be efficient. We impose a mild assumption on the
event density which requires that on average at an iteration

(# #) O(N) nodes have events withinthe processing range [floor, floor+ B]

To violate (##) the system should exhibit a low activity, in
which case the available parallelism should be small, and no
parallel algorithm can be efficient.

Using (##) and some other mild assumptions, it is
proven that O(N) nodes are processed at each iteration on
average. Hence, on average, O(logN) instructions of one PE is
spent for processing one event.

A disadvantage of the computation by formula (3.1) is
that it does not involve opaque periods. Another more efficient
algorithm for computing c_(i) which uses both the minimum
propagation delays and the opaque periods is presented in (8].

The latter method is used in the Ising model simulations.
In this example, since the minimum propagation delays are
zero, the efficiency proof outlined above is not valid. The
framework for the efficiency evaluation in the Ising model can
be explained in the form of the following easily understandable
"salary upgrade" scheme:

Once a year the employees of a company are asked to sit
around a table, each year in the same locations along the table.
An employee receives a salary raise, if his/her previous salary
does not exceed the minimum of the previous salaries of his/her
neighbors at the table. Otherwise, the salary remains the same.
The amounts of the raises are independent identically
distributed positive random variables. How many raises will
there be per year on average?

The salary represents the simulated time, a raise
corresponds to an event processing and advanccmcnt of
simulated time, and the form of the table represents the
network topology. (A round table corresponds to a cyc/ic
network.) Thus, more salary raises mean a more efficient
algorithm. Specifically, if for N employees, there are > cN
raises on average, where c> 0 is independent of N, then
ignoring the logN degradation caused by synchronization, the
algorithm exhibits a linear speed-up with efficiency of at least
100c%.

To prove that such a positive c exists appears to be a
difficult task. Empirical evaluation suggests that c _.25 for
exponentially distributed raises (the case in the Ising model) if
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thetopologyis circularandN--9+ oo. It is also known
empirically that when the dimension of the graph increases, c
decreases, roughly in inverse proportion to the dimension.

Proofs of efficiency for the considered algorithms pose
several purely mathematical questions, which are as yet without
answers,

6. EXPERIMENTS

We try to keep constant the event density by keeping the same
density of "sources", and the same parameters of probabilistic
rules for job movements and eliminations. Specifically, 1
source is maintained in each 4× 4 square, and, after the service,
a job is equiprobably sent in 4 possible directions, unless it
disappears which happens with probability p = 1/10. This
results in that the fraction of nodes with events is in the range
0.51 to 0.59. The service duration has the exponential
distribution of mean 1 which is shifted by 1 in the positive
direction (so its mean value becomes 2 and o, the lower bound
on the service times, is I). The lag bound B is 4. We run the
simulation from 0 until the floor reaches 200 simulated time
units. The system reaches an equilibrium during the first 100
units, and all measurements are taken during the following
interval from 100 to 200.

We simulate a PM× PM queuing networks on K = p2

PEs. Fig.6.1 presents relative completion times for two series
of runs, with M = 4 in one series, and M = 16 in the other.
The variable in a series was P, P = 1,2,3,4, and 5. It is seen,
that while both curves rise with the problem size, most of the
increase occurs at smaller sizes. Fig.6.2 presents number of
iterations of the algorithm in Fig.3.1. At small sizes, the
number of iterations increases noticeably (see Fig.6,2), which is
the largest contributor to the completion time increase. For
larger sizes, the number of iterations stabilizes. In theory, the
number of iterations is O(1), i.e. it should remain roughly

constant for large sizes, which is exactly what the experiments
show, After this constant number of iterations is reached, the
main contributor in the completion time increase becomes the
execution times of synchronizations. This agrees with the fact
that the increase in both curves slows down at 16 PEs. 16,
being a natural power of 2, is a "good" number of participants
for the synchronization algorithm. One should expect similar
slow-downs for 64 PEs, 256 PEs etc. 4 is also a "good"
number, but its "good" influence is seemingly overshot by "bad"
influence of the small size.

Figure 6.1. Relative completion times for different simulation size_

2_
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time(K PEs)

time(1 PE) 4 x 4 nodes per PE _

p
/

s

16 x 16 nodes per PE

K, number of PEs
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Figure 6.2. Numbers of iterations for different simulation sizes
number of
iterations

50-

16 x 16 nodes per PE

"_ 4x 4nodesperPE

I I
4 9

K, number of PEs
1 I

16 25

Fig.6.3 presents the traditional self-speed-up computed as

speed-up (K PEs) = execution time for 1 PE
execution time for K PEs'

where the same code executed with different numbers of PEs
supplies the numerator and the denominator for the fraction.
The side of the simulated network square is 60, which is the
minimal number divisible by 2,3,4, and 5.

Figure 6.3. Speed-ups in simulating a 60x 60 network

20-

10-

speed-up

_1__ __53
K, number of Pl_sI I

1 4 9 16 25

The shape of the graph is almost a straight line.
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Abstract

We explore an approach to using genera/pur-

pose parallel computers which involves mapping

hardware resources onto computations instead

of mapping computations onto hardware. Prob-

lems such as processor a]]ocation, task schedul-

ing and load balancing, which have traditionally

proven to be challenging, change significantly

under this approach and may become amenable

to new attacks. We describe the implementation

of this approach used by the FFP Machine whose

computation and communication resources are

repeatedly partitioned into disjoint groups that

match the needs of available tasks from moment

to moment. Several consequences of this system
are examined.

Keywords: reconfigurable computers, partitionable computers,

variable granularity, fine granularity.

a hardware design with a more flexible structure, which

may reduce mismatches between the structures of the

hardware and of the various computation stages.

Operations such as program decomposition, task
scheduling and load balancing, which have traditionally

been both essential for good performance and highly

sensitive to several disparate parameters, heavily reflect

the "mapping computations onto hardware" philosophy.

The "mapping hardware onto computation" view ought

to recast these problems drastically, opening the way to

new methods for solving them.

As part of this approach, the FFP Machine imple-

ments the concept of a virtual machine, defined as an

abstract entity created to perform a single task and

consisting of many processing elements connected by

a tightIy-coupIed message-passing combining network.

The FFP Machine partitions its hardware elements into

disjoint resource groups such that each virtual machine

is provided with one entire resource group dedicated to

its progress.

Mapping hardware resources
onto computation structures

A standard part of parallel computation is mapping

the computations onto the given structure of the hard-

ware resources. The FFP Machine supports an alter-

native approach of mapping hardware resources onto

the structure of running computations. We describe the

method it uses and discuss some of the consequences of

this approach.

The motivation for this inversion is that, although

computations are more mutable than hardware, they

are also highly dynamic in their structure. For example,

an inner product computation begins with many small

operations, the individual multiplications, which might

be performed simultaneously given a fine-grained hard-

ware structure. This is followed by a single, potentiat[y

large, summation (which may have a finer structure)

better suited to more coarsely grained hardware. As a

result of computations' highly variable structure, a fixed

hardware structure will likely encounter difficulties im-

plementing some of their stages efficiently. The philos-

ophy of mapping hardware onto computations leads to

Properties of Partitioning

The FFP Machine is a reconfigurable fine-grained

MIMD computer consisting of a linearly ordered set

of processors which communicate through a tree-

structured network of communication nodes. Each re-

source groups created by partitioning consists of a con-

tiguous set of the processors connected by a tree of mes-

sage processors embedded in the physical communica-

tion network. The following properties of the partition-

ing process are noteworthy.

Partitioning is very fast, yet still provides the flexi-

bility usually associated with late binding.

From the innermost reduction rule of Backus's FP

language [1], computations are defined as parenthe-

sized expressions, with innermost parentheses delim-

iting computations that can proceed immediate[y.

The expressions reside in the processors and resource

groups are constructed by creating "breaks" where

parentheses occur. Partitioning involves a single

wave of messages that passes up through the tree

network. The messages contain three bits; one in-

dicates the presence of parentheses in the subtree

CH2649-2/89/0000/0191501.00 © 1988 IEEE
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andissufficientfor partitioning;the other two are

used to determine which resource groups are delim-

ited by a balanced pair of parentheses and so con-

tain a virtual machine that can immediately proceed

with its task. Each tree node calculates a logical

sum, two logical products and sets its three commu-

nication channel switches. Figure 1 shows the in-

ternal structure of a communication node with the

channel switches and the message processor which

is allocated to one of the resource groups. Figure 2,

Color Plate I (p. 693), demonstrates the result of par-

titioning, emphasizing the distinction between the

physical tree structure and the tree structures of

the resource groups. Partitioning takes logarithmic

time, although with additional interlocks, constant

time can be achieved through pipelining because the

lower portions of the resource groups can be used

while their upper portions are still being configured.

Because of its simplicity, partitioning should add lit-

tle overhead to machine operation and so may be

performed frequently.

tlan m'mevt 1proccr¢or

ti
Figure 1. Communication node

• Apart from a virtual machine's determination of the

pattern of parentheses it leaves in its result, no plan-

ning is required by either compiler or programmer

to control the creation, activation or deletion of vir-

tual machines. The size, placement and lifetime of

the virtual machines is completely determined by

the partitioning process, according to the positions

of parentheses. These arise as the results of immedi-

ately preceding virtual machines without any prior

calculation or storage of information.

• There are no size or alignment constraints placed
on the virtual machines. Most notably, this avoids

wasting resources through fragmentation, so, for ex-

ample, a subtree of the physical machine with a

thousand processors can support without help two

virtual machines, one needing six hundred proces-

sors and the other, four hundred. (As a conse-

quence of the non-alignment, the average depth of

a virtual machine with n processors is (lg(n) % 2.0)

rather than fig(n)].) Virtual machines are variably-

grained: their size can be tailored to reflect closely

their individual needs without regard for other vir-

tual machines. In particular, the size of a virtual

machine relates closely to the size of its operands;

identical functions applied to different data will gen-

erally be performed by different sized virtual ma-
chines.

Resource groups are constrained to contain non-

overlapping groups of processors. This imposed lo-
cality provides an upper bound on the number of

resource groups (three) that a communication node

may be required to support, allowing the design of

the communication node to provide dedicated hard-
ware.

No contention or interference arises between com-

munication operations occurring in different virtual

machines; however, no communication can occur ei-

ther. There does remain a communication bottle-

neck local to each resource group due to its tree

structure. A richer interconnection in each resource

group could be provided were the interconnection

structure of the FFP Machine similarly enhanced

{3,51.

Virtual machines can grow during their operation,

with the communication network acquiring addi-
tional processors in a consistent fashion. This

growth is achieved by shifting the contents of the

processors so that more of them separate the pair

holding the delimiting parentheses. In the current

design, this storage management takes linear time

and is the primary situation where one virtual ma-

chine can affect the operation of others, by poten-

tially requiring that the contents of neighboring ma-

chines' processors also be shifted to make room.

Multiple levels of parallelism are exploited. Concur-

rent virtual machines execute simultaneously, each

internally exploiting fine-grained parallelism. (The

term MSIMD has been used to describe parallel

computers in which multiple SIMD machines exe-

cute simultaneously; by comparison, this might be

described as an MMIMD machine).

The message processor networks in the resource

groups support combining operations without re-

quiring costly associative memories in the switch

nodes [2]. Each resource group has a tightly-coupled

circuit-switched network of ALUs which can perform

such cumulative operations (possibly within groups

[7]) at hardware speeds rather than at the proces-

sors' instruction speeds. Cumulative operations pro-

vide a powerful mechanism capable of performing

data permutations and parsing operations useful to

the FFP Machine, without suffering from the bot-

tleneck in a resource group. Other implementations
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of combining networks in general purpose machines
have resulted in switch nodes that are too costly,

probably due to the range of possibilities that the
nodes must handle. By assuming that any given

task involves closely coordinated actions by the pro-
cessors, the complexity of the communication nodes

is greatly reduced.

The potentials of flexible virtual
machines

These virtual machines as supported by the resource

groups defined above have a flexibility that provides op-

portunities for accomplishing tasks in new ways. Be-

cause partitioning creates virtual machines so cheaply,

a task can profitably use many of them. In each of

its stages, the resources already allocated to a task can
be restructured into a different set of groups, so that,

for example, stages that exhibit fine-grained parallelism

can use many disjoint machines operating simultane-

ously. The following list demonstrates some of the ways
that this flexibility can be used.

• It is possible to alternate between virtual machines

that allow long-distance communication within the

task, with the attendant communication bottleneck,
and isolated virtual machines performing localized

operations that communicate with no or greatly re-
duced contention.

• The TRAC machine could avoid explicit communi-

cation by reconnecting memory banks to different
processors and so transferring data implicitly [4].

In an analogous fashion, some explicit communica-
tion in the FFP Machine can be avoided by recon-

figuring the processors holding data into different
resource groups, so that they belong to different vir-
tual machines at different times. This is the stan-

dard method for passing results between functions

when executing FFP programs.

• Computations structured as pipelines, or more gen-

erally, data-flow graphs (possibly with complex com-

putations at the nodes) can be implemented by al-

ternating between a set of virtual machines special-
ized to the individual nodes, and a set of virtual

machines that perform the communication along the

arcs of the graphs.

These uses, together with others, can be combined
freely depending on the particulars of the task. We

present one abbreviated example to show the possibili-

ties [8].

OPS5 is a Production System language. When spec-

ified patterns can be found among subsets of known
facts, corresponding actions are performed. Finding

such patterns consumes a large majority of the process-
ing time in OPS programs. The RETE algorithm, the
best current technique for matching facts to the rule

patterns, uses a discrimination network in which the

nodes store partial matches found so far and compare

them with new partial matches that arrive along their

input arcs.

The discrimination network can be naturally imple-

mented using virtual machines, as shown in Figure 2.

A node has four parts including the local memory for

storing partial matches and input and output buffer ar-

eas, each occupying as many processors as necessary.

Pattern matching in each node uses a three stage cycle.

With the node organized as a single virtual machine, a

new pattern is broadcast from the input buffer to the

processors holding partial matches. In the second stage,

these processors are divided into many small machines

each of which compares the new pattern with one pre-

vious partial match. In the third stage, successful com-

parisons cause a combined match to be placed in the

output buffer.

Interleaved with the operation of virtual machines

corresponding to nodes in the discrimination network is

a set of machines corresponding the network arcs, which

transmit successful matches from output areas of some
nodes to the input areas of their descendants.

Figure 2 shows a discrimination network and its

mapping as a hierarchy onto the linear array of pro-

cessors. The graph is laid out as a series of nodes, each

having four parts; individual processors within those

parts are too small to be seen. Beneath the linear ar-

ray of processors, bars show the groupings of processors

into virtual machines for different phases in the match-

ing operation. The first three rows correspond to the

stages of the network node virtual machines and the

last row corresponds to those for the arcs.

The arcs being able to send simultaneously relies on

two facts: the discrimination network was created as a

skew tree, and the input and output buffers could be

placed within each node so as not to interfere. These

choices display an important part of efficiently using vir-

tual machines. Given the "logic in memory" and asso-

ciative processing style of operation [6], it is less impor-

tant that data be organized with regard to access meth-

ods that reflect sequential styles of algorithms. Instead,

the data need to be organized so as to provide locality,

in some sense, at appropriate stages in the tasks.

The ability of virtual machines to have different sizes

depending on the amount of data is particularly impor-
tant since the memories in the discrimination network

nodes display a high variance with different input val-
ues.

Conclusions

The approach of mapping hardware resources onto
computation structures, rather than vice versa, provides

many novel opportunities for performing tasks. The
implementation of this philosophy embodied in the FFP

Machine has a significant affect on the way in which

computations are viewed and organized.
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broadcast a new pattern inside each node

compare new pattern with locally stored ones

collect successful matches

transfer results as new tokens to other nodes

Figure 2. Virtual machine implementation of OPS5 discrimination network

Programming effort concentrates on arranging that

data are organized to be clustered when they are com-

bined or otherwise manipulated in a task. The "logic in

memory" character by which the data reside in proces-

sors removes the requirement that the data be sorted

and stored in structures that reflect the physical prob-

lem. "Associative programming" techniques allow data

to be stored "out of order", in some sense, but with

descriptors that determine when and how the data par-

ticipate in operations [6].

Tasks are defined syntactically. The programmer's

control over scheduling concentrates on creating and

deleting the parentheses that delimit virtual machines.

Barrier synchronization derives naturally from the par-

titioning mechanism; virtual machines delimited by

non-lnnermost parentheses do not begin operation un-

til those inner computations have completed and the

parentheses.are removed. Other synchronization and

scheduling mechanisms can be created with little addi-
tional effort.
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Abstract

Because the interconnection scheme among processors (c_r be-

tween processors and memory) significantly affects tile running

time, efficient parallel algorithms must take the interconnection

schenm into account. This in turn entails tradeoffs between ef-

ficiency and portabifity among different architectures. Our goal

is to develop algorithms that are portable among nmssively par-

allel fine grain architectures such as hypercubes, meshes, and

pyranlids, while yielding a fairly efficient implementation on

each. Our approach is to utilize standardized operations such as

prefix, broadcast, sort, compression, and crossproduct calcula-

tions. This paper describes an approach for designing efficient,

portable algorithms and giws sample algorithms to solve some

fundmnental geometric problems. The difficulties of portability

and efficiency for these geometric problems have been redirected

into sinlilar difficulties for the standardized operations, ttow-

ever, the cost of developing efficient implementations of them

on the various target architectures can be amortized over nu-

merous algorithms.

Keywords Portable parallel algorithms, computational geom-

etry, data movement operations, distributed memory par-

allel computers.

1 Introduction

Massively parallel computers consisting of perhaps millions of

processors are now beconfing available. While such machines

offer significantly faster solutions to many problems, they also

impose severe progranmfing requirements to utilize their poten-

tiM. Old "dusty decks" do not typically work on such machines,

and hence new algorithms and programs need to be developed.

Since each processor contains only a small fraction of the total

data, for most problems there must be extensive communication

anlong processors. This coummnication often donfiuates the t,,-

tal rumfing time of the program, and efficient programs must be

developed with this in mind.

If the introduction of massive parallelism only brought about

a one-time need to reprogram, then the reprogralmafing costs

would at least be fairly well understood and fi, r a w_riety ofappfi-

"Partially supported by NSF grants DCR-8608640 and 1R1-8800514.

lPartially supported by NSF grant DCR-S507851 and an Incentives for

Excellence Award from Digital Equipment Corporation.

cations would he affordable, ttowever, extensive additional costs

are introduced due to the significant differences among massively

parallel architectures. Different massively parallel architectures

have significantly different conlmunication characteristics, and

hence have significantly different running times ml the same pro-

grams. For example, on a square two-dimensional mesh with n

pr(,cessors, it takes O(v_) time on average for two processors to

exchange information, while on a hypercube or pyranfid it takes

(')(log n). For n processors to exchange data takes 6)(.¢_) time

on the mesh and pyranfid, or O(log 2 n) time (worst-case) on the

hypercube. Notice that in one case the pyranfid is sinfilar to

the hypercube, while in the other case it is similar to the mesh.

l)ue to such differences, for a single l>roblem role may have two

programs A and B with the property that on -ne massively par-

MIe[ macliiue A is significantly faster than B, while on mmther

massively parallel machine /:/ is significantly faster than A.

This paper is concerned with developing algorithnls which

can be ported among different fine grain, massively parallel ar-

chitectures and yield reasonably good implementations on each.

Our approach is to write algorithms in ternls of general data

nmvement operati(ms, and then implement the data movement

operations on the target architecture. Efficient implementation

of the data movement operations requires carefid programming,

but since the data movement operations form the foundation of

many programs the cost of implementing thenr can be amortized.

The use of data movement operations also helps progrannners

think in terms of higher-level programming units, in the same

way the use of standard data structures helps pr(:grannners of

serial computers.

In Section 2 we give several data movement operations, and

in Section 3 we ilhtstrate our approach by giving some geometric

algorithms written in terms of these data nlovement operatimls.

Many data movement operations have been proposed, and tim

list is still growing as progranmmrs acquire experience iu parallel

tm)granmfing. Our list is intended as an illustrative smnple, not

an exhaustive collection. Further, the types of problems for

whidl this approach is useful is quite large, and in this short

paper we make no attempt to even survey such problems.

2 Data Movement Operations

A variety of data Inovelueat operations have t)een proposed for

par_dle] computers. Often they originated as steps in the midst

of some algorithln, and then later it was realized that they nlight

have widespread utility. More recently there have been attenlpts

t,_ pr-mote specillc data m,,vement operati,ms as a progranmfing

CH2649-2/89/0000/0195501.00 © 1988 IEEE
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aid [2,3}, or to develop a collection of data movement operations

particularly useful for a specific architecture I5].

Several of the operations are defined ill terms of some semi-

group operation ® over a set B, and our analyses ofrunnhxg time

will assume that ® can be computed in constmit time. Sorting

is a central operation, with several operations assmning that the

data is already ill sorted order. For such operations we assunle

that there is a linear ordering of the processors aald a linear or-

dering of tile set from which the items are chosen. Some opera-

tions are performed in parallel on disjoint consecutive sequences

of itelus in sorted order, which are called (ordered) intervals.

Due to space linfitations, we can give only a few of the pro-

posed data movement operations. Two of the operations given

below, namely, reducing a function and searching, originated

with geometric problems, while the others have had somewhat

wider usage, htterested readers might consult [2,3,5,6,7] for

additional operations mid extensive uses of the operations dis-

cussed here. Implementations of these operations for a variety

of architectures appear in [7].

1. Sort: Given data distributed arbitrarily one per processor,

order the data with respect to the processors.

2. Merge: Suppose that a set of data D is chosen from a lin-

early ordered set. Further, suppose Dt is ordered one item

per processor with respect to one subset of the processors,

mid D2 is ordered one item per processor with respect to a

disjoint subset of the processors, where D = Dt O D2. The

merge operation combines D1 and Dx to yield D ordered

with respect to the entire set of processors.

3. Semigroup Computation: Suppose each processor has a

record with data from B aald a label, and that the records

form ordered intervals with respect to their label. Each

processor ends up with the result of applying ® to all data

items with its label.

4. Broadcast/Report: Broadcast and report are often viewed

mid intplemente d as hwerse operations. Both operations

involve moving data within disjoint ordered intervals. They

also both require a distinct processor, called the leader, of

each interval. In broadcasting, the leader of each ordered

interval delivers a piece of data to all other processors in

its interval. In reporting, all processors within each inter-

val have data from B, and ® is applied to these items,

with the result ending up at the leader. Often broadcast

mid report involve only a single interval. Some computer

architects have proposed special hardware to implement

"op-and-broadcast," which is our broadcast with a single

interval and "op" equal to ®.

5. Concurrent Read/Write: In concurrent read and concur-

rent write we assume that there are master records indexed

by unique keys. In the concurrent read each processor

specifies a key and ends up with the data in the master

record indexed by that key, if sudl a record exists, or else a

flag indicating that there is no such record. In the concur-

rent write each processor specifies a key and a value from

B, and each master record is updated by applying ® to

all values sent to it. (Master records are generated for all

keys written). These concurrent read and concurrent write

operations are extensions of the operations of concurrent

read and concurrent operations normally associated with

parallel random access machines (PRAMs). They model a

PRAM with associative memory and a powerful combin-

ing operation for concurrent writes. On most distributed

memory machines the time to perform these more pow-

erful operations is within a multiplicative constant of the

time needed to simulate the usual concurrent read and

concurrent write, and the use of the more powerful oper-

ations caai result in significant algorithmic simplifications

and speedups.

6. Compression: Compression moves data iuto a region of

the machine where optimal interprocessor communication

is possible. For example, compressing k items in a square

mesh will move them to a x/rk × v_ subsquare, while com-

pressing them in a mesh-of-trees with at least k 2 base pro-

cessors moves them to the diagonal of a k x k subsquare.

7. Searching: Given a set of n processors, suppose every pro-

cessor Pi contains searching item sl E S and target item

ti C T. Further, suppose there exists a Booleaal relation

R(s,t), s E S, t E T. The searching operation requires

eadl processor Pi to find the largest t./such that R(si, tj) is

true. This really should be viewed as a class of data move-

ment operations since for any machine there are signifi-

cant differences in the times searching takes, based on the

properties of R. For our purposes we can make the strong

assmnption that the items and R are such that R(s,t) is

monotone in each variable, and that S and T are stored

in sorted order. In this case the searching operation can

be accomplished through merging and broadcasting within

intervals (see [7]).

8. Parallel Prefix: If processor Pi initially contains value al

from B, then the parallel prelix computation results in Pi

containing at ® a2 ®-.. ® al. In 12Jthis operation is called a

scan. Note that the hardware feature known as "fetch-and-

op" implements a variant of parallel prefix, where "op" is

® and the ordering of the processors is not required to be
deternfiitistic.

9. Reducing a Function: Given sets Q and R, let g be u func-

tion mapping Q x R into B. The map f from Q into B

defined by f(q) = @{9(q,r) I r E R} is the reduction of

g, and in the reducing a function operation each processor

starting with nat element q of Q ends up with f(q). For

example, if Q and R are sets of plaJlar points, g is dis-

tance, B is the reals, and ® is ntinimum, then f(q) is the

ntinimum distance from q to any point in R.

The reader might note that several of these operations can

be easily obtained from others, sometimes as special cases. How-

ever, each of these has proven useful, and sometimes the special

cases can be implemented significantly faster than the general

operation.
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3 Sample Algorithms

Our illustrative algorithms involve finding special points from

a collection c_f planar points. Giw.,n a finite set S of planar

points, a point p = (P_,Pu) in S is a mazimal point of S if

p_ > q, ,,r pu > qy f,,r every point q # p in S. The maximal

point problem is t*, determine all maximal points of a given set.

See Figure l. A point p E S is an extreme point of S if it

is n,,t in the convex hull of S {p}, or, equivalently, if it is

a o,rner (vertex) (,f tile snlallest convex p(,lyg(m cont:aining S.

The extreme point problem is to deternfine all extreme points of

a given set. See Figure 2. [Leaders intereste(1 in serial algorithnls

fl_r these pr, ddenls, and in the numerous applications of maxinml

wfints and extreme p,fints, nfigltt consult 19].

In the following algorithms, n will denote the number of

points. To simplify discussion, we will assume that the nulnber

,ffpr.cessors is also n. Extensions to cases wllere there are a few

points per processor, rather than a single point per processor,

are quite straightforward. In particular, we n-te that Thinking

Machine's Connection Machine can be programmed using more

virtual processors than real processors, and one is encouraged to

write algorithms assuming a single p,int per virtual processor.

3.1 Maximal Points

Our first sample algorithm determil)es al] nmximal points, and

was apparently first noted by Atallah and Goodrich [1].

Maximal Point Algorithm

1. S_rt the n planar points so as to order them in reverse

q,rder by x-coordinate, with ties broken by reverse order by

y-coordinate. That is, after sorting the points, they will

be ordered so that if i < j then either the x-coordinate of

the point in processor P, is greater than the x-coordinate

of the point in processor Pj, or else the x-coordinates are

the same and the y-coordinate of the point in processor Pi

is greater than the y-coordinate of the point in processor

]_. l,et (xi,yi) denote the coordinates _,f the point ending

up in pr_,cessor Pi.

2. Use parallel prefix, with ® representing maxinmm and Yl

as the data, to have each processor deternfine the largest

y-coordinate stored in any processor of smaller index. Let

Li denote the value determined by processor Pi.

3. Tile point (zi, Yi) is an extreme point if and only if Yl > Li.

Tile running time of this algorithna, T(n), is given by

T(n) = Sort(n) + Prefix(n)+ 0(1) ,

where Sort(n) is the time to sort n items and Prefiz(n) is the

time to perform parallel prefix. On all massively parallel ar-

chitectures known to the authors, Pvefiz(n) _. ()(Sort(n)), and

hence on such machines the time of the alg,,ritlmt is O(Sort(n)).

Further, it is known that, at least for serial algorithnls, deter-

nfining maximal points is as hard as sorting 141. Thus it appears

that this portable algoritlun is within a multipficative fact.r of

being optimal for all known massively parallel architectures.

3.2 Extreme Points

The following algorithln is based on the well-kuown tactic of us-

ing divide-and-conquer. To simplify expos[titre we assume that

llO tWO points have the same x-coordinate. This assulnption Call

easily be removed by including a few extra special cases in the

algorithm.

1.

2,

Extreme Point Algorithm

Preprocessing: Sort tile n planar pc,ints of tile set S so as

to order them by z-coordinate.

If n < 2 then all points are extreme p_,inls. ()therwise,

note that ifSa denotes the points in processors 0... (n/2)-

1, and $2 denotes tile l),,ints ill process,,rs (n/2)... (n- 1),

then all points in ,q'l have z-coordinates less than those

of $2. (We assume that processors 0...(n/2) - 1, and

process,,rs (n/2)... (n- 1), form subsystems sinfilar t,, the

original machine. For example, in a hypercube we want

tile subsystelns to be subcubes. Oll machittes such as two-
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dimensional meshes or pyramids, one would subdivide into

4 pieces to achieve the proper subsystems.)

3. Recursively identify tile extreme points of $1 and the ex-

treme points of $2, enumerating them in counterclockwise

fashion. This is a recursive call to step 2, not to step 1.

4. Identify the upper and lower common tangent lines be-

tween the extreme points of Si and tileexteme points of

S_ by performing a searching operation. See Figure 3.

Tlds operation is performed by comparing the slopes of

hull edges. Specifically,suppose _, Pi E $1_ {]jE $2, i$

the upper tangent lillebetween convex sets $I aid $2, as

in Figure 3. Then it can be shown [8] that the slope of

isbetween

(a) the slope of _ and the slope of _, and

(b) the slope of _ a.nd the slope of _.

Therefore, each extreme point simply needs to find the

edges of the other set with slopes just above toldjust below

the slopes of the edges itisincident on. Since the extreme

points are kept in sorted order, this can be accomplished

by merging with respect to the slopes of the edges and

then performing broadcasts within intervals.

5. Elinfinate allextreme points between the common tangent

lines(i.e.,allextreme pohtts of Si told $2 that are inside

the quadrilateral formed by the four eudpoints represent-

ing the conmlon tangent lines)and renumber the remain-

ing extreme points. This is accomplished by broadcast-

lug the information pertaining to the four endpoints to all

processors maintaining a point of S, mid then having each

processor make a constant time decision as to whether or

not it remains an extreme point, and if so, what its new

number is.

The rumfing time of the algorithm is given by

T(n) = T'(n)+ so,t(n),

where T'(n) is the time to perform all but the first step. T'(n)
satisfies the recurrence

7"(n) : T'(n/2) + Search(n) + Broad(n) + Elim(1) ,

where T'(n/2) is tile time for the recursive call, Search(n) is

the time to perform the grouping operation to deternfine tile

upper and lower common tin,gent lines, Broad(n) is the time

to perform a broadcast operation on a machine of size n, and

Elim(1) isthe time required for each processor to make the final

extreme point decision.

On a d-dhnensional mesh or a d-dimensional pyramid, this

gives a total running time of O(nl/d), which is easily seen to be

optimal. On a hypercube the runuing time is O(Iog 2 n), since

the time for T_(n) is ®(log s n) mid sorting can be completed in

the same time by ushlg bitouic sort. It is not known ifthis is

worst-case optimal, since itis an open question as to whether a

hypercube can sort in o(log_ n) worst-case time. While we do not

have space to explain the details,we note that one call modify

the above algoritILm so that itsubdivides the originalset into n _

pieces at each stage [6],with 0 < c < I. On the hypercube the

modified algorithm achieves T' : O(Iog n), which gives a total

worst-case running time of O(Sort(n)). This modified version

also rtuls in O(logn) time on an EREW PRAM.

4 Final Remarks

Data movement operations should be thought of as the parallel

computing analogue of data structures in serial computers. Both

provide higher level constructs which help programmers organize

their thoughts and programs, and both allow programmers to

reuse carefully optimized implementations. Initial users of paral-

lel computers were often willing to spend considerable program-

nlJng time to achieve the performance available through parallel

processing, but as parallel computers move from research into

practice there will be resistance to significmlt reprogranurfing

for each new massively parallel architecture. Systematic use of

data movement operations seems to provide a means of achiev-

ing high performance on future architectures without uuellding

reprogrmmning.
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ABSTRACT

We have developed several fast algorithms for very

long 1-D and 2-D fast Fourier transforms (FFT) on
a Connection Machine CM-2. These codes

maximally exploit the parallelism afforded by single-
instruction multiple-data (SIMD) machines like the
CM-2. We take explicit advantage of the CM-2

hardware (32-bit FPA, 8k byte memory per

processor, programmable hypercube connectivity) and
software (Paris - machine level language) to
simulate the butterfly connectivity required for the

FFT computation. A CPU benchmark of 4.6 s for
a complex 221-point FFT has been established and
an execution time of about 9.5 s is predicted for

222-point FFTs on a 16k processor CM-2. Longer
FFTs, of length at least 224 points, are possible on
a full 64k processor CM with ran° increase in CPU

time. We also describe algorithms for use on
Connection Machines for achieving coherence recovery

of frequency-broadened signals.

Keywords: Fast Fourier Transforms, Connection
Machine, Signal Coherence Recovery

INTRODUCTION

The two most attractive features of a Connection

Machine are its very high degree of parallelism, 64k
simultaneous physical processors (pp) on a full CM,

and its capability for programmable connectivity
between these processors. However, with bit serial
processors and a relatively modest clock speed, the
current generation of CMs would appear to perform
rather slowly on classes of problems where solutions
require a large ratio of inter- to intra- processor
operations. When the memory associated with each
pp is apportioned to virtual processors (vp's) in

order to tackle problems of larger dimensionality or
scale, the pp performs as a multiplexer, serving the

vp's, and the execution time begins to scale with
problem size as in an ordinary yon Neuman
machine. The decrease in performance is worse if
communication between vp's dominates the design of

the program. For long FFTs (length > pp number)
this is the case unless interprocessor communication
time can be significantly reduced.

We discuss two kinds of algorithms for long FFTs
which address the problem of communications
overhead and which we have successfully run on a

CM-2 configured with 16k processors (Ref. 1). Our

first approach attempted to minimize inter-

(physical) processor communication by transforming
a long 1-D FFT into short 2-D FFTs each of which
fit inside one pp's memory (Optical Analog FFT).

The ability to configure processor connectivity and
upgrades which commissioned the new CM-2,

including more efficient communication between vp's
and a 32-bit floating point accelerator, led to the
development of a more efficient and elegant

algorithm, the Hypercube Connectivity FFT.

FFT WITH HYPERCUBE CONNECTIVITY

The central concept of a hypercube FFT on a CM-2

is straightforward: at each stage of the butterfly

pattern, arithmetic operations required between two
associated points (vp's) are performed in one time
step along an axis of a hypercube of rank m with
side length 2. This optimum communication pattern
is realized on a CM-2 by instructing the machine to

configure its communication grid (NEWS) into a

hypercube geometry. The CM hardware
configuration is constructed as two nested
hypercubes each with side length equal 2; hence
radix 2 FFTs are most natural. Nevertheless,

higher and mixed radix FFTs can be performed on
a CM-2 by defining "hyper-rectangles" with longer

and unequal sides (the execution speed may then be
slightly less than optimal since the prescribed

geometry is not homologous to the hardware).

The bit reversal operation is also performed using
the NEWS grid with the specified hypercube

geometry. The algorithm is similar to a Danielson-
Lanczos FFT in that the trigonometric factors are

computed for each point in parallel rather than
propagating phase offset factors point-to-point as in
a Cooley-Tukey FFT.

A documented version of the Paris code for the 1-D

hypercube FFT is presented in the Appendix.
Memory overhead per pp has been optimized for the
case of 64-bit complex data; 32 bytes/processor (if
radix 2 is used) are required to represent the data
(during processing), auxiliary variables, and buffers.
Thus a quarter CM-2 is limited to 214 pp x (8k
bytes/pp) / (32 bytes/point) or 222-point FFTs. A
factor of two in FFT length may be gained by

processing the real and imaginary vectors in series
rather than in parallel. An integer representation

affords no gain in FFT length over floating point
because of increased demands which would be made

on memory by additional auxiliary variables.

CH2649-2/89/000010199501.00 © 1988 I EEE
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If it is necessary to perform several FFTs on the

same data interval (performing an additional
transformation before the FFT - see COHERENCE

RECOVERY ALGORITHMS below), it is desirable
to maintain a copy of the original data in CM

memory and thus eliminate costly I/O calls. In the
case of sparse data (e.g., byte-sized) this additional
demand on memory does not affect the size of a
radix 2 FFT which may be performed.

On a full 64k processor CM-2, for FFTs with
lengths exceeding a vp-to-pp ratio of one, the factor

of 4 increase in CPU power means that FFTs 4

times as long (up to 224 points, perhaps 225, with
current CM-2 memory) can be performed with no
increase in execution time. This is illustrated in th-ee

comparison in Table 1 where the benchmarks for 8k

and 16k processor runs are listed.

Hypercube Geometry for N-D FFT - FFTs of
higher dimension may be accommodated by
specifying hyperplanes and changing the axes for
subsequent dimensions, thus configuring a CM for

N-dimensional FFTs. A communication efficiency
similar to the 1-D FFT case may be obtained.

OPTICAL ANALOG FFT

As is well known from optical Fourier analysis (Ref.
2) a long 1-D FFT can be recast into {1) a set of

short row FFTs, (2) multiplication by phase factors,
row and column dependent, and (3) a set of short
column FFTs. For a discrete time series f(n) where
n = 0, 1, 2 ..-N-I, the Fourier transform is

F(k) -- l:f(n)exp(i2_rnk/N) k -- 0, 1, 2 ... N-1 (1)
n

Using auxiliary variables, the 1-D Fourier transform,

F(k), may be expressed in 2-D format as

F(kx,ky ) = E [ E f exp{i2xnyky/M}] (2)
nx ny

.exp {i21rnxky/N}exp {i2_rnxkx/L}

n = Lny + n x

k = Mk x + ky

ny = O, 1, 2 ... M-1
n x = O, 1, 2 ... L-1

ky = O, 1, 2 ... M-1
kx = 0, 1, 2 ... L-1

The salient feature with regard to SIMD machines
like a CM-1 is that short FFTs can be done inside

pp's, whereas long FFTs require extensive

communication between a much larger number of
vp's. The optical analog algorithm performs the

row FFTs within pp's, transposes the square array
(L = M) containing the intermediate result in order
to place each column within a processor, applies the

phase multiplication factors and then performs the
column FFTs. A final transpose is necessary if the
frequency components need to be ordered correctly.

The transposes require inter-processor communication;
thus for most efficient execution a connectivity
optimized for this purpose should be specified.
Current CM-2 memory limits square FFTs to length

5122. In principle one could string 4 pp's together

(at the cost of additional inter-processor
communication) to form longer rows and columns,
and thus reach 222-point FFTs.

COHERENCE RECOVERY ALGORITHMS

Briefly, the problem of coherence recovery (CR)
involves searching for an intrinsically weak temporal

signal which is frequency broadened (and hence the
Fourier spectral peak decreased), for example, by
virtue of motion of the source. In such problems

several long FFTs must be performed on the same
time series, with an accompanying transformation
either in the time or frequency domain, in order to

achieve optimum CR, i.e., approximate coalescence of
the smeared power into one spectral bin. CR is
preferred over incoherent summation of the smeared

signal both for enhancing the chance of detection
and improving confidence of detection.

Coherence Recovery in the Time Domain - Applying
a family of quadratic time transformations to effect

CR of a frequency-broadened signal is described in
detail in Ref. 3. A time series is rebinned for

Ntran s trials according to the formula

t' = t + at2 , 6a = Pcrit/(2T2) (3)

where Pcrit is usually the Nyquist period (1/VNyq)
and T is the integration time. This algorithm [s
shown (Ref. 3) to be the optimal one-parameter

transformation for CR of an unknown modulating

function for sufficiently short integration times (e.g.,
for orbital motion, T _ 4_rPorb, where Porb is the
orbital period). A copy of the original data may be
maintained in memory and transformed according to

Equation (3). The new time array acts as a
pointer to the vp where the data will be sent along
the communications grid. This realization of CR

applied in the temporal domain requires a time
transformation and an FFT for each trial.

Coherence Recovery in the Frequency Domain-
Alternatively, CR may be achieved by processing in

the frequency domain, in which case only one FFT
of the data is required. This method is similar to
an analog CR technique in which a modified Fourier
kernel, containing a quadratic phase, is utilized in

an acousto-optic Fourier processor (Ref. 4). The
algorithm implemented digitally is known as a

Weiner filter, and requires building a table array,

N(vs,m ) = r. N(un) M*(Yn,Vs,m ) (4)
n

where m = aN_, N(Vn) is the FFT of the input
data and M* is the FFT of a quadratic chirp
signal,

M*(vn) = E A exp{i27ust(l+at)}exp{-i21rjn/No} . (5)
J
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For each CR trial, a subarrary of the product of
the table and the FFT of the input is summed over
a varying range of non-negligible frequency
contributions to yield the result. Because the time
to create the table array is approxlmately equal to
the time required to process all of the required time
transformations and FFTs as described above, a
computational advantage is realized only if more
than one input data set is processed using the same
CR parameters - the table is then computed just
once. A disadvantage is that for very long FFTs
the entire table may not fit into CM memory, in
which case the relevant subarray must be read from
external data storage for each CR trial.
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TABLE 1

CM-2 Execution Time in Seconds

2m-point Complex (Hypercube Connectivity) FFT

m (no patch code)* (patch code)$

s___k_ 16_._._ __Sk 16...._k
13 .018 .026
14 .039 .019 .052 .029
15 .108 .048 .106 .056
16 .280 .118 .230 .121
17 .470 .248
18 .007 .513
19 2.081 1.068
20 4.336 2.220
21 "9.1 4.615

22 "9.5

*Provisional times without optimized bit reversal.

$Patch required to circumvent maximum dimension

16) hypercube currently possible on CM-2
maximum dimension of 32 is expected).

APPENDIX

The following code for the Hypercube FFT is written in the C/Paris language and operates
under Paris version 5.0B.

/* HYPERCUBE-FFT: Implements a 1 dimensional complex FFT. The real and
* imaginary parts are presented separately in two contiguous member

* floats. The length of the data array (which is equal to the number
* of virtual processors) is n, and n is 2^p. */

#include <cm/paris.h>
void hypercube-fft (real__part, imag.__part, p, dir)

unsigned real__part, imag_.part, p; int dir;
* real__part length 64, imag__.part subfield length 32 */

static unsigned last__value__of_p = 0;

static CM__geometry id t hypercube__geometry, default__geometry;
static unsigned dime_sion___array[32] = {

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 };

unsigned n, pl, p2, p__phys, axis, spacing;
unsigned name, coordinate, real__assoc, imag.__soc, temp, trig___temp;
unsigned i, j, i__coord, j__coord, news_coord _i, news__coord__.j, active flag;

float pl _signed, theta__0, scale factor;
n= i <<p;

if (dir < O) pi___signed= -M PI; else pi__slgned = M PI;
/ store current geometry /
default__geometry = CM___vpset geometry(CM___current__vp__set);
/* skip defining geometry if p = last__value__of__p */

if (p != last_value__of__p) { last__value_of...p = p;
/* create first geometry to be 2^p hypercube using NEWS order by default */

hypercube__geometry = CM create__geometry(dimension array, p); }

/* select vp set and make appropriate processors active *7"
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CM set vp set_geometry(CM current vp set, hypercube geometry);
CM-'set--co_-ext 0; -- __ __
/* _'t r_ersal using hypercube */
temp = CM allocate stack field(64);

i coord = C--M ailoc_-e sta'_'k fleld(1);
j--coord = CM--allocate--stack_--field(1);
active .flag = CM allocate stack field(l);
for (i"= O;i < p]2; i++)_ --

j = (p-l) -i;

news coord i = (i + p + CM___.purely virtual address length) % p;
news--coord__ = (j + p + CM_.purely--virtual--address-'length) % p;

CM my news coordinate 1L(i coord, news coT_rd i, 1)'_
CM--my-'news'-coordinate--lL(j--coord, news---coord__, 1);
CM_log_qv_3___L(active flag, i--__coord, j__co_d, 1);
CM logand_, context (activ-e_flag);

CM__get from news 1L(temp, real__part, news coord..], CM upward, 64);
CM send- to news -1L(real_.part, temp, news coord i, CM upward, 64);
CM--set c'ontextO;--) -- -- --

CM deallocate stack through(temp);
/* a-Hocate space on s-tack */
p_phys = 1 + p;

name = CM allocate stack field(p___.phys);
coordinate =_CM allocate _-ack field(l);
CM __my send_..ad'dress 1 L_'name_-

real __soc = CM allocate stack field(64);

imag__assoc = CM--add offset to field, id(real assoc, 32);
temp = CM allocat--e sta--ck fie-ld(3"2);
trig_.temp----CM allocate s-tack field(32);

/* butterfly pattern mapp_-d onto--hypercube */
for (axis -- O, spacing = O; axis < p;

axis++, spacing = spacing + spacing) {
/* send data to associate processor */

CM___get from news always 1L(real assoc, real_part, axis, CM upward, 64);
/* determine s-_ondary proc_-sors an-d-swap data with associate-d-ata */
CM my__news coordinate 1L(coordinate, axis, 1);

CM _l°ad_context(coordinate);

CM___swap___2 1L( real__part, real assoc, 64);
CM f negate 1 1L(real assoc, 2"3, 8);
CM--f--negate 1 lL(imag-assoc, 23, 8);
CM--s_ conte-xt O_

/* calculate theta and store sign in test_flag */
theta_O = pi__signed / (1 + spacing);
CM_logand__constant 3 1L(temp, name, spacing, p__phys);

CM f u float 2 2L-(tr___temp, temp, p__phys, 23, s);
CM f multiply const always 2 1L(trig temp, theta O, 23, 8);
CM "f le zero -1L(trig- temp,-2378); --
/* calcula-_ co_ne(theta-]- and use as needed */
CM f cos 1 1L(trig temp, 23, 8);
CM--f--mu_-add 1L('_al__part, trig temp, real assoc, real__part, 23, 8);
CM'-f_mult--add--lL(imag___part, trig--temp, im_g assoc, imag_.part, 23, 8);
/* c-al_ulate-_me(t'heta) from cosine(rhea) and sign-_heta) */
CM f mult subfrom constant 1L(trig temp, trig temp, trig temp, 1.0, 23, 8);
CM--f--sqrt____lL(trig-temp, 2-3, 8); -- -- --

CM_logandcontext with test();
CM f negate 1 1L-_rig -_mp, 23, 8);
CM--se-t conte'xt(_

/* use sine as needed */

CM f mult subfrom 1L(real___part, real_part, trig temp, imag assoc, 23, 8)
CM f mult--add 1L_]-mag___part, trig__temp, real ._oc, imag_fpart, 23, 8); i

/* renormalize_or in--verse transform */
if (dir < O) (

scale factor = 1.0 / power of two[p];

CM -f multiply const always 2 1L(real__part, scale factor, 23, 8);
CM--f-'multiply--const--always--2--1L(imag___part, scale factor, 23, 8); }

/* restore geometr_, rele_e stack--sp-ace */
CM_deallocate_stack through(name);

CM _set__vp__set__geometry(CM__current__vp. set, default geometry); )
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ABSTRACT

Simulation of two neural network models are used to illus-

trate the benefits of using C* as a programming language to

create applications which utilize massive, fine-grained paral-

lel processing architectures such as the connection machine.

An overview of the C* language is made and general data

structures to be used are discussed. Two neural network

models are presented and contrasted: a relaxation energy

model (Hopfield), and a forward propagation model

(Rumelhart and McClelland). A discussion is made of using

C* for simulation purposes and advantages of simulating

neural networks on large parallel processors.

INTRODUCTION

The simulation of large neural networks is a memory and

computationally intensive task. Fully connected networks

require n2 memory locations to store connection weights.

Evaluation typically includes a dot product, and some non-

linearity yielding calculations which also growns linearly.

Fortunately, neural network simulation can be structured to

take advantage of data parallelism provided by system such

as The Connection Machine (®Thinking Machines, Inc.).

Using parallel processing techniques, much of the computa-

tional load can be distributed increasing system throughput.

The Connection Machine (CM) was initially configured

around a Symbolics Lisp Machine as the front end and was

programmed in *Lisp, a parallel version of Lisp which util-

izes the capabilities of fine-grained parallelism in a SIMD

architecture. Initial CM applications were developed in

*Lisp or in Lisp calling PARIS (PARallel Instruction Set).

Last year (1987), a new language was introduced by Think-

ing Machines which capitalizes on the broad knowledge of

the C programming language in the Software Engineering

profession. This language, C* [1], is a set of extensions to

C which supports parallel programming on massive, fine-

grained machines. Extensions made are also compatible

with the C++ object oriented programming language.

The use of C* to create applications for the Connection

Machines is examined here using Neural Network simulation

as an example. Neural networks are well-suited to imple-

mentation on the CM, and have the advantage of existing on

other architectures for comparison [2].

AN OVERVIEW OF C*

The C* programming language was developed as a set of

extensions to the C programming language developed by

Bell Laboratories. C has been called an intermediate pro-

gramming language since it is close the hardware platform

while retaining some of the structure of higher-level

languages.

Several extensions to C have been developed over the years

to augment the basic language. One of these, C++, was

used as a model for C*. C++ is an object oriented program-

ruing language which provided support for defining generic

objects and manipulating instances of them. C* has been

designed to be compatible with C++ and borrows several

language concepts from it..

The underlying model for the language is an array of proces-

sors with data memory each executing the same instruction

at a given time. Data organization is the same in each

processor's memory. The only thing that differs is the

values contained in these data structures. This model allows

developers familiar with C to easily picture the parallel

operations being performed, since array operations are com-

mon in C. This visualization ease is a strong feature of the

language.

Four basic extensions were made to support parallelism:

poly data types, the domain concept, processor selection, and

a few new operations. An effort to stay close to C was

made bv retaining the existing syntax as much as possible

while interpreting them in a parallel domain. For example,

assignment works just like it does in C, but also allows
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parallel assignments to be made. One design goal of C* is
to allow compilation of pure C code in C* (this would run

on the front end only).

RELAXATION MODEL

The first neural network model simulated on the Connection

Machine was a relaxation model based on the work of J.

Hopfield [3]. As shown in figure 1, each of the net nodes

are fully connected to all others in the system, although

self-connections are suppressed. The output of the jth ele-

ment is:

Xj = f {_ai j(Wij, * Xi) - Tj }

(1)

Where Wij is the connection weight from element i to j, and

X i is the output of element i. T i is a threshold associated

with the element, and f is a non-linear function such as Sign

or Sigmoid.

Because this type of network is fully connected, a connec-

tion weight matrix must be stored with each network ele-

ment. The size of this matrix increases as the square of the

network size. This weight matrix dominates all other data

structures and makes large networks difficult, since the

amount of memory per processor element in the CM-2 is
limited to 64K bits.

One way around this problem, which was chosen for this

simulation, is to represent a single network node as an array

of processors in the Connection Machine. Associated with

each of these processors is a single connection weight.

Inner products are summed over the array of processors to

produce a new Xj in the zero th element. C* provides all the

numerical manipulations needed to calculate these quantities
in an efficient manner.

This technique was used to create a relaxation network of

256 nodes which were fully connected. A variety of graphic

pattern recognition problems were run, including compensa-

tion for positional, and rotational shifts in images to be
recalled.

FORWARD PROPAGATION MODEL

The Forward Propagation model differs from the Relaxation

model by having distinct layers which propagate information
forward to a single output representing the recognized pat-

tern. This type of network has been used extensively for

Neural Network experimentation by researchers such as

Rumelhart and McLelland [4], Hinton [5], Sejnowski [6],

etc.

This model has an advantage over the relaxation model in

that substantially fewer connections are required. In general,

connections grow linearly with the size of the network. A

connection weight matrix must be saved in each processor

element, but the size of matrix is not as large. Furthermore,

excess processors can be used as additional layers, since the

forward propagation model does not require a symmetrical
network.

In a fully configured CM-2 with 64K processors, 65536 net-

work nodes could be simulated arranged as 64 layers of up

to t024 nodes each assuming 16 bit weight values, as shown

in figure 2. If learning is added to the system using a rule

such as back propagation, the number of nodes drops to

32768, since two copies of the network are needed to imple-
ment the rule.

Figure 3 shows how information flows through the network

in a Connection Machine implementation of the Forward

Propagation model. At each sample iteration, an input vec-

tor, I i is initialized in the left most column of a two dimen-

sional array of processors. This array can be up to 1024 by

64 in size. Each value is multiplied by a connection weight

I// .......J

Figure 1: Relaxation Model Figure 2: Forward Propagation Model
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associated with a processor in the next layer, and summed.

The sum is then thresholded and passed through a non-

linearity as in the Relaxation model. This value is then

deposited in the appropriate processor the next layer.

Layer

0 1 2

PE wo"_

wo_

0 I0 _ XlO

1 Ii Wll _ X, 11

- _ Xli"i |i

Figure 3: Data Flow

ANALYSIS

The C* language provides all of the capabilities needed to

build these simulations. In both cases, values must be com-

municated between processors to evaluate a new nodal out-

put. Parallel assignment and looping provide the means to

accomplish this. Evaluation of the network occurs in paral-

lel for the most part, although looping does introduce some

serial operations.

The overriding limit on the size of the network which can be

simulated is dependent on the amount of memory available

to each processor element. While 64K bits is substantially

better than the 1K bits available in the CM-1, it is still

confining. This limit also forces data precisions down from

an acceptable level of 32 bits to 16 bits (or less). This can

limit the learning and performance capabilities of the net-

work.

In general C* provides a powerful, clean syntax and eases

the visualization of parallel calculations. The domain con-

cept allows data to be organized and manipulated in a paral-

lel fashion. By extrapolating existing C syntax to parallel

behavior, transition from C to C* is a much less painful pro-

cess than learning the structure of a new language.

CURRENT AND FUTURE WORK

The Relaxation model described has been implemented and
tested on a series of 8 by 8 images. The system is able to

recall simple patterns encoded in the network. It has been

tested up to 25% noise levels. Networks that correct for
translational and rotational shifts have also been tested. The

Forward Propagation model exists as a crude prototype.
Lack of good test cases has made validation difficult.

The Connection Machine provides a powerful execution

environment for neural network simulations. Future work

with it will include development of learning rules, such as

the Generalized Delta Rule and other neural network models,

such as Kosko's Bidirectional Associative Memory and

Hecht-Nielsen's Spatio-temporal Pattern Recognition model.
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2 Related Work
Abstract

In this paper we propose a class of dense regular hierarchical in-

terconnectlon topologies called :D-trees. These topologies are denser

than the interconnection networks in use today such as the ring and the

n-dimensional boolean hypercube, and compare favourably with other

proposed interconnection schemes like the star graph and the pancake

graph. In addition, the class of topologies proposed by us is more flex-

ible in that both the degree and the diameter can be varied in the

construction of the required topology. These topologies are also incre-

mentally scalable in the number of nodes that can be connected. We

derive expressions for the number of nodes that may be connected in

this manner and the corresponding diameters of such topologies. We
also compare them with the boolean hypercube and the star graph.

Keywords: interconnection topologies, dense graphs, regular graphs.

1 Introduction

The prospect of solving large problems in parallel using a massive

number of processors to attain speedup has always been extremely at-

tractive. Recent advances in device technology have now made this fea-

sible by reducing the cost of individual processors. As a consequence,

machines comprising several thousands or processors can be built inex-

pensively and have the potential to outperform the supercomputers of

today both in cost and execution time.

To achieve this, however, it is necessary to be able to connect a large

number of processors together in a manner that keeps the diameter of

the interconnection topology small, i.e. the topology must be dense.

In addition, for a uniform treatment of processors, the interconnection

problem must be restricted to regular graphs, i.e. graphs in which every

vertex has the same degree.

The density of a graph G with degree d and diameter k is measured

by how close I G I(no. of vertlces in G) is to the Moore bound (see later)

for the given degree and diameter. If the Moore bound is attained, the

graph is called optimally dense. Using this criterion, topologies like the

hypercube are not particularly dense. Density is a very desirable prop-

erty for a topology since the average distance between any two vertices

in the topology is small. This means that, in routing, the average time

spent by messages at intermediate nodes in a path is small. This also
suggests an increase in the computation to communication ratio for the

topology. Also, if we define a neighbourhood of radius r of a vertex v as

the set of all vertices that are < r hops away from v, it is easy to see

that the denser the topology, the larger the neighbourhood (of given ra-

dius) of a vertex. This in turn leads to better dynamic load distribution

because a large neighbourhood leads to a more uniform distribution of

work and hence a better utilisation of processors.

In this paper we propose a class of regular hierarchical graphs which

are denser than the interconnectlon networks in use today, and compare

favourably with other intereonnection topologies proposed thus far. In

addition, they are highly flexible in that they allow both the degree

and the diameter of the graph to be varied, and they are incrementally

scalable (i.e. allow the number of nodes connected in this manner to

be varied). We derive expressions for the number of nodes that can be

connected using this class of topologies and their corresponding diame-

ters, and compare it with the n-dimensional Boolean hypercube and the

star-graph.

CH2649-2/89/0000/0207501.00 © 1988 IEEE
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The problem of constructing dense regular graphs of small diameter

is well-known, and has been extensively studied. However, computing

the maximum number of vertices that can be connected using n regular

graph of degree d and diameter k is still an open problem [5, page 213,

problems 7,8]. The Moore bound has been proven [9] to be attainable

only for degrees 2, 3 (Paterson graph) and 7 (Singleton graph), and

possibly 57 since it is not known whether there is a Moore graph of

order 57. However, several relatively dense graphs have been found

over the years and catalogued by Leland [15], Bermond [4], and others.

Bermond has subsequently released updates containing more graphs as

technical reports. Uhr also gives a list of known dense topologies in

his book [23, pages 136-7]. De Bruijn networks [7] are another well

known class of dense topologies that have found several applications in

VLSI implementations and communication networks. In 1981, de Bruijn

networks were proven to be denser than any other previously discovered

graphs by Imase and Itoh [10].

Other (not so dense) graphs have been proposed as interconneetion

topologies, notably the n-Cube [19], the Cosmic cube [22], the star graph

and the pancake graph [1, 2]. The n-Cube and the Cosmic cube are now

available on several commercial machines. However, these machines con-

nect a relatively small number of processors and are designed to support

global communication. The star graph is an attractive alternative; it is

a relatively dense regular topology that is also symmetric. However, the

choice of the degree d of each node determines both the diameter and

the number of processors N that can be connected. Star graphs are also

not incrementally scalable in that fewer than N processors cannot be

connected for a given d. Thus, the price paid for the symmetry in this

topology is inflexibility.

The idea of using trees to design network topologies is not new either.

Arden and Lee [3] proposed a multi-tree network in 1978. They, however,

restrict their discussion to graphs with degree 3. Also in 1978, Despain

and Patterson [6] proposed an augmented binary tree based architecture

called the X-tree. In their paper they make a strong case for tree based

architectures. The Sneptree, proposed by Li and Martin [16], is another
augmented binary tree network like the X-tree which has been shown

to be suitable for VLSI implementations. However, tree-based networks

have not been proposed as dense topologies although trees have been

known to be among the densest known graphs.

3 T_-trees -Trees connected with Dense Graphs

In this section, we describe the basic construction of the proposed

class of topologies and their properties. We call these graphs 2)k-trees.

Following that, in section 3.2, orthogonal extensions to the basic con-

struction are proposed; we call these graphs :D'_-trees.

The number of nodes that can be connected together with a given

degree d and a given diameter k is bounded above by

d(d - 1) h - 2
d - 2 (d > 2) (1)

This buund is called the Moore bound and can be visualised by consider-

ing a tree of height k with its root having d children, all nodes except the

leaves having (d - 1) children, and all leaves equidistant from the root.

The distance from the root to a leaf is clearly the smallest diameter that

can be achieved for a d-regular graph.
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Figure 1: A/)l-tree with degree 3 and diameter 5.

3.1 Construction of/_h-trees

A few definitions are necessary to make the constructions easier to

follow.

Definition 1 A single-rooted maximal tree with degree d and height h is

a tree in which the root has d children, and all other nodes ezcept the

leaves have (d - 1) children. All leaves are at distance h from the root

and have degree 1.

Definition 2 A two-rooted maximal tree with degree d and height h is a

construction where two identical trees connected are by an edge at their

roots. All nodes accept the leaves have (d - 1) children; all leaves are at

a distance h from their respective roots and have degree 1,

In the construction of/)k-trees, we use mazimal trees as building blocks

to construct dense graphs. These graphs are based on constructions by

Korn [14] except that the leaves are not shared in our construction. We

construct a/)l-tree with degree d and height h as follows:

Construction 1 Take d copies of a maximal tree T having degree d and

height h. For each tree, label the leaves from left to right as 1 ... L where

L is the number of leaves in the maximal tree. For each i, connect all

leaves labelled i in the d copies of T with a K d graph (the complete graph

on d vertices}.

This construction produces the same graph as one proposed by Memmi

and RaiUard in [17] if single-rooted mazimal trees are used. If single-

rooted mazimal trees ate used, this construction will give us/)-trees with

odd diameter. Graphs with even diameter can be constructed using two-

rooted mazimal trees in Construction 1, but are not as dense. Fig. 1

shows a/)t-tree with degree 3 and diameter 5.
The diameter of the dense regular graph used to connect the mazi-

real trees is used to classify the topology• Thus, if a dense graph with

diameter k is used, we get a/)t-tree. It is easy to see that every leaf

in the mazimal trees used will have degree d in the/)k-tree. To obtain

the densest /)-trees possible, we are interested in optimal, or close to

optimal, dense regular graphs with small diameter.
It is possible to extend this ides by using regular graphs having

diameter 2 to connect mazimal trees at their leaves to get /)2-trees.

However, unlike in Construction 1, there is no known expression for the

densest regular graph having degree (d - 1) and diameter 2. Therefore,

we propose that the densest known regular graphs with degree (d- 1)
and diameter 2 be used to construct /)z-trees having degree d. One

can construct relatively dense/)2-trees by using, for example, the opti-

mully dense graphs with diameter 2, namdy the Paterson graph and the

Singleton graph. For/)2-trees, single-rooted mazimal trees need to be

used in the construction to produce graphs with even diameter, whereas

two.rooted mazimal trees yield graphs with odd diameter.

In general,/)a-trees ate denser than/)z-trees. A simple example can

illustrate this point. If we wish to construct a /)z-tree with degree 8

and diameter 6, we can do so by connecting 8 two-rooted mazimal trees

of height 2 as described in Construction 1. This will give us a graph

with 912 nodes (see Theorem 2 for a general expression). However, we

can construct a/)2-tree with degree 8 and diameter 6, then by using the

Singleton graph, we can connect 50 single-rooted mazimal trees with

degree 8 and height 2. The number of nodes that can be connected in
this manner is 3250.

Using the same idea, we can construct /)3-trees, /_4-trees and so

on. Singleton graph with diameter 3 are known to exist if (d - 1) is

a power of a prime number [21]. They have order _ and can

be used to construct dense /)a-trees. However, only a small number of

such graphs can be connected. De Bruijn graphs are among the densest

known graphs for larger values of k and can also be used to construct

higher order /)-trees. In general, less is known about dense regular

graphs with diameter 3, 4 and higher. However, for practical purposes

this is not serious, since it can be argued that a very large number of

nodes can be connected using/)x-trees and/)a-trees since they permit

both the diameter and the degree to be varied.

We now analyse 9k-trees and derive expressions for the diameter

and maximum number of nodes that can be connected using this topol-

ogy. The proofs of the lemmas and theorems that follow are quite simple

and can be found in [20].

Lemmaa 1 A/)z-tree of height h has diameter (2h + 1) if single-rooted

maximal trees are used in the construction and (2h + 2) if two-rooted
maximal trees are use_l in the construction.

Lemma 1 can be generalised for a/)t,-tree of height h:

Theorem 1 A _Dk-tree of height h has diameter (2hWk) if single-rooted

maximal trees are used and and (2h + k + 1) if two-rooted maximal trees
are used.

Lemma 2 The mazimum number of nodes that can be connected using

a/)z'tree topology with degree d and height h is given by

dd(d - 1) n - 2d - 2 (d> 2) (2)

if single rooted maximal trees are used in the construction, I/two-rooted

maximal trees are used in the construction of/)z-trees, the ezpressiort

for the mazimum number of nodes is

i)h+1 - 1 (d > 2) (3)2d(d - d - 2

This result too can be generalised for/)h-trees:

Theorem 2 Let p be the number of nodes in the dense regular graph

with degree (d- 1) used to connect the maximal trees in the /)-tree.

The mazimum number of nodes that can be connected using a/)h-tree

topology with degree d and height h is given by

d(d- 1) _ - 2 (d > 2) (4)
P d-2

if single-rooted maximal trees are used in the construction. If two-rooted

maximal trees are used, the ezpression for the mazimum number of nodes
is

1)_+_- z (d > 2) (5)2p(d - d - 2

The number of nodes for /)2-trees depends upon the dense graph

used for the interconnection of the leaves. Since Moore graphs with

degrees 2, 3 and 7 are optimally dense, they are the best graphs that

can be used for/)rtrees with degrees 3, 4 and 8.

Construction 1 restricts neither the height nor the degree of the

mazimal tree used. It is therefore possible to construct/)t-trees for any

given degree and diameter.

. ?
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Figure ._: A D_ tree having degree 3 and height 1. Leaf nodes tae shown

as disc_ and non-leaf nodes as circles. The two copies of the tree mesh

are connected together at the leaves.

3.2 Construction of D'n-trees

One disadvantage of tree-based topologies in general is traffic con-

gestion that tends to develop around the root(s) of the tree making it a

potential bottleneck. This is not a serious problem if a communication

within a neighbourhood strategy is used, but for global communication

it can prove to be serious. To reduce traffic flowing through the roots, we

propose an orthogonal extension to the basic scheme described above.
We call these trees D'_-trees. The D_-trees constructed in section 3.1

can be thought of as D_-trees. Before we describe the Din-tree topology,

we first need to define the tree mesh which forms the building block for

their construction.

Definition 3 Consider a mazimal tree with degree d and height h and

let L be the number of leaves in this tree. Lay out L 2 "leaves" in a L

by L grid. Construct _L mazimal trees using each row and each column

o[ the grid as leaves. A construction of this form is defined to be a tree
mesh.

Tree meshes have also been known under different names, for exam-

ple, orthogonal trees in [18].
We now show how D_-trees can be constructed.

Construction 2 Let D be the densest known regular graph with degree

(d - 2), diameter k and order p. Take p copies of a tree mesh having

degree d and height h. Label the leaves on the grid uniquely as 1...L 2,
where L is the number of leaves in the mazimal tree used to construct

the tree mesh. For each i, connect the leaves labelled i in the p copies of

the tree mesh using a copy of D.

This constructionincreasesthe number ofrootsin the D-tree at the

cost of increasingthe diameter. Also, only graphs with eitherodd or

even diameter can be constructed,depending on whether the diameter

of graph D in Construction 2 isodd or even. Fig. 2 shows a D_-tree

having degree 3 and height I.

In general,as m increases,the densityof the 79_- treesdecrease.It

can be argued that the lossin densityisthe pricethat must to be paid

to support globalcommunication more efficiently.

In the same manner wc can defineDS-trees,D4-trees and so on. The

choice ofthe D'_-trec willthen depend on the levelof global communi-

cation that needs to bc supported. In the limit,the multi-dimensional

grid of nodes dominates the construction. Also,with higher order D 'n

trees,constructions for alldiameters arc no longer possible,although

the set ofdiameters forwhich each D ratreecan be constructed remains

countably infinite.

The constructionof Din-treesresultsina rapid increasein the diam-

eter of the topology as m increases.We now derive the expressions for

the diameter and the maximum number of nodes that can be connected

together using D"_-trees. Once again, the proofs can be found in [20].

Lemma $ The diameter of a D_-tree of height h is given bF (4h + k)

if slngle-rooted maximal trees are used in the construction; if two-rooted

maximal trees are used the diameter is (4h + k + 2).

This result can be generalised for D_-tree of height h:

Theorem 3 The diameter of a D_-tree of height h is given by (2mh+k)

i/slngle-rooted maximal trees are used in the construction and (m[2h +

1] + k) if two-rooted maximal trees are used.

Lemnaa 4 Let the order of the dense graph used to connect the maximal

trees in the D-tree be p. The mazimum number of nodes that can be

connected using a 7)_-tree with degree d and height h is given by

p{[d(d-1)h-t]'+2d(d-a)h-ldd;-_22 } (6)

ifslngle-rooted maximal trees are used in the construction, If two-rooted

maxlmal trees are used, the mazimum number of nodes is given by

p{[2(d-1)']'+8(d-a)h(ddl)_2-1 } (7)

The following theorem is a generalisation of this lemma:

Theorem 4 Let the order of the dense graph used to connect the leaves

of the maximal trees in the 9-tree be p. The mazimum number of nodes

that can be connected using a D_.tree with degree d and height h is given

by

htm t ddh-t-2
p{[d(d-1)h-ll'n+(m[d(d-1 ) - ] - )_} (8)

if single-rooted maximal trees are used in the construction. If two-rooted

maximal trees are used, the mazimum number of nodes is given by

The number of roots in _D_-trees are greater than the number of

roots in Dl-trees by a factor of [m {d(d - 1)h-t) m-t] (for single-rooted

mazimal trees).This reduces the load per root in the D-tree consider-

ably.

The routing algorithms for Di-trees and D=-trees are quitesimple.

A simple tree traversalalgorithm can be adapted to handle "jumps"

between multiple copies of mazimal trees. In the interestsof brevity,

routing is not discussed in thispaper. An outlineof simple shortest

path routing algorithmsfor these treescan be found in [20].

$.3 Enhancing Incremental Scalability

So far,the constructionsdescribedused only mazimal graphs in the

constructionof D-trees. However, thereis no reason to constrainour-

selves to the use of mazimal graphs. It is possible to use any trees

which possess two properties: all non leaf nodes have degree d, and all

leaf nodes have degree 1. These trees can be used as building blocks

for the construction of V-trees instead. These graphs will clearly not

be as dense as those constructed in the previous sections, but should

there be some constraint requiring this restriction (for example, cost or

layout area) they can be used. If h is the height of this "non-maxlmal"

tree, the diameter of these constructions will still be the same as stated

in Theorems I and 3. However, the average distance between any two

nodes in the V-tree may decrease somewhat.

Itis also possibleto extend the scalabilityargument to the dense

graph used to interconnectthe leavesof the treesused in the construc-

tion.Any regular graph can be used, for example a ring (although one

may fail to see why). From a more practical viewpoint, the densest

known regular graph(s), albeit suboptimal, can be used. In Table 1,

some of the densest known graphs with diameter 2 have been used to

construct the V-trees. The order of these graphs have been stated in

parentheses. These values were obtained from [4]. The values marked

with an asterisk are those which are provably optimal.
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].,ae -phI treef
I k I sile k size k size [ k

2 I 4 3 6 3 6
3 8 4 24 5 30 5

4 16 6 120 7 212 6

5 32 7 720 8 850 8

6 64 9 5040 9 5622 9

7 [7 128 Ii 40320 ii 76202 ii
[

D_.tree

30 (5")

17o(lO*)

1590 (15")

7488 (24*)

99520 (32)

i "D_-tree

t k I size

4 l 8

6 120 (5')

8 9oo (1o*)

10 19800 (15')

110 58464(24"1

lal,le t: A comparison of some of the topologies. The numbers ._

parenthesis in columns 9 and 10 give the size of the regular graph u_t.,i

to interconnect the leaves.

4 Comparison with Other Topologies
Table 1 tabulates the diameter and the number of nodes that can

be interconnected for a few values of the degree for the n-Cube, tlle star

graph and three different types of D-trees. For D-trees, only construc-

tions with comparable diameter are tabulated. As can be seen, D-trees

can interconnect a far greater number of nodes than both the star 9raph

a.d the n-Cube. In every case, its diameter exceeds that of the star

graph by no more than one. Asymptotically, the number of nodes that

can be connected using a star graph with degree d and diameter k can

be shown to have the same order of complexity as a D_l-tree with the

same degree and diameter. Like the Mar-graph, D-trees are also highly

fault tolerant since their connectivity is (d - 1) where d is the degree of

the D-tree.

The D-trees, however, do not have the symmetric and recursively

decomposable properties of the n-Cube and the star graph. However,

the symmetry in these topologies makes them inflexible in that both

the diameter and the number of nodes that can be interconnected using

these topologies are fixed upon choosing the degree. D-trees provide the

freedom to choose both the degree and the diameter of the topology. In

addition, D-trees are also incrementally sealable in the number of nodes

that can be connected for a given degree and diameter So, if desired,

it is possible to construct sub-optimal topologies as described in the

previous section.

5 Discussion

In the construction of Dh trees, the lack of many known dense reg-

ular graphs with diameter 2 and greater may appear to be a problem.

However, it can be argued that this is not a problem in practice. First,

large number of dense graphs are known for small degrees (i.e. less

tha,: 10). Second, it is possible to connect a very large number of nodes

with t_ pologies having degree 10 or less, and dense graphs with higher

degrees are therefore of less practical interest.

Also, the flexibility offered by the D-tree allows us to constrain our-

selves to a known dense configuration, for example, one which uses Sin-

gleton graphs to interconnect the leaves of the rnazimal graphs. It is

still possible to construct increasing numbers of nodes together with this

fixed configuration alone, with a corresponding increase in the diame-

ter. With a degree of 8 and a diaineter as small as 12_ it is possible to

connect over 8 million processors using a D_-tree.

The other issue that needs to be addressed is global communication

(or rather, the lack of it). Global communication is counter-productive

for massively parallel systems since the cost incurred by every proces-

sor for supporting it is very high. We argue that very dense topolo-

gies having small diameter are best exploited by restricted communica-

tion schemes like contract-within-neighbourhood (CWN) [11] proposed

by K_.I6 and the gradient model [13] proposed by Lin and Keller. Fol

such schemes, symmetry is not a necessary feature, "local symmetry'

i.e. regularity, is sufficient. These schemes are far more effective in keep-

ing the traffic curtailed, thereby reducing the communication overhead

on each processor.
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ABSTRACT

Many parallel machines can be partitioned into indepen-
dent submachines based on rules that depend on the
interconnection network used. Here, the effects of task

migration (i.e., movement of a task from one partition to
another) in systems employing multistage cube or hyper-

cube networks are studied. Direct overhead encompasses
the cost of moving the task when no other tasks affect the

migration, while indirect overhead is the additional time

needed for migration that is due to influences of other

tasks. The sum of direct and indirect overhead is the

time needed to migrate a task. In addition, the migration

may affect other tasks, and thus can incur a migration

penalty. The indirect overhead and migration penalty
represent the interference that may occur in the intercon-

nection network between the migrating task and other

tasks attempting to use the network simultaneously. A

model for parameterizing migration costs is given. This

research is part of the PASM Parallel Processing Project.

Keywords: task migration, load balancing, partitioning,

PASM, multiple-SIMD, M]M]), partitionable
SIMD/MIMD, parallel processing.

1 INTRODUCTION

Many current commercial and research parallel machines

are partitionable; i.e., they can be subdivided into
independent machines, and each of these machines can

perform a separate task. Examples of such commercial

machines are the Intel Hypercube [6], the NCube system
[5I, the Connection Machine [12], and the BBN Butterfly
[1]. Examples of partitionable research machines are RP3

[2] and PASM [111. In all of these machines, memory is

physically divided and a module is connected to each pro-

cessor (although in some cases the memory may be

addressed as one global address space). Also, all of these
machines employ cube interconnection networks. The

Intel Hypercube, NCube, and Connection Machine sys-

tems use single-stage cube (hypercube) networks, while
the Butterfly, RP3, and PASM use multistage cube net-

works. The ways in which single-stage and multistage

cube networks can be partitioned into independent sub-

networks, creating independent submachines, is described
in [10].

1Supported by the Air Force Office of Scientific Research under
grant number F49620-86-K-0006. Currently with the Institute
for Microelectronics Stuttgart, Ailmandring 30a, 7000 Stuttgart
80_ West Germany.

2part of this work wa_ done while on leave at the

Supercomputing Research Center, Lanham, MD, and part at
Purdue supported by the above grant.

3Supported by the Supercomputing Research Center, Lanbam,
MD, under contract number {}925.

Much research has been performed in the area of load

balancing and process migration in distributed systems
[e.g. 2, 9]. In these studies, a process that executes or

awaits execution on single processor is moved to a
different processor so that a more balanced load distribu-

tion in the system is achieved. However, the area of task

migration in partitionable systems (i.e., moving a task

executing on a group of processors) has received little

attention. Here, a model for parameterizing task migra-
tion costs is given.

One motivation for task migration is partition restructur-

ing; i.e., the movement of small tasks to make larger par-

titions available. In parallel processing systems with cube

interconnection networks, the ways in which processors

can be combined into independent submachines obey cer-
tain restrictions. As a consequence, tasks that use small

partitions can prohibit larger partitions from being

formed. Consider a hypercube network with eight nodes

as illustrated in Fig. 1. If an independent hypercube net-
work with four nodes is desired, all four nodes must lie on

one of the six surfaces of the cube. For example, nodes 1,

3, 5, and 7 can form a partition of size four, because these

four nodes can communicate among themselves using a

size four hypercube topology without going through any

of the other nodes. However, if two small tasks occupy
nodes 0 and 7, each of the six surfaces contains one of the

small tasks. No size four partition can be formed, even

though six nodes are available. That is, without using

nodes 0 and 7, no four node hypercube can be formed.

By moving one task, e.g., by moving the task in node 0 to
node 4, a size four partition becomes possible, consisting
of nodes 0, 1, 2, and 3, where these nodes form a size four

hypercube. This migration can result in an increase of

overall machine performance, or it can be used to meet

real-time constraints that apply to incoming tasks.

Fault tolerance is a second motivation for task migration.

Assume that node 7 in the hypercube system in Fig. 1 is

faulty, and node 0 contains a task. Then no partition of
size four is possible. Migrating the task in node 0 to node

1 will make possible the use of nodes 0, 2, 4, and 6 to par-

tition the network to form an independent size four
hypercube.

As a third motivation, consider a parallel program that

currently occupies a partition, where each processor con-
tains one process. Now assume that each process executes

a fork system call, i.e., generates an identical copy of

itself in a different processor. In a non-shared memory

environment, this implies copying all relevant process
information to a new set of processors. If multiple choices

for selecting a partition for the newly forked processes
exist, the model presented here provides one criterion for

making a choice that minimizes the time to copy the
required information to the new partition.

A fourth motivation is load balancing. Consider a paral-

CH2649-2/89/0000/0211501.00 © 1988 IEEE
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lel processing system that permits multiprocessing in its

processors. For example, if a partition A shares its time
between five tasks, while another partition B of the same
size has only three tasks, migration of one task from A to
B may represent a more favorable distribution of system
load.

PASM is a partitionable SIMD/MIMD parallel processing
system (wh_-e each partition can independently switch
between the SIMD and MIMD modes of parallelism at the
instruction level), a prototype of which is in operation at
Purdue University [11]. Currently, the idea of an Image
Understanding System (IUS) that automatically
configures and reconfigures the system is being studied

[4]. The IUS can change the resource allocation to sub-
tasks of a given task, often as a result of data dependent
decisions at execution time. This involves dynamic
changes in the number of resources (processors) allocated
to each subtask (subtask shrinking or expansion). The
work here provides a framework for some of the basic
knowledge about the PASM system that is required for
the IUS. Thus, in general, this research can be used to
support task/data dependent run-time system
reconfiguration for optimizing resource utilization.

4
100 6
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Fig. 1. Three-dimensional cube structure.

The system model that is used to analyze task migration

is described in Section 2. Section 3 discusses the parame-

ters of task migration qualitatively. Section 4 examines

the task migration parameters in a quantitative way.

2 SYSTEM MODEL FOR TASK MIGRATION

The analyses are applicable to multiple-SIMD*, MIMI),

and partitionable SIMD/MIMD* parallel machines utiliz-

ing hypercube or multistage cube interconnection net-

works and enforcing partitioning (i.e., each subnetwork of
size S must have the properties, including topology, of a

hypercube or a multistage cube built to be of size S). The

architectures under consideration are physically organized

such that each processor is paired with a memory module,

forming a Processing Element (PE). Each PE contains
programs and data if in MIMD mode, and data only if in

SIMD mode. If the task is to be moved to a different par-

tition, all local components must be relocated.

It is assumed that overall system activities are supervised

*In multiple-SIMD machines, the system can be partitioned
into independent SI]VIDsubsystems, each with it8 own control
unit for instruction hroadcMting [7]. Similarly, in partitionable
SIMD/MIMD machines, each partition must have a control unit
available for it for SIMD processing.

by a system controller, which can be a dedicated proces-

sor (e.g., the System Control Unit in PASM [11]), or a
program distributed among the system processors.
Among other duties, this system controller is responsible
for allocating and deallocating partitions, and for assign-
ing tasks to partitions. The activities in each partition

are supervised by a partition controller. Similar to the
system controller, it could be one or more designated pro-

cessors (e.g., the Micro Controllers in PASM [11]) which

also act as SIMD control units (CUs), or it could be a
program distributed among the processors of the parti-
tion.

In this paper, a task is the execution of a parallel pro-

gram on a partition. An SIMD process is the execution of

an SIMD procedure on a partition. An MIMD process is

the execution of an MIMD procedure on a PE that is part

of the partition. A task can be composed of one or more

SIMD and/or MIMD processes. Associated with each pro-

cess are data, program code, stack, etc. Suspension of a
process implies halting the process execution and saving
the state of the process (e.g., values of the CPU registers)

such that the process can be resumed as if no interruption

had occurred. Transfer of a process implies allocation of

appropriate resources at the destination, and transfer of

all information associated with the process. For example,
if a process has "b bytes of stack space available but uses

only part of it, b bytes of stack must be allocated at the
destination, the currently used part of the stack must be

moved, and stack pointers must be set appropriately.

3 QUALITATIVE VIEW OF MIGRATION

Direct overhead encompasses the time to move the task

when no other tasks affect the migration, while indirect

overhead is the additional time needed for migration that
is due to influences of other tasks. The sum of direct and

indirect overhead is the time needed to migrate a task. In

addition, the migration may delay other tasks, and thus

can cause a migration penalty.

Consider direct overhead. First, the system controller
must make a decision whether to migrate a task, and to

which destination to migrate [8]. It then instructs the

partition controller of the source partition Ps to suspend
the currently active task, and allocates the destination

partition Pd. The partition controller in Ps stops the

current task, saves all state information necessary to res-

tart the task at Pd (e.g., CPU registers), and determines
all information that must be transmitted. If the partition

runs in MIMD mode, only information from the proces-

sors and memories in the partition must be moved. If the

partition is in SIMD mode, information resident in the

CU of P_ must also be moved to the CU of Pd. The
amount of information to be transferred is dependent on

the size of the program, on the size of the data set, and

on the number of temporary variables currently in use.

The physical data paths used for data transmission are
the interconnection network for the PEs, and an inter-CU

communication link (e.g., a shared bus or shared memory)
for transfers between CUs. The time to accomplish the

data transfer depends on the amount of data to be

transmitted, the location of Ps and Pd, the tasks
influenced by the migration, the type of interconnection
network, and system implementation.
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Afterthedatatransferhasbeencompleted,thesystem
controllercanreassignPsto a newtask,usuallyaspart
of a largerpartition.At Pd, the partitioncontroller
resumesthemigratedtask,andthemigrationprocessis
completed.
Nowconsiderindirectoverheadandnetworkconflicts
(i.e., two PEs wanting to send data over the same net-

work link simultaneously). Each partition of a Cube net-

work (either single-stage or multistage), has a complete

subnetwork to itself. In such a subnetwork, conflicts in

the subnetwork can only be caused by transfers between

the PEs of a partition. Assume Ps and Pd are such that

they can be combined to form a single larger partition Pc.

For example, in a 16-PE system, if Ps = {0,4,8,12} and
Pcl _ {2,6,10,14}, then they can be combined to form a

single partition Pc = {0,2,4,6,8,10,12,14}. Then transfers

from any PE in Ps to any PE in Pd are inside Pc, and no
other partition in the system is affected. However, in gen-

eral, this combination is not always possible; thus,

transfers from PEs in Ps to PEs in Pd can violate parti-
tion boundaries. Thus, the transfer of task information

from Ps to Pd can cause interconneetion network conflicts

in other partitions of the system. These conflicts interfere

with both the migration of the task and the tasks running

in partitions affected by the migration. As an example,

consider a 16-PE system, where PEs 0 to 3 form Ps, PEs
12 to 15 form Pd, and PEs 4 to 7 and 8 to 11 form two

more partitions. Then, to transfer information from PEs

in Ps to PEs in Pd will require using subnetworks associ-

ated with either PEs 4 to 7 and/or PEs 8 to 11.

Assume the migration influences a sequence of partitions

Qk, 1 < k =< R. If partition Qk delays the migration by

the indirect overhead time TLk , the total indirect over-
head time is given by

R

T I = _ TI,k
k=1

If partition Qk utilizes S k PEs and is delayed by the

migration by time Tp, k, the migration penalty MP is
defined as

R

MP = _ SkTp, k
k=l

MP is a resource-time product. If any influenced parti-

tion has a strict time constraint (e.g., real-time process)
and the migration would violate the constraint, an infinite

migration penalty is incurred (MP=oc), which effectively

prohibits the migration from being performed. TI,K and
Tp. K are functions of the influenced partitions' network
usage and the network implementation.

Two migration methods are (a) passing the migrating

task through the affected partition without halting the

task in the affected partition, and (b) halting all intercon-
nection network use of the task in the affected partition

while the migration is performed. If the affected task is

running in SIMD mode, only (b) avoids possible erroneous

computations. In SIMD mode, PEs send messages into
the network, and, generally, in the next step read the

messages. Because the PEs are implicitly synchronized

via hardware, no check is required whether a message

arrived before reading from the network. However, if a

migrating task delays some of the messages in the parti-
tion, these messages might not have arrived at their desti-

nation when a PE tries to read them. Therefore some of

the PEs might read old data, and the computations

would be incorrect. For MIMD tasks, both (a) and (b) are
feasible, and the method resulting in better system perfor-
mance should be chosen.

4 PARAMETERIZATION OF OVERHEAD

Assume that the overhead caused by dattransfers is

known, and that a task in Ps is to be transferred to Pd.

Then the time required to transmit all necessary informa-
tion from the k th source PE to the k th destination PE is

given by TTRPE, k (it is assumed size Ps = size Pd).

Assume at t=0, a new task has entered the system, or a
need for possible reconfiguration of a task has arisen. The

system controller determines which migration is to be per-

formed, if any, using time TDE c. Once the decision to
migrate has been made, the system controller must allo-

cate a Pd, which requires time TpAL. It must then

instruct the Ps controller to migrate its current task to

Pd, and instruct the Pd controller to accept the migrated

task. This migration initiation takes time TMI.

The Ps controller now suspends the task, then the task is

transferred and resumed. Because these procedures differ

for multiple-SIMD, MIMD, and partitionable

SIMD/MIMD machines, the machine types will be dis-

cussed separately.

The PEs in a multiple-SIMD machine execute only
instructions broadcast to them by a CU. Therefore the

instructions that save the PE state (e.g., CPU registers)

and move the task must be broadcast by the CU. Thus,

the user task in the CU (i.e., the process that broadcasts

the user program PE instructions to the PEs) must be
stopped first, and then the CU must broadcast instruc-

tions to the PEs that save the PE state. The CU also

determines which information from both the PEs and CU

must be moved in order to migrate the task. The overall

time to save the SIMD state of the task is denoted Tss s.

Then all necessary information in the CU in Ps must be

moved to the CU in Pd, and the information in the PEs

of Ps must be moved to the PEs of Pd- The movement of

the CU information takes TTRCU. Some machines permit

an arbitrary assignment of CVs to PEs (e.g., MAP [70, so
the CU can be reassigned to Pd, and TTRCU is zero.

Because all PEs execute the same program in SIMD
mode, the amount of data to be transferred is the same

for all PEs, and thus TTRPE, k=TTRPE V k. All SIMD
instructions are broadcast to the PEs by the CU. If no

overlap between CU and PE operations exists, the CU

will be busy broadcasting SIMD instructions for time
TTRPE , resulting in a maximum task transfer time of

TTRCU + TTRPE. Some systems, e.g., PASM [11], have
the capability to overlap CU and PE operations, and thus
a lower bound for the total time to move the CU and PE

information is given by maX(TTRcU ' TTRPE). If the PEs
contain a DMA controller, the CU must first initialize the

PE DMA controllers (which takes TDMA) and can then
move its own state (which takes TTRCU), while the PEs'

DMA controllers move the PE state simultaneously. In
this case, the total time to move the PE and CU informa-

tion is given by TDMA + max(TTRPE , TTRCU ).

After the necessary information is moved, the CU in Pd
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restores the SIMD state of the task, which requires time

TRSS. Included in this time is the time needed to restore
the CU and the PE state.

A worst case estimate of the migration time of a SIMD
task in a multiple-SIMI) machine is therefore given by

TSIMD ----TDEC + TpAL -[- TMI q- TSSS Jr TTRCU

% TTRPE + TRSS

Assume that in an MIMD partition containing R PEs,
each PE executes one MIMD process. Consider the pro-

cessor that executes process k. After the partition con-
troller informs the PE of the migration, the PE suspends

its process (using time TSpE, k) and moves all necessary

information to the appropriate destination PE (using time

TTRPE.k). The destination PE resumes the process (using
time TRpz, k). Therefore the overall time to suspend,
transfer,and resume process k is Tspf _ k + TTRPE, k +

TRpB,k. Because all PEs can operate individually, the
maximum over all k is the time when all PEs have

resumed execution. A migration time in an MIMD

machine isthereforegiven by

TMIMD ----TDEC % TpAL -{-Tta

R

W max(TsPE, k W TTRPE,k % TRPE, k)
k----1

In a partitionable SIMI)/MIMD machine, capable of

dynamically switching between MIMD and SIMD modes,
three cases have to be distinguished: the task to be

migrated is (a) purely MIMD, (b) purely SIMD, and (c)
use both modes of parallelism. Case (e) encompasses both

(a)and (b),and isdiscussed first.

The SIMD state may have components in the CU and the
PEs, and saving this state requires time Tss s. Both PEs
and CU will be involved in saving the SIMD state, but

they may operate concurrently, and there may be overlap
with other migration steps (e.g., saving of CU information
might proceed concurrently with saving the PEs' MINI])

state). Once the SIMD state has been saved, the CU can
transfer its information (using time TTRCU), while the

PEs suspend their MIMD state, transfer their memory
and register contents (SIMD and MIMI)), and restore
their MIMD state, using time

R

max(TsPE, k+TTRPE, k_-TRPE,k) •
k_l

Finally, the SIMD state in PEs and CU can be restored,
using time TRSS. Therefore an upper bound for the
migration time of an SIMD/MIlvH) task is:

TSMIMD ----TDEC Jr TpAL q- TMI % TSSS +

R

max(max(TsPE, k W TTRPE, k + TRPE, k),TTRcU) + TRSS
k=l

In all cases above, T I is part of TTRPE, k. MP is an addi-
tional factor that must be considered.

5 SUMM.A.RY

One important aspect of system reconfiguration, task

migration, was studied. Several motivations for task

migration were discussed. The task migration cost was
classified into direct and indirect overhead, and migration

penalty. The parameters for task migration cost were

examined for multiple-SIMD, MIMD, and partitionable

SIMD/MIMD machines. The results here can be extended
to the cases where size P5 _ size Pd and where processors

are not paired with memories. For these extensions and

further information see [8].
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Abstract

We describe and analyze an algorithm for performing Gaussian elim-

ination on sparse linear systems with an FFP Machine, a small-grain

parallel computer. Given an equation Az --- b, where A is an n x n ma-

trix, our algorithm yields a permuted upper-trlangular system, from

which we obtain x by back-substitution. If A has e non-zero entries

and if f fillAns are created during elimination, then our algorithm solves

the system in O(h x (e + f)) time, using O(e + f) processing elements.

(The parameter h is the height of the FFP Machine's connection net-

work, which is O(log(e + f)).) The algorithm makes no assumptions

about the structure of A and requires no pre-processing. The pivot

order may be given in advance, or it may be chosen at run-time by

the Markowitz heuristic with only a linear increase in cost. We also

present results of simulations on sample problems, both randomly gen-

erated and from the Boeing-Harwetl set. The results of the simulations,

in operation counts, are used to estimate the performance of an FFP

Machine hardware prototype.

The Problem

Matrix problems are encountered in such disciplines as physics, en-

gineering, econometrics and operations research. Common to many of

these problems is the occurrence of matrices that are sparse, i.e., many
elements of the matrices are zero.

The matrices associated with problems from physical sciences mid

engineering, in addition to being large and sparse, are frequently struc-

tured. For example, they may be symmetric, diagonally dominant,

positive definite or banded. Hence, they lend themselves to an efficient

solution by a variety of special techniques.

In contrast, problems in such areas as operations research, non-

linear optimization or management can yield unstructured sparse ma-

trices. As a consequence, more general sparse matrix techniques have

been developed for less structured problems [3]. Such techniques are

characterized by relatively few operations per data element and an un-

predictable, dynamic growth of data structures. These issues, as sum-

marized in [2], necessitate dynamic storage management and efficient

data structure handling methods.

In the prevailing paradigm of parallel computation, we address these

issues by considering a parallel form of the direct Gaussian elimination

method, augmented by the Markowitz heuristic to establish pivot or-

dering, for the solution of systems of linear equations. The parallel

approach we take is based on a computational model of a fine-grain,

distributed-memory, network-based MIMD computer called the FFP

Machine (FFPM). In keeping with our interest in less structured prob-

lems, we make no assumptions about the structure of the coefficient

matrices. We give a brief description of the FFPM architecture in the

next section. The algorithm and results of its theoretical and experi-

mental analyses are presented in the following sections.

°This work we.s supported in part by NSF grant MIP-8702277, and by the Office

of Naval Research, Contract NOOOI4-86-K-0680,

FFP Machines

FFP Machines are a family of small-grain, parallel computers [7]

designed to execute the FFP languages of Backus [1]. An FFPM, as

shown in Figure 1, consists of a linear array of YEs, called the L-array

of L-cells, connected to each other and to an interconnection network

of T-cells. Each L-cell is a small, programmable computer with an

ALU and a very small memory. There is also a frond-cad machine that

handles I/O, but for the most part FFP execution takes place in the

L-cells and T-cells. In a simple FFPM, as shown in Figure 2, tile T-

cells are organized as a binary tree with an L-cell at each leaf and the
front-end machine above the root. A useful FFPM would contain at

least a few thousand L-cells.

FFP's primary datastructure is the sequence, and the FFPM treats

sequences as dynamic arrays [6]. That is, it is possible to randomly ac-

cess the elements of a sequence, and at the same time easy to add or
delete elements at arbitrary positions. Moreover, elements of a sequence

may be accessed either by relative position in the sequence or by con-

tent, as in associative memory[5]. Many of these operations correspond

to FFP's primitive functions, but an FFPM can support functions not

in Backus's original language [8,9]. This paper shows how an FFPM

can provide operations on sequences that are well suited to sparse ma-

trix computation. Such operations may be added as new FFP primitive

functions to be used in Gaussian elimination and other computations.

An FFP expression is placed in the L-array, each symbol in a differ-

ent L-cell, and the FFPM evaluates the expression by rewriting inner-

most function applications, known as reductble applications or RAs, un-

til no more applications remain. The FFPM operates in machine cycles
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Figure 1: The components of an FFP Maclfine.
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Figure 2: Partitioning creates a submachine for each RA.

of partitioning, execution and storage management. Partitioning cre-

ates an independent sub-machine for each RA, consisting of the L-cells

holding the RA and a binary tree of T-cells, as shown in Figure 2. Dur-

ing execution, the sub-machine's L-cells rewrite their RA by performing
local computations and exchanging messages. Message packets are sent
from the L-cells and contain instructions on how the T-cells shall treat

them. The sub-machine's T-cell network can select or sort messages,

broadcasting the result to all L-cells in the sub-machine. The T-cell

network can also perform parallel prefix operations. A sub-machine

might request extra space and suspend execution, as occurs when an

FFP expression grows during evaluation. During storage management,
the contents of the L-cells, the L-cell images, are shifted through the

L-array, retaining their left-to-right order, to make empty L-cells avail-
able where needed, as shown in Figure 3. The shifted L-cell images

obtain a new T-cell network in the next partitioning stage, and execu-

tion continues.

The Algorithm

The system of equations Ax = b is given row-wise, as an FFP

sequence

< ro_ 1 _ • • • , tOWn >

and each row, is of the form

<ai 3(i,t), ,., ai,j(i,k,), hi>

where the ith row of ,4 contains ki nonzero entries in columns j(i, i),

.... j(i,ki). The entries b I ..... bn are from the vector b. Each aij(i,t t

contains the corresponding coefficient in A ahmg with its row and col-

umn mmlbers, and it has space for some additional values used during

the computation. (For example, values used in choosing pivot elements

by the Markowilz heuristic.) The number of values required per entry

is independent of the matrix size, and for this reason, an entry might

he an FFP atom and reside in one L-cell. In that case, new primitive

FFP fimctions would be required to operate on its components. Or,

it could be a small FFP sequence, manipulated by the standard FFP

fimclions. The choice wouhl influence time and space performance on a

particular FFPM, but it has no effect on the algorithm or its analysis.
We will describe the algorithm in three parts. First, and in the

greatest detail_ we present the basic Gaussian elimination algorithm.
Second, we describe how the solution is obtained via back-substitution.

Finally, we discuss how to modify the basic algorithm to choose pivots

at runiime, using the Markowilz heuristic.

(;russian ellminatwn: Initially all rows are "active". We choose a

(non-zero) pivot element in an active row and subtract the appropriate

nmltiple of lhat row front the other active rows, so that afterwards

they have Os in the pivot element's column. Then we mark the pivot

1 3 7

Figure 3: During storage managenwnt, 1, cell images are shifted to

provide empty L-cells where requested.

element's row as inactive and repeat the process. When there are no

non-zero elements in active rows after n steps, if A is non-singular

we have the system in (permuted) upper triangular form, and we can

find the solution easily by back-substitution.

The algorithm proceeds by two types of operations: global opera-

tions, where the whole matrix is contained in one RA, and row opera.
lions, where each row is contained in its own RA. The global operations

choose the pivot, broadcast the pivot row and update the values for the

Markowitz heuristic. The row operations subtract the appropriate mul-

tiple of the pivot row, and create fillins. Since Gaussian elimination is

so familiar, it suffices to describe in detail the "inner loop", as it applies

to one active, non-pivot row.

Suppose we have a 5 x 5 system of equations (neither large nor

sparse) that contains the following:

3zl +x3 -4Xs = 3 (row 2 = pivot row)

x2 -I-2xz -- 5 (row 3)

and that a2,s has been chosen as the pivot. We wilt trace the effect of a

single step on the third row. Figure 4 (a) shows row 3 at the beginning

of the step. The column numbers of the entries in the pivot row are

broadcast to the entire matrix in a global operation, and each active

element counts these less than or equal to its own, shown as temp in

Figure 4 (b). Each element also records whether one of these matches

its own column number, shown as hit. Next, each entry computes

the number of elements in the pivot row between itself and its left

neighbor. (This is done separately in each active row, by a parallel

prefix computation.) This value, minus 1 if hit is true (tenip in Figure

4 (c)) gives the number of fillins to be created to the left of the entry
The fillin entries are created after an FFPM storage management cycle.

The elements who are going to be "hit" on this step compute their

relative order within the row, temp in Figure 4 (d). (This is another

parallel prefix computation, done separately in each active row.) Now,

in another global operation, the values in the pivot row are broadcast

once again, sorted by colmnn number in the T-cell network, and each

entry to be hit receives the column nuniher and pivot row coefficient

indicated by its index from the previous step. This is shown in Figure

4 (el, where tcmp now is the value fronl the pivot row. Finally, in

another row operation, the element in the pivot colunnl broadcasts the

quotient value + temp and every "hit" entry performs Ihe nmltiplication
and subtraction.

A subtle point of the algorithm is worth mentioning. The newly cre-

ated fillins do not have cohnnn numbers until the pivot row is broadcast

the second time. (Shown by "-" in Figure 4 (d).) Before the pivot row

is broadcast the first time, there is no way, m general, for another row

to know how many fillins it will need. Nor is there any way to know

where they will be created. As we remarked earlier, an L-cell is fairly

small. It is reasonable to assume that it can store several small inlegers

but it is not reasonable to assume that it can store arbitrarily many

colunul numbers. So, the reason for the second hroadca.st of the pivot

row is simply that we want to create all fillins for one step of the Gaus

sian elimination in one FFPM storage manageuient cycle, rather than

deciding as each pivot row entry arrives whelher it requires a tillin.

Vqe analyze the Gaussian elimination algorithm as follows. An L
cell does a bounded number of arithmetic operations for each value
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row 3 3 3 3 3
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active T I T I T t T T

p-row F F I F I F F

p-col F F I T I F F
hit T F I T I T T

tcmp 3 - 1 1 I -4 _ 3

value I -6 1 I 0 8 I -1

row ]l 3 3 [ 3 3 I 3
coil 2 13 5 Ib

active T T I T T I T

Figure 4:

Snapshots of one row of a system of equations during one step
of Gaussian elimination. Each column shows the contents of

one entry (one L-cell). The coefficient, row and column num-
ber are shown as value, row and col, respectively. ("col = b"

identifies elements of vector b.) Booleans active, p-row and p-
col show that this is an active row, not the pivot row, with

an entry in the pivot column. The Boolean hit shows which

entries correspond to (non-zero) entries in the pivot, row. The

values in letup are used for creating fillins in (b) (d), and are

the pivot row entries in (e).

it receives, so we may restrict our attention to the time required for

communication. Suppose there are e entries in the original system and

that, for the sequence of pivots we choose, f fillins are created. (For

convenience we assume A is non-singular, so that e > n and so that

Gaussian elimination will take n steps.) Clearly, we need O(e + f) L-

ceils, and the height h of the binary tree of T-cells needed to connect

them is O(log(e + f)). The cost of shifting in the original problem and

of making room for fillins (over all n steps) is O(e +f), since the amount

of space requested bounds the cost of storage movement. Each entry

or flllin is in a pivot row exactly once, so it is broadcast, twice for that

purpose. Thus O(e + f) messages go through the root of a submachine

of height O(h) in n message waves. That requires O(n x h) time to fill

the T-cell pipeline n times, plus O(e+f) time for the messages to arrive

in sequence. Thus there is a total ofO(h x (e+f)) time for broadcasting

the pivot rows. There are a fixed number of row operations for each

step, and these only broadcast single values and perform parallel prefix

computations. Each of these requires time O(h), so over n steps this is

also O(h x (e + f)). We conclude that the entire Gaussian elimination,

then, requires O(h × (e + f)) time.

Back-substitution: Once we have the system in permuted upper-triangular

form, it is easy to finish solving the system by back-substitution. Each

row (in an independent row operation) determines if it has the value

for a variable by seeing if it has exactly one non-zero aij entry. (One

parallel prefix operation can count the number of entries.) If so, it

computes the value of xj (by one division) and broadcasts it on the

next global operation and becomes inactive. Rows that remain active
receive the x values and eliminate those variables from their equation.

Eventually, assuming the system has a unique solution, every row will
have found the value of one variable. Tile time for this is O(h × n),

which is again O(h x (e + f)).

Choosing pivots: We modify the Gaussian elimination algorithm to

choose pivots at runtime by the Markowitz heuristic, as follows. Let

each entry keep two additional values, nr and nc. The number of other

non-zero elements in an entry's row will be nr, and the number of other

non-zero elements in its column will be nc. We can initialize the nr and

nc values by broadcasting the row and column numbers of the original

matrix entries, and letting each entry count the number of matches.

Every time an entry becomes inactive (or zero), it globally broadcasts
its row and column numbers, and other (active) entries decrement their

nr and nc values, respectively, if the row or column numbers match.

Every time a fillin is created, it globally broadcasts its row and column

numbers, and other (active) entries increment their nr and nc values,

respectively. To choose a pivot, each active entry computes the product
of its nr and nc values, and the T-cell network chooses a minimal one.

The additional time required for this is O(h x (e+f)), with the analysis

much like that for the basic algorithm.

The Simulations

Our simulations supplement the analysis presented in the previous

section. The set ofsarnple problems contains both randomly generated

matrices and matrices from various real-life applications (obtained from

the Boeing-ltarwell sparse matrix collection[4]). The simulator was
written in C and run on a Convex C-220 system (two processors), with

an implicit vectorizing/paralleliziug compiler.

The simulator is in two parts. The first part is used to study fillin

behavior and to count the number of floating point operations in tri-

angularizing a coefficient matrix. It omits the back-substitution com-
putation, but it does count the work required to choose pivots by the

Markowitz heuristic. The output of the first part of the simulator is in-

put to the second part, which uses parameters for an FFPM hardware

prototype to provide performance estimates. In the remainder of this

section, we describe the two parts of the simulator and summarize its
results.

The coefficient matrices are transformed into a 0/1 representation,

i.e., non-zero entries are replaced by ls and zero entries by 0s. Due

to the relatively small size of our sample problems and the simplicity

of programming, we use dense matrix representations for storing the
0/1 matrices. We note, however, that the sparse nature of the problem

is maintained in that only operations for non-zero entries are counted.

The simulator follows the basic Gaussian elimination technique. The

Markowitz heuristic, used to choose pivots, tends to minimize the num-

ber of fillins, retaining the sparsity of a matrix. Numerical stability

issues were not taken into account, but one can add a threshold based

criterion for selecting a numerically stable pivot without changing the

complexity of the algorithm.

The results of the first part of our simulations on randomly gen-

erated matrices and matrices from the Boeing-ilarwell collection are

presented in Tables 1 and 2, respectively. The number "entries" is the

order Ientries fillins
I

100 516 746

200 1995 9380

300 4466 31332

400 7922 68512

500 12421 125662

mean size ofpivot row

sequential

operations

7 9955

29 548937

60 3560740

96 11749105

139 29876633

Table 1: Randomly generated matrices.
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order

180

199

541

600

822

discipline entries fillins mean size of

pivot row

sequential

operations

astrophysics 2659 145 7 30628

stress analysis 701 703 4 5003
chemical kinetics 4285 11442 14 301068

oil recovery 13760 30304 37 2060332

linear programming 4790 1701 5 15132

Table 2: Matrices from the Boeing-Harwell collection.

number of non-zero entries in the initial coefficient matrix, "fillins" is

the number of entries created during Gaussian elimination, and "se-

quential operations" is the sum of divisions, multiplications, and sub-

tractions performed. The results presented in Table 1 were obtained

by averaging the results of 5 separate trials on random matrices with

an average density of 5%

Next we present the performance estimates produced by the second

part. of the simulator. Due to the pipelined nature of the FFPM ar-

chitecture, there is a considerable overlap between useful computation

and communication. Therefore, it is most meaningful to account for

the net solution time for a problem. Messages are typically made up

of several packets, based on data size and the format required by the

T-cells. Tile speed of operation is directly governed by the parameters

of hardware employed. The parameters used in this model were derived

from the specifications of a transputer (20 MIPS) operating at the clock
rate of 20 MHz. The communication channels in the tree-network were

modeled to be bit-serial with peak throughput of 10 Mbps. The eom-

nmnication channels among cells in the L-array were considered to be

byte wide with a peak data rate of 10 MBps.

The results are shown in Tables 3 and 4, corresponding to the entries

m Tables 1 and 2, tfere "parallel operations" is the sum of all divisions,

multiplications, and subtraction operations performed in each disjoint

sub-machine, and corresponds to the operations performed on the last

message received by an L-cell. We have presented the results of total

solution time for the problems under two distinct situations, the first

where the pivoting sequence was defined before elimiuation, and the

second where Markowitz heuristic was employed to determine the piv-

oling sequence during the computation. (Both use the same ordering

fi)r each matrix.) The cost of choosing pivots at runtime is surprisingly

high, but this is due, in part, to the size of the message packets required

in the design being simulated.

order

I paralleloperations

I00 1338

200 7084

300 19989

400 41042

500 72579

time (msec)

given order I runtime pivoting

18 61

102 486

293 1497

601 3172

106,t 5708

Table 3: Performance estimates (random matrices),

order

180

199

541

6O0

822

paralleloperations

time (reset)

given order I runtime pivoting

2675 36 128

2108 27 77

12078 161 693

25682 394 1861

8151 128 352

Conclusions

We have described and analyzed an algorithm for performing Gaus-

sian elimination on sparse matrices with an FFPM. This work is rele-

vant to FFPM development in two ways. First, it demonstrates how

the basic FFP language can be extended with new primitive operations,

to better support operations on sparse matrices. Secondly, it provides

performance estimates for an FFPM hardware prototype on a real-life
problem.

Acknowledgements

We would like to thank Dr. A.M. Erisman and Dr. R.G. Grimes of

Boeing Computer Services, Seattle, Washington, for providing us with

Boeing-Harwell collection of sparse matrices. Mr, Mike Padrick and

Mr. Larry Mason, of Academic Computing Services at UNC, provided

assistance with systems related issues on the Convex computer. In the

Department of Computer Science, Vernon Chi, William Pertain and

l)onald Stanat provided encouragement and valuable suggestions, and
Deborah Stogner produced the figures.

[7]

Is]

[9]

References

[1] J. Backus. Can progranuning be liberated from the yon Neumann

style? A functional style and its algebra of programs. Communica-

tions of the ACM, 21(8):613-641, 1978.

[2] I.S. Duff. The use of vector and parallel computers in the solution of

large sparse linear equations. In Large Scale Scientific Computing,
Birkh_user, 1986.

[3] I.S. Duff, A.M. Erisman, and J.K Reid. Direct Methods for Sparse

Matrices. Clarendon Press, 1986.

[4] I.S. Duff, R.G. Grimes, and J.G. Lewis. Sparse Matru: Test Prob-

lems. Technical Report, Computer Science and Systems Division,

llarwell Laboratory, 1987.

[5] G.A. Mag6. Data sharing in an FFP Machine. In Conference

Record of the 1982 A CM Symposium on LISP and Functional Pro-

gramming, pages 201 207, 1982.

[6] G.A. Meg5 and W. Partain. Implementing dynamic arrays: a chal-

lenge for high-performance machines. In Proceedings of the Second

International Conference on Supercomputing, pages 491-493, 1987.

G.A. Mag6 and D.F. Stanat. The FFP Machine. In H2gh-Level
Language Computer Architecture, Computer Science Press, 1988.

D. Middleton and B.T. Smith. FFP Machine support for language

extensions. In Proceedings of the 19th Hawaiian International Con-

ference on Systems Sciences, pages 59-65, 1986.

B.T. Smith and D. Middleton. Exploiting fine-grained parallelism

in production systems. In Proceedings of the Seventh Biennial Con-

ference of the Canadian Society for Computational Studies of Intel-

ligence, pages 262-270, 1988.

)'FaMe -i: 1 erformance estimates (Boeing-Harwell matrices).

218



A PARALLEL ALGORITHM FOR FINITE ELEMENT COMPUTATION

P. Subramaniam N. Ida

Picker International

595 Miner rd.

Highland Hights, OH. 44143

Electrical Engineering Department

The University of Akron

Akron, OH. 44325

ABSTRACT

The work presented here deals with the

parallel implementation of finite element analysis

algorithms for computation of electromagnetic

fields. The methods apply equally well to other

areas. The choice of a parallel implementation is

based on the fact that many of the operations and

algorithms used for finite element analysis (FEM)

are essentially parallel or can be parallelized

with a moderate level of effort. The solution of

electromagnetic field problems is particularly

appropriate into the context of parallel machines

because of the open boundary nature of the problem

and the size of the finite element matrices.

INTRODUCTION

The basic stages of the finite element method

have been parallelized and a working implementation

has been tested. The first stage in the solution is

the definition of elemental matrices. The sizes of

these matrices range from as little as 3x3 for a

simple 2-D element to 60x60 or more for 3-D

elements. The solution of the system of equations

is handled by a parallelized Gaussian elimination

algorithm. Postprocessing consists essentially of

calculating field intensities and flux densities as

well as coil impedances.

The essential steps in FEM analysis are:

i. Discretization of the solution domain

2. Calculation of elemental matrices

3. Assembly of a global matrix

4. Solution of the system of equations

5. Post-processing of the results

This work concentrates on steps 2 and 3. Step 1

is a geometrical problem that includes definition

of a geometry, decision on a discretization level,

input of a variety of geometrical data, material

properties etc. This is usually handled through a

graphics preprocessor and is not suited for

parallel machines. The interaction of the designer

with the computer at this stage is essential and

therefore, the best approach is to use a graphics

workstation. The input for the FEM program is a

geometric and problem dependent data file. This is

assumed to have been generated for the purpose of

this work.

The solution of the system of equations

generated in the FEM process has been treated

elsewhere [2]. The parallel solution routines

developed are used in conjunction with the programs

described here.

Finally, the postprocessing step has been left

out because of its highly specialized nature. This

may include calculation of electromagnetic fields

everywhere or, perhaps a single scalar value like

the total energy in the system or the impedance of

a coil.

THE FINITE ELEMENT METHOD

A brief outline of the FEM is given below with

special reference to the following boundary-value

problem:

82A a2A

+ wYS--_ + J = 0 (x,y) E G (la)

A-A o on boundaries of G (Ib)

where vx, vy are material properties associated

with the solution domain and J is the current in

the domain In the solution domain, G, the magnetic

vector potential (MVP) A satisfies Poisson's

equation, while on the boundary B of the solution

region, the MVP or its first derivatives are known.

Here, and throughout this work, reference is made

to the magnetic vector potential. Equation 1

however, applies to a variety of physical

quantities, vector or scalar. Time dependent

problems may also be considered but for simplicity,

these are not discussed here. Also, a 2-D equation

is used. 3-D equations are treated similarly with a

somewhat lengthier process and with larger arrays.

The boundary-value problem in Eq.(1) can be

stated by the following variational problem:

F (A)-r [i[ 0A aA
WX(_x)2+uy(Sy)2]+j.A]dxdy (x,y) E G (2a)Jc X

A=A o on boundaries of G (2b)

Minimization of F(A) yields the "best solution"

to the original equation.

The case of known normal derivatives is not

included in Eq. (2). This is a natural boundary

conditions for the functional and need not be

specified.

The solution region is divided into a number of

"finite elements". Here, each element is a

rectangle or a triangle. The elements are assumed

to be interconnected at a number of nodal points

CH2649-2/89/0000/0219501.00 © 1988 IEEE
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situated on their boundaries. The MVPs at these

nodal points are the unknowns.

The MVP within each element can be defined

using various approximations. There are two basic

methods of defining these approximations. One is

based on products of polynomials in a local system

of coordinates while the other is based on a

polynomial over the element, defined in the system

of coordinates in which the problem is solved [I].

The two methods are quite different and will be

outlined briefly below as this is necessary for

their implementation. To illustrate the process we

use the two simple elements in Fig. I.

ISOPARAMETRIC FINITE ELEMENTS

The approximation used for the function A in

the interior of the finite element in Fig. la is:

4

A(x,y)-IZIN_A_._ (3)

where Ni are a set of shape functions defined at

the four nodes of the elemet and A, are the values

of the unknown function at the same nodes.

Similarly, the derivatives of A can be taken as:

aA(x,y) _ ON, 0A(x,y) _ --0N'

ax i-I 8--_- AI ay i-I ay A_
(4)

The functions N_ as well as their derivatives

aN1/Ox, ONi/Oy need to be known. The standard

method for their calculation is to find them in a

local system of coordinates where they are

extremely simple and then to map them into the

global system of coordinates. The derivatives with

respect to x and y are calculated as:

rxI-EJIL Eol-
yyj L .J
where [J] is the Jacobian matrix.

(5)

These are now substituted in Eq. (2). In order

to find a solution to the problem, the functional

in (2) is minimized by setting it's first

derivatives with respect to each unknown to zero.

This produces an algebraic equation for each

unknown. Rather than doing this for the whole

solution domain, it is done for each element

separately and the contributions from separate

elements are summed up in a global system of

equations.

To produce the elemental contributions, the

terms in Eq. (2) need to be evaluated. This is done

numerically by Gaussian quadrature.

2 2

E Z Wj.f'(f_ ,_j) (6)
i-1 j-1 w_'

where W_,Wj are weights and _,_j are quadrature

points. This integration is done locally and then,

using the shape functions, mapped to the global

system of coordinates. For a simple element like

this two points in each spatial direction are

sufficient. For more complex elements, more points

may be required.

Implementation on the MPP

Implementation begins by creating three arrays:

SFI,SF2 and SF3 where SFI holds the shape functions

of the four nodes as four rows of four entries

each. Each column holds the shape function for one

quadrature point. Similarly, SF2 holds aNi/8_ in

four columns, each column corresponding to a

quadrature point and each row to a nodal point of

the element. SF3 has the same structure for aNj/aN.

The first step in the computation of the

elemental matrices is the calculation of the

Jacobian (Eq. 5). It is stored in four arrays:

RJACI, RJAC2, RJAC3 and RJAC4. RJACI holds the

first coefficient (RJAC(I,I) for 128 elements

calculated in parallel. RJAC2 contains the second

coefficient (RJAC(I,2)), RJAC3 contains RJAC(2,1)

and RJAC4 contains RJAC(2,2). The determinant of

the Jacobian is calculated and stored in array DETJ

for all elements in parallel. The inverse of the

Jacobian needed in Eq. (5) is now found for all 128

elements by a single divide of the RJAC arrays by

the DETJ array. The results are placed back into

the RJAC(i) arrays.

The derivatives of the shape functions with

respect to x (Eq. (5)) are calculated by

multiplying RJACI by the SF2 array, RJAC2 by the

SF3 array and adding the results together. The

calculation of the derivatives with respect to Y is

found as the sum of RJAC3*SF3 and RJAC4*SF3.

The contributions to the elemental matrix in

Eq. (6) are found by parallel array multiplication

of each of the four DNDX(i) array by DNDX(j),

including itself and adding these to the product of

the DNDY(1)*DNDY(j) arrays. The material

properties RXI (vx), RYI (v_) are taken from array

MAT by shifting operations. From this, the 16

contributions to the elemental matrices are found

and entered in a single array (RRR). Each element

takes the first 16 rows on a single column.

The global equation assembly proceeds by moving

each value in the elemental matrix into the global

matrix.

To create the right hand side (RHS) of the

system of equations, the same process is used. As

is clear from Eq. (2), The current density J is

multiplied by the shape functions in SFI and

integrated using Eq. (6). An elemental column

vector is created and this is later put in a global

RHS vector.

The method outlined can handle up to 128

elements in parallel. It is possible to extend this

to any number but it requires handling multiple

arrays. Since in a FEM analysis, most of the time

is spent in the solution process this was not

considered worth while. There are two problems

associated with this method. One is the need for

sequential insertion in the global matrix. The
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second, is in the number of arrays required. Since

the number of arrays is relatively large (about 20

for a four node element), the only elements that

can be handled in this fashion are elements with a

small number of nodes (3 to 6 nodes). Other types

of elements need special considerations. This may

seem limiting but most FEM programs use these

elements. For more complex elements, elemental

matrices can be combined in arrays, with fewer

parallel matrices at each step. Alternatively, the

method of storage in the following section is used.

DIRECT DEFINITION OF ELEMENTAL MATRICES

Another method for the definition of the elemental

contributions is to assume that the distribution

within the finite element is of the following

form [I]

A(x,y)-ax+by+c (7)

If this polynomial is written at the three

nodes of the element in Fig. ib, we get three

equations in the unknowns a, b and c. By solving

these equations we get:

4

A(x,y)-N_AI+NjAj+N,_-i_IN_A_ (8)

where NI, N], N_ are the shape functions given by

Ni(x,y)-(alx+bly+ci)/2D (9a)

Nj(x,y)-(ajx+bjy+cj)/2D (9b)

N_(x,y)-(amx+bmy+cm)/2D (9c)

where:

al-yj-y_ aj-y_-yl am-yl-yj (10a)

b_=x_-xj bj-xi-x_ bm-xj-xl (10b)

ci=xjym-x_yj cj-x_y,-x_y_ c_-x_yj-xjyl (10c)

and xk, yK are the x and y coordinates of node k,

k-i,j,m. D is the area of element ijm.

The expressions in Eq.(9) are substituted into

the functional F(A). Minimization of F(A) yields

a characteristic equation for triangle ijm:

[K]eiA)e=lF)e [K]e=Jkji kjj kj, I (F) e- j (ii)

L_ _,j _J LFmJ

where:

k_i-(alal+b_bi)/4D kij-(aiaj+blbj)/4D

k1_=(aiam+bib_)/4D kj_=(aja_+bjb,)/4D

kjj=(aja]+bjbj)/4D kjm=(aja_+bjb=)/4D (12)

km_-(a_ai+b_bl)/4D k_j=(a_aj+b_bj)/4D

_=(a_am+bmb_)/4D FI-Fj-Fm=D*J/3

A global equation in the form [K](A}-{F) is

assembled by accumulating the contributions of all

elemental matrices (Eq. (11).

Implementation on the MPP

The parallelization process can be divided into

two phases. In the first phase, the elemental

matrix is computed where the 9 coefficients are

calculated in parallel. In the second phase, a

number of elemental matrices are placed in the

global matrix concurrently.

First, the elemental matrix [K] e in Eq.(ll)

is rearranged into the following form:

[K]e-([K]el + {K]e2)/4D (13)

where

lala_ al aj ar am] rb, bl bl bj bl bm][K]el- jal ajaj ajam [k]e2-1bjbl bjbj bjb_| (14)

Lama l a_,aj a_a_j Lb_b_ b_bj b_b_J

The two matrices in (14) can be further

represented as

[k]el_[e ] ([p])t+[Q] ( [Q] )t (15)

where

[P]- j aj aj [Q]- j bj bj (16)

La,.a.,a,. Lb., bm b_.

Based on the expression in Eq.(10), [P] and [Q]

are now represented as :

[P]-[PI]-[P2] [Q]-[QI]- [Q2] (17)

where [PI], [P2], [QI] and [Q2] are the two parts

of the expressions in Eq. 10a and 10b.

Special consideration is given to the

calculation of D, the area of triangle ljm. In

order to perform the divide operation in Eq. (13),

an array, [D] is created

[D]_2([R]-[S]) (18)

where

ra,bj albj a,bj] rajb, ajb, ajb, 1
[R]-la,b J albj a,bj| [S]-lajb, ajbl ajb,I (19)

Lalbj a_bj albjJ Lajb_ ajbl ajblJ

These two arrays can be further represented in

terms of the coordinates of the three nodal points:

JR]-( [R2]- [R3] ) ( [SI ]- [$3 ] ) (20a)

[S]-([R3]- [RI])([S3]- [$2]) (20b)

where [SI] has x_ propagated in all nine locations

and [RI] has yl propagated throughout. Similarly,

[$2] and [R2] contain xj and yj respectively and

[$3] and [R3] contain xm and y,_ propagated

throughout.

Finally, the elemental matrix of triangle ijm

is obtained by performing one array divide

operation:

[K]e-([K]el + [K]e2)/D (21)

At this point, the calculation of the elemental

matrix has been parallelized. However, for the

element used here, each array operation involves

only 9 coefficients. A number of elemental matrices
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can be computed concurrently by creating a whole

plane or nearly a whole plane of data before any

array operation is carried out. As an example a

rectangular mesh with 210 triangular elements is

used (Fig. 2). The mesh can be partitioned into 8

sets of elements that have mutually exclusive nodes

as shown. All nodal coordinates of elements in this

set are placed in [PI], [P2], [QI], [Q2] in

mq.(17), and [SI], [$2], [$3], [RI], [R2], [R3] in

Eq.(20) to form nearly a whole plane of data. These

elements can be assembled in parallel. Once the

elements in a set have been assembled, a new set is

treated until all elements have been assembled.

A Parallel Pascal code has been developed based

on the above parallel algorithm and applied to

perform global equation assembly on the MPP for the

finite element mesh shown in Fig. 2. The total

processing time is 114.47 ms including the time

needed for local nodal numbering. A larger portion

of the total processing time has been spent on

forming whole planes of data. Since the x and y

coordinates are stored in two arrays, considerable

use of fast row and column propagation routines has

been made. Thus, the assembly routines are not

particularly efficient for elements with few nodal

points.

There are some important elements, such as 3D

solid and shell elements, etc., which are extremely

i'1 1t

J

8.

b.

Figure i. Two finite elements, a. Isoparametric

element defined in a local system, b. Triangular

element defined in a global system of coordinates.

Table i. Processing time on the MPP for matrix

assembly for different finite element meshes. Time

is in seconds

No. of

Equat.

128 J

256

512

1024

No. of Band-

Elements width

93 63

189 127

441 127

889 255

i Time onthe MPP

0.183

1.296

3.488

14.363

complex and require considerable computer

resources. For these elements, parallel assembly of

the equations is a significant step towards

improving solution times and, in some cases

(boundary integral elements) may be more

significant than the solution of the system of

equations. For these elements, the method outlined

becomes more efficient as the number of nodes per

element approaches 128.

CONCLUSIONS

Two methods for assembly of systems of equations

arising from finite element analysis have been

presented. One is particularly suited for elements

with few nodal points while the other is for

directly defined finite elements. The time involved

in assembly is not considered to be significant

compared with the time needed for solution.
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ABSTRACT

The Systolic Data Flow Machine (SDFM) is a new hybrid

architecture concept that provides a new pattern for paral-

lel processing. It is a two level architecture that combines

the efficiency of systolic arrays with the elegance of a data

flow architecture. The SDFM is based on the partitioning of

data flow programs (graphs) into subgraphs of sufficiently

small size so that they may be loaded into programmable

systolic arrays, called processing elements. In this paper,

we map a FFT algorithm onto a suggested processing el-

ement topology in order to demonstrate the utility of this

approach, and to investigate the exploitation of the natural

concurrency of this algorithm. This paper should be con-

sidered as an interim report from a major project to design

and implement a SDFM computer system.

Keywords: FFT, Data Flow, Systolic Arrays, Parallel Pro-

cessing, Mapability.

INTRODUCTION

Recent trends in computer systems are the distribution of

computation among physical processors, and the search for

alternatives to the classical sequential (yon Neumann) ma-

chine. Data flow machines [8,2,6,7,11], and systolic array

processors [10,9,1]. are such alternatives.

The prime features which make the Data Flow model so

promising are its capabilities to automatically distribute

control down to the level cf operations on scalar opcrands,

and efficiently to exploit, on a large scale, an algorithm's

inherent parallelism. Unfortunately, experience with Data

Flow machines has revealed several serious problems. The

absence of explicit storage, operand accumulation, the law

of granularity, and the need to control and support large

amount of interprocessor communications impose serious

overhead problems.

Systolic arrays - large regular arrays composed of identi-

cal processors interconnected in a regular pattern - can

efficiently support parallelism at an extremely fine level of

granularity with no overhead. Systolic architecture is very

attractive from the hardware viewpoint, for many proces-

sots interconnected by short communication paths could

be effected by an economical VLSI design and implementa-

tion. It is also extremely attractive for the implementation

of algorithms composed of a large number of similar com-

putational cells. It does not seem to be directly applicable

to support a general computing environment. Thus, it ap-

pears unlikely that computers based exclusively on either

architecture will be able to compete with yon Neumann

based machines for general purpose computation.

These shortcomings have motivated the proposal of a new

hybrid architectural concept - the Systolic Data Flow Ma-

chine (SDFM), which will provide a new pattern for parallel

processing. It employs two levels, combining the efficiency

of systolic arrays at the lower level with the elegance of a

data flow architecture at the higher.

In this paper, we investigate the utility of this approach,

and discuss the optimal exploitation of the natural concur-

rency of this application algorithm. To do this, we have

mapped several FFT algorithm fragments onto a few sys-

tolic elements with a suggested topology. Then, we suggest

mapability and performance criterions such as the number

of allocated primitive processors (in a systolic array), and

the number of active primitive processors and systolic ar-

rays at a time.

THESDFM OPERATION

Conceptually, the SDFM is based on the partitioning of

data flow programs (graphs) into subgraphs of sufficiently

small size so that they may be loaded into programmable

systolic arrays, called Processing Elements (PE's), each

with local common memory. This memory may be used

to contain structures accessible to all the processors in the

PE. As the number of subgraphs required for the execution

of a set of multiprogrammed processes will likely exceed

the available number of PEs, PE faults - that is, input to-

kens appearing for which the designated subgraph is not

presently assigned to a PE will cause replacement of in-

active resident PE subgraphs in the manner of a page fault.

Figure 1 illustrates a set of physical PEs and a data flow

program graph partitioned into a few blocks, some of which

CH2649-2/89/0000/0223501.00 © 1988 IEEE
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Figure 1: Data flow program graph blocks mapped to sev-

eral processing elements.

THE MAPPING OF A FFT ALGORITHM

The FFT Algorithm

The Fast Fourier Transform is an algorithm that rapidly

computes the discrete Fourier Transform. The algorithm is

described by I5]:

n-1

x(,_) : y: x0(k)e -_'"k/_
k=O

where Xo(k) are the original (complex) data points in

time or space domain, and X(n) are the transformed points

in the frequency domain.

For N = 2_ the FFT algorithm is a procedure for factoring

an N x N matrix into 7 matrices. For example, if N=4, and
W = e -j2_/N.

ix,0,1[,vo,vowe , 01lXo 0,1X(1) W ° H'q W 2 W3 Xo(1)

x(2) : w ° w _ w _ w5 Xo(2)
x(3) w ° w _ w _ w9 Xo(3)

The FFT algorithm factors the W matrix into the following
submatrices:

are currently mapped to PEg (note the block marked by the

thick frame). This approach is particularly attractive, since

frequently invoked operating system procedures can reside

permanently in PEg, eliminating the artificial temporal lin-

earization of resident routines of an operating system used

in a conventional machine.

The Processing Element

The Processing Element (PE) implements the lowest gran-

ularity level of the SDFM. Each PE is a systolic array com-

posed of a few Primitive Processors (PPs) connected in a

regular geometry. This processors operate concurrently,

passing scalar operands between them continuously. The

topolgy being selected is a planar graph, where each node

represents a PP, and has a connectivity with indegree 2

and outdegree 2 1. In order to support iteration the array is

(conceptually) mapped onto a cylinder. Since only a subset

of the hard-wired connections between PPs are (software)

selected, many different configurations can be mapped to

this physical pattern.

Further discussion of the SDFM architecture and its PE

topolgy is given in [4,12].

t Optimal choice of array geometry and the associated mapping prob-
lems are discussed in [3,14,13,15].

11wo0u][o ,o0][xo o]x(1) 1 w _ o o o 1 o w o XoO)
X(2) = 0 0 1 W' 1 0 W _ 0 Xo(2)

x(3) 0 0 1 w 3 0 1 0 w _ x0(3)

Signal Flow Graph

A signal flow graph ([5]) can be constructed to represent
the above matrix multiplication as shown in Figure 2.

No(O) Xl(O) X2(O)

Xo(_ _ _3)

Figure 2: Signal flow graph for the matrix multiplication.
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Each node is entered by two paths. A quantity from one

array travels along a path, is multiplied by W p, and pro-

ceeds into next array (no W shown implies W p = 1). The

inputs are added at each node. Each column of the graph

corresponds to a factored matrix, of which there are 7.

The Mapping of the FFT

As an example, we map the FFT algorithm with N=4 onto

a single PE as shown in Figure 3.

The mapping is performed by insertion of additional "trans-

mission" modes, and labeling (associating nodes with oper-

ators and/or routing functions.) At each point of insertion

we use a routing node (e.g. a "crossover" node is inserted at

each point where two edges cross.) Note, that the routing

processors contribute to computation, since they are the

analog of the data movement instructions in a conventional

machine, or of the crowded communication buses in a data

flow machine. The rest of the allocated PPs take on the

dual functions of performing operations and transmitting

data. The execution of such a data flow graph proceeds like

a wavefront through the graph. We expect the PPs on each

row to execute concurrently, as well as yielding operands to

trigger PPs on the following row. Operands generated by

PPs which reside on the last row are used as inputs to PPs

comprising the first row (the cylinder structure facilitates

iteration.) When all the iterations are completed, the re-

suits are the outputs of the PE. Let 1, which will serve as

an iteration counter, be initially set to 7 where N = 2*.

I

#/

10 x_(o)

xo(o) xo(z)

11

xo,( x_{

)

/
x_(2) r_(3) Is

Xo(_) xo(3)

Figure 3: Mapping of a FFT algorithm onto a single PE.

Generalization

While the PE has been shown as optimal for processing the

FFT algorithm with a N=4, problems in the real world in-

variably involve handling FFT algorithms with much larger

N.

For j=t to 7
For i=0 to N/2-1

Xj(i) :: X(i) + X(i + (Nt2 - 1)) * W _

xj(i + (N/Z - t)) :: x(i) - X(i + (N/2 - 1)) • W_

For i=0 to N/2-1

x(i • 2) :: xAi)
X(i, 2 + 1) := Xj(i + N/2 - 1))

End

Since the destinations of all the operands inside an itera-

tion are local, we can partition the computation graph to

N/4 sub-graphs, each of which will be mapped to a single

PE. Some of the outputs of a subgraph may be destined

to subgraphs mapped to other PE's (external communica-

tion). This is accomplished by placing the PE's outputs

on the ring bus, and transmitting them to the inputs of

other PEs. For very large N (where the number of FFT

subgraphs is larger then the number of physical PEs) we

use virtualization. This elimination of the "residency re-

quirement" facilitates the provision of many virtual PEs to

accommodate the totality of the FFT data flow graphs.

RESULTS

From studying the mapping of the FFT algorithm , con-

clusions can be obtain about system attributes such as:

the ratio of local to global communication, granularity, in-

struction execution and communication time, parallelism

and processor utilization. For this purpose, we suggest two

mapability criteria: the processor allocation density (the

ratio of allocated PPs to (allocated + free) PPs ratio) and

the systolic efficiency (the ratio of local communication to

(local + distant) communication ratio). All the PPs are

being allocated if N mod 4 is 0 - otherwise, only one PE

will have a lower density. Consequently, for large N the

density will go to 1. Approximately, 53 percent of the PP's

are utilized for communication purposes (routing, duplica-

tion, or crossing over). The rest of the PP's are used for

simple instruction execution (multiplication, addition, and

subtraction of scalar operands). A small fraction is also

used for control instructions. The systolic ef_ciency is a bit

lower then the results we got in other programs, and is 12

for N:4, and converges to 6 for large N.

The parallelism obtained by computing the FFT using the

SDFM varies at the different architecture levels. The map-

ping shows that for N = 2' there will be 2' inputs and 7 it-

erations of the systolic array. Each iteration is mapped onto

a few PPs allowing for a simultaneous execution of scalar

operators. Moreover, for large N the input can be parti-

tioned in such a way that the iteration bodies are mapped,

each to its own PE, allowing still further parallelism. Note
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that in this way, we achieve linear throughput and the de-

gree of parallelism comparable with the number of available

PEs. Thus, the parallelism achieved at the data flow level is

optimal, as all the PEs are executing simultaneously, while

at the PE level, 8 PPs (a single row) are active at a time.

The granule size that is, the complexity of the tasks as-

signed to each processor - is one "butterfly" per processor.

The granule size effects the complexity of the Individual

PP's. If the granule size is increased by assigning multiple

butterflies t(J each processor, the complexity of the PP's

increases. If the granule size is decreased the PP's do only

primitive floating point operations.

FUTURE DEVELOPMENTS

We are investigating the performance of such a system by

constructing a simulation model of a SDFM executing the

mapped FFT algorithm.

To verify the correctness of the algorithm, and to validate

partially the results of the simulation, the algorithm will

be implemented on a small network. Each node in the net-

work will be construed as a Transputer 2 connected to a

multi-port link switch a. The action of each processor dur-

ing each computational phase will require several steps: the

data points must be input, the butterfly computation(s)

must be performed, the destination Transputers must be

selected, and the data points must be transmitted. Note

that the first and last steps are performed concurrently,

and that the final permutation of the data points into re-

verse binary order is done by the output selection step of

this algorithm.

This research is a part of a three year project whose goals

are the design of the systolic chip to use in the SDFM, the

development of a language to document data flow programs,

and the creation ()f a simulation/emulation environment to

be used in w_rifying data flow programs, and in project-

ing the performance attributes of data flow systems not yet

implemented. The language is being created as a superset

of OCCAM, and the environment will be implemented us-

ing a network of Transputers. The project's ultimate goal

is the deveh)pment of a massively parallel general purpose

computer system based upon the the SDFM concept.

2A Transputer(trademark oflNMOS, Inc.) is a relatively fast re-

duced instruction set machine designed to function as a node in a net-

work. Communicati_,n is accomplished through four 20 MHz bidirec-

tional links.

_The INMOS ('00,1 switch is a 32 wide link multiplexer. It is con-

trolled through an additional link port. fro connect any of the 32

link ports to any other requires 4 byte transmission times (about 1.2

microseconds).
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The efficiency of a parallel algorithm for solving a partial

differential equation on a multiprocessor computer is deter-

mined by the manner in which the I)roblem is partitioned

among the processors. Previous analyses have focussed on

the relationship between the shape of the partition tile and

the connectivity of the interconnection network, and have

concluded that there is no simple rule governing the effi-

ciency of a mapping. By extending the analysis to include

geometrical considerations, in particular, the relative orien-

tation of the update stencil and the partition tile, we have

discovered a simple, universal l)rocedure for deriving ttw op-

timal partition for a given iterative PDE algorithna. Based

on this procedure, we derive two new partitionings for spe-

cific PDE algorithms which are more efficient than any pre-

viously known. The choice of partition is independent of the

details of the multiprocessor architecture for a wide range of

operating parameters.

I(eywords: partial differential equations, communication de-

mand, distributed memory multiprocessor, problenl decom-

position.

INTRODUCTION

Multiprocessor COml)ute, architectures promise both great

inlprovenaents in the amount of computational power which

can be brought to bear on a given problem as well as sig-

nificant reductions in the cost of a given amoullt of power.

ttowever, the efficient use of a parallel computer requires that

each calculation be decomposed into independent

pieces which can he solved concurrently. While a general so-

lution to this problem has proven elusive, efficient algorithms

and heuristics have been devised for a number of particular

problems.

The efficiency of an implementation of a parallel algorithm

can be determined by measuring the execution time as a.

function of the numher of processors, N. The efficiency E,

is then defined as the ratio of the observed speedup to the

theoretical naaximum:

N x (execution time for om processor)
E(N) = (1)

execution time for N i,roce._sors

For distributed memory architectures, the limiling factor is

the amount of data which must be exchanged between differ-

ent processors for each operation. The best decomposition

of a problem will nainimize the ratio of eomnmnication to

computation, R_¢, allowing the best possible approach to a

linear speedup in the number of processors.

In the general case, all possible partitionings of the problem

must be examined to find the one which minimizes /?_. For

specific classes of l)roblems, a more detailed analysis can be

performed. In this paper, we consider the iterative solulion

of the sparse linear equations which arise from discretizing a

continuous PDE. These algorithms tyl)ically involve updat-

ing the current value of the solution at each grid point by

means of a simple calculation involving the values at. neigh-

boring points. The collectio,l of neighbors whose values are

required for the update depends upon the precise algorithm,

and is referred to as the stencil. With these algorithms many

grid points may be updated silnultaneously. The only con-

straint is that, for each point being updated, none of the

other points in its stencil are also being updated at the same

time.

MAPPING

The best mapping of this problem Ol-dO a distributed nleln-

ory architecture depends on the numl)er of grid l)oints :\"g

versus the number of processors _\_. If we assume that typi-

cal t)roblem sizes range upward froln hundreds of grid points

per side, with thousands of points being more nearly ideal,

then a generous lower I)ouml for Ng will I)e 10 4 for two

dimensional problems, and 10 6 tot' three dimensional ones.

Most distributed-memory computers which have been I)uilt

have _\_ ranging up to 104; the largest values are still less

than 105. For the purposes of this pal)el', we make the rea-

sonable assumptiou that. r = _ > I.

Under this assumption, the most natural mapl)ing of the

problem into the architecture can be constructed as follows:

first, eml)ed a plane into the mull.il)rocessor communication

network, then tile the domain of the PI)E 1)rol)h'm with A'_

identical polygons, and finally assign one tile Io each proces-

sor, with neighborillg tiles assigned to neighboring l)rocessors

CH2649-2/8910000/0227501.00 © 1988 IEEE
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undertheembeddingill definedinthefirststep.Withthis
mapping,eachprocessorwillbesolvingasmaller,equiva-
lentPDEboundary-valueproblem,withtheboundarycon-
ditionsat eachstagedeterminedbythesolutionsobtained
thusfarontlleneighboringtiles.Tileinterprocessoreomnm-
nicationloadisdeterminedbytheneedtokeeptheboundary
conditionscurrentoneachtile.
Withthismapping,theefficieucyofanimplementationwill
bedeterminedbytheconnectivityofthecommunicationnet-
work,bytileparticularpolygonalusedfortile tile,bythe
updatestencil,andbytherelativeorientationofthetileand
thestencil.Previousanalysesofthisproblemhaveanalyzed
theeffectsoftheonlyfirsttwooftheseconsiderations[1][2].
In particular,Reed, Adams and Patrick [2], have computed

R= for several different combinations of stencils and regular

tilings of the plane. They found that, for some stencils a

square tiling minimized the comnnmication demands, while

for others, the a hexagonl tile was better. They concluded

that no simple relationship between a stencil and the pre-

ferred tiling exists, and that the best architecture for a given

algorithm could only be determined by means of a detailed

calculation of the comnmuication demand for all possible

stencils.

In this paper, we present an analysis which includes the ef-

fects of the relative orientation of the stencil and the tiling.

By' considering tilings which are oriented at an angle with

respect to the coordinate axes, we reach qualitatively differ-

ent conehtsions from those in reference [2]. For any stencil,

there exists an optimal tiling of the plane and this tiling can

be easily derived from the shape of the stencil alone. By

applying this construction to commonly occuring stencils,

we have discovered two novel tilings of the plane: the dia-

mond tiling and the oblique hexagon tiling. Furthermore,

the construction is completely mechanical and thus can be

perfo,'med automatically by a computer program.

The optimal decomposition of the plane for a given sten-

cil is the one in which the tiles best approximate the shape

and orientation of the stencils. By "best approximation",

we mean the following: Given a stencil, identify' the points

which are the furthest fi'om the center. Connect the points

in clockwise order with line segments. The resulting shape

will be a convex polygon, with a specific orientation relative

to the stencil and to the coordinate axes. Such a polygon is

called the convex hull of the stencil. If the polygon can be

used to tile tile plane, while preserving the required orienta-

tion, then it will be optimal tile for the stencil.

TILING

In figure 1, we apply this construction to several common

stencils. The convex hull for the five point, nine point cross

and tile thirteen point stencils is a diamond, for tile seven

point stencil, it is an oblique hexagon, and for the nine point

star, it is a square, hi figure 2, we present the resulting tilings

of the plane. For completeness, we also show the hexagonal

tiling analyzed in reference [2].

The diamond tiling consists of squares oriented at .15° with

respect to the coordinate axes. The tile may be para-

Stencil Tile Shape

oblique

diamond hexagon

5point _2.83r+2 _3.,i6r+2

7point _4.24r+2 _3.46r+3

9star _5.66r+2 _6.93v+4

9cross _5.66r+8 _4.62r+4

13 point 6.93r + 65.66r + 8

square hexagon

4r 3r + 2

4r + 2 4r + 2

4r + 2 5r + 2

8r 6r + 4

8r + 4 6," + 8

Table 1: Communication demand for each pair of stencils
and tiles.

metrized by the length, k, of its diagonal. The condition

that all tiles be equivalent requires that k by an even divsior
ka

of n. The number of points enclosed by a tile is T and the

perimeter is 2k - 2. Finally, for comparison to the other

tilings, it is useful to express k in terms of r: -_ = k_-_- or

t: = v'7_.

The oblique hexagon tiling is constructed in two stages. First,

for a given l, construct a hexagon with l + 1 grid points on

each side and with the principal diameter making an angle

of -45* relative to the x-axis. In figure 2, the resulting

hexagons are indicated with dotted lines. In order to form

a partition of the problem, we must assign the grid points

which lie on the dotted lines to a single tile. We accomplish

this by moving the dotted lines down or to the left, or both,

as appropriate. The solid lines in figure 2 indicate the result-

ing partition. The area of the l-hexagon, is 3l _, giving I = _.

CONCLUSION

For each of the stencils we have calculated the number of grid

points whose values must be comnmnicated to neighboring

tiles, for both the diamond and oblique hexagon tilings. The

results are summarized in table 1, along with the results ob-

tained in reference [2] for the square and hexagonal tilings.

As stressed in the introduction, the correct measure of com-

nmnication demand is the amount of computation per word

transferred. For this problem decomposition, the amount of

computation is proportional to the number of grid points per

tile, or r 2, with an additional dependency on the stencil size

which is irrelevant for our purposes. Thus, the results pre-
sented in each column of the table are for identical amounts

of computation.
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PARALLEL ALGORITHMS FOR DIRECT SOLUTION OF

LARGE SYSTEMS OF EQUATIONS

Jian-She Wang Nathan Ida

ABSTRACT

Electrical Engineering Department

The University of Akron

Akron, Ohio 44325

A number of direct solution algorithms have

been parallelized for use in conjunction with

finite element analysis of large engineering

problems. Parallel so]ution algorithms based on the

Gauss-Jordan and Gauss elimination were implemented

and compared. These parallel solvers are applied to

large, dense or banded systems of equation arising

from finite element analysis of 2-D and 3-D

electromagnetic field problems. Both real and

complex matrices are considered with emphasis on

very large systems• The speedup obtained by

parallelization on the MPP compared to sequential

computers is almost three orders of magnitude.

Although the MPP is used for implementation, most

aspects of parallelization are general.

INTRODUCTION

In engineering applications it is often

necessary to solve large systems of equations that

are either too large oi- require too much computer

resources to be economically feasible on standard

computers. For this type of problem a parallel

machine is very attractive. The type of systems

considered are those arising from the application

of the finite element method (FEM) to engineering

applications . The FEM is particularly

computationally intensive, yet its various parts

are either intrinsically parallel or can be

parallelized. By using a parallel processor,

considerably faster solution times can be achieved

or, alternatively, larger problems can be solved.

The Gauss elimination and the Gauss-Jordan

methods have been chosen for this work because of

their extensive use in finite element applications.

In most cases, dense, nonsymmetric, real systems

are solved but similar methods for banded and

complex systems are presented. Sparse systems are

not considered here although, these can obviously

be handled.

The MPP has been described elsewhere [1,2] in

detail. For the purpose of this work, the MPP is

configured as an 128"128 array with a 32 bit word

length. For the solution of linear systems, the two

most important aspects related to the MPP are the

number of memory planes in the ARray Unit (ARU) and

the size of the staging memory• The ARU contains

900 usable bit planes of memory. This limits the

number of real arrays (128"]28, 32 bit) in the ARU

to 28. The staging memory is limited to 512 real

arrays, Parallel Pascal callable I/0 procedures can

transfer only one 128"128 array in or out of the

ARU at any one time, This makes it necessary for

any array larger than 128"128 to be blocked into

sub-arrays of ]28"128, Thus, the smallest system

considered is a 128"128 system of equations.

A PARALLEL GAUSS-JORDAN ALGORITHM

For a system of equations of the form

[A]{X)-{B}, the parallel implementation of the

Gauss-Jordan algorithm begins by loading [A] into

one array and the right hand side (RHS) (B} into

the first column of a second array. Assuming that

the first column in [A] has been eliminated, these

arrays look as:

:Ill a12 a13 ,.

I

a 22 a 23 '"
a'32 a 33 '"

f i

a n2 a n3 ""

a,2nl Ib'2 0 0

• I_'3°° .a 3n]

a nnJ la Lg'n°° ib

indicates that thewhere n=128. The prime

corresponding coefficients have been modified

during elimination of the first column. To

eliminate the second column, a pivot row array and

a pivot element array are created using row and

colulnn broadcasting routines•

Oa'22a'  4 Va:22a' 2..a' 21
0 a'22 a'23 a,2nl la,22 ai22 a 22

0 a'22 a'23 a2nI la22a22 a'22

• .
0 a'22 a'23 a'2n] 2a La'22 a'22 a 2 2b

A pivot column array is created from (la) as

is|2al2al2 al ]

!
'n2 a'n2 a n2 a n2]

Eq. (3) is divided by Eq. (2b) and multiplied

by Eq. (2a) to create a modifier array

!a12a'22/a'22 a12a'23/a'22 "'" al2a:2n/a'221

a'22a'22/a'22 a'22a'23/a',22. .a'22a 2n/a 221

a'?2a'22/ai22 a'32a'23/a 22" 'a'32a 2n/a 221 (4)
a n2a'22/a'22 a'n2a'23/a;22 . .a'n2a'2n/a'22

This array,, with the exception of the pivot
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row, is subtracted from the original array "in (la).

The result is a new coefficient array

la_l 0 a"13 ... a'i in]
a' a' 2 . . . a,,2n I

_2 ,, 3

I i a 33 ''" a,3n I (5)

0 a"43 ... a 4n

0 a"n3 " ' ' a"nr_

The modification of the RHS during elimination

is similar. Eq. (3) is divided by Eq. (la) and

multiplied by Eq• (ib) to generate an RHS modifier

array This is subtracted from Eq• (ib) to obtain

the new RHS array.

• 2/a'22 0 0 .. (6)

"2-a'32b'

Lb'n-a'n2b'2/a'22 0 0 ..

After n elimination steps , the original

coefficient matrix is reduced to a diagonal system•

To obtain the solution, an array of the diagonals

is constructed

aall all all all]

22 aj22 2,',22 a 22|
a 33

a.331 (7)a.33 33

La"nn a"nn a"nn a"nr _

Eq. (6) is divided by Eq. (7), to obtain the

unknowns xl through x128:

A PARALLEL GAUSS ELIMINATION ALGORITHM

The Gauss elimination algorithm follows similar

steps• The steps in Eq. (i) through (4) are

identical. In subtracting the modifier array in Eq.

(4) from Eq. (la), only the rows below the pivot

row are modified. After (n-l) elimination steps,

the original system (la) is reduced to an

equivalent upper triangular system: The right hand

side is similarly modified.

all + a12 + a13 +-..+ ?In I

a'22 + ai23 +. .+ a 2n|

a' 33 +' .+ a 3n

ann_8 a

Ib _ 0 0 ... !]

b 2 O0

" 0 0 .

n _ . .

[b n 0 0 8b

The solution of the system in Eq. (8) is performed

using the following algorithm

x,-b,/ai,, bk--bK-ak,x, (9)

where i-n,n-i ..... i and k-i-l,i-2 .... ,i. In this

algorithm, once an unknown is backsubstituted, the

upper triangular system is reduced in order by one

and then the RHS is modified.

A pivot column and a pivot element array are

created as

2 li all ali

2i a2i a2i

3i a3i a3i

iii aii aii0 0

alil Iii aiiaii
a2i] aii aii aii

a3i

;iiJ10a ii aii aii

aiiI
aii

iii 10b

The RHS is divided by the pivot element array

(masked operation) to solve for the ith unknown.

From this, an RHS pivot array is generated• These

arrays are:

[I 00 01

b2bl 0 0 ... 0 /

;i ; ; iii;I
n ; ; oj

i 0 0 ... O]

oo:::o/
i 0 0 ... 0 Ioo ::: oj

(11)

Multiplication of Eq. (llb) by Eq. (10b)

results in a modifier array:

1ixi 0 0 ... 0]

2ixi 0 0 ... O|

• °/
ojLai xi ° o ::::

The modifier array in Eq. (12) is now

subtracted from the RHS. After n=128 steps, the

RHS array contains the n unknowns in its first

column.

BLOCK GAUSS-JORDAN AND GAUSS ELIMINATION

For the solution of any system with order

larger than 128, the coefficient matrix is blocked

in subarrays of 128"128. For each subarray the

algorithm described in Eq. (i) through (7) is

applied. A 512"512 system is chosen as an example

since this is the largest array the ARU can handle.

Any larger matrices will have to utilize the

stager. In Fig. I, the 512"512 coefficient matrix

is blocked into 4*4 subarrays, while the RHS vector

is stored in the first column of 4 corresponding

subarrays or in the first four columns of one sub-

array.

The Gauss elimination solution for a 512"512

system is similar to that of the Gauss-Jordan

method described above other than the obvious

changes described in Eq. (8) through (12).

Table 1 summarizes the number of operations

required for solution on a sequential machine and

on the MPP. Table 2 summarizes the solution times

for a 128"128 and a 512"512 system of linear

equations using the Gauss-Jordan and Gauss

elimination methods on the MPP• The results are

compared with those obtained for the same systems

on a MicroVaxII computer• The highest speedup is

achieved for a 512"512 system (largest problem that

can reside in the ARU)• The backsubstitution is the

slowest of the two parts (essentially a sequential

operation).

232

: _ , _,, _



SOLUTION OF BANDED SYSTEMS OF EQUATIONS

Fig. 2 shows the coefficient data structure of

a 512"512 system of equations arising from finite

element analysis, where only the shaded area has

non-zero terms (semi-bandwidth less than or equal

to 128). In Fig. 2a, 37.5% of the memory storage

can be saved by considering only the non-zero

blocks. In fig. 2b, 65.6% of the memory can be

saved. With this storage scheme, a 1024"1024 matrix

with a semi-bandwidth of 128 can reside in the ARU.

The solution times for a parallel, banded

elimination algorithm are summarized in Table 3 and

compared with those for full coefficient matrix of

the same order (512"512)o

SOLUTION OF SYSTEMS WITH COMPLEX

COEFFICIENTS

Application of the finite element method to the

solution of eddy current problems in

electromagnetic fields results in the following

system of complex linear equations:

( A + jB )( X + jY ) = ( C + jD ) (13)

On the MPP, complex data is stored in two sets

of arrays. Complex calculations are resolved into

two or more real parallel array operations. The

basic operations required are implemented as'.

P+Q=(PI+QI)+j (PI+QI) P-Q=(PI-QI)+j (PI-QI)

P'Q= (PI*QI -P2*Q2 )+j (PI*Q2+P2*QI) (14 )

P/Q=( (PI*QI+P2*Q2 )/ (QI*QI+Q2*Q2) )

+j ( (P2*QI -PI*Q2 )/(QI*QI+Q2*Q2 ))

For the solution of a system of complex linear

equations with order higher than 128, the complex

coefficient matrix is blocked into subarrays of

128"128.

The solution times for a 128"128 and a 256*256

system of complex linear equations by the Gauss-

Jordan and Gauss elimination methods are summarized

and compared with those for solution of the same

order system of real equations on the MPP. The
results are shown in Table 4.

The solution time for a system of complex

linear equations by Gauss' and Jordan's methods is

about 4 to 5 times that needed to solve the same

order system of real equations.

SOLUTION OF LARGE SYSTEMS OF EQUATIONS

For problems of size larger than the capacity

of the ARU, the stager must be used. The matrix is

again subdivided into blocks of 128"128. Once all

subarrays in the matrix are in correct stager

addresses, part of the arrays are sent to the ARU

for processing. The results are returned to the

same stager addresses. This is repeated until the

system is solved.

The division into subarrays is the same as in

Fig. 2b for banded systems and as in Fig. i for

dense systems except for the larger number of

subarrays required. The RHS is placed in columns of

a single array to save space.

Several banded systems with bandwidth_128 of

selected order ranging from 1024 to 16,384 have

been solved on the MPP using the stager. The

solution time (including data transfer between

stager and ARU) is shown in Table 5. Table 6 gives

the largest banded systems with different bandwidth

that can be solved on the MPP under the limit of

the stager size (32 Mb). Table 7 summarizes the

solution times for two large, dense systems of

equations (nonsymmetric).

CONCLUS IONS

The implementation of solution algorithms on a

massively parallel processor is quite efficient as

long as the system fits in the ARU. Larger systems

can also be solved with reduced efficiency. Even

so, the solution is as fast or faster than on

vector machines. An increase in size of the array

and local memory could significantly improve

performance.
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Figure 2. Two methods of blocking a 512"512 system

with semi-bandwidth of 128 or smaller
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Table I. Number of operations needed for sequential and parallel

solution with the Gauss-Jordan and Gauss elimination algorithms.

n(n-l)(n+3)/2

n(n-l)

n(nn-l)/3

n(n-l)/2

Method Oper.

Gauss IA/M

Jordan D

Gauss A/M

Elim. D

Sequential solution

Diag./Triag. Solution'

0

n

n(n-l)/2

n

Total

n(n-l)(n+3)/2

n 2

n(n-l)(2n+5)/6 am(m+l)(2m+l)/6-1

n(n+l)/2 am(m+l)/2-1

Parallel Solution

Diag./Triag. Solution

amm(m+3)/2

amn m

am(m+l)/2-

am

A-add, M=multiply, D-divide, a-128, m-n/128, n-# of equations in the system.

Total

amm(m+3) + a/2

m(am+l)

1 am(m+l)(m+2)/3-1

am(m+3)/2-1

Table 2. Comparison of solution times for the Gauss-

Jordan and Gauss elimination methods on the Microvax

II and the MPP. (Times in seconds).

Gauss-Jordan

Order #Vax MPP Speedup

128:

Elim. 11.57 .07788 148

Sol, 0.01 .00643 1.6

Total 11.58 _08431 137

512:

Elim. 3476 1.728 2011

Sol. 0.23 .02568 8.9

Total 3476 1.754 1982

Gauss Elimination

_Vax MPP _peedup

7.57 .07795 97

.12 .0493 2.4

7.59 12927 59

3165 1.231 2572

2.01 .25611 5.6

[3169 1.588 1994

Table 3 Banded and full matrix solution times using

Gauss elimination on the MPP. (in miliseconds).

Step ,Full Matrix Banded Matrix Speedup

Elimination 1230.56

Solution 356.15

Total 1585.70

724.26

277.44

1001.71

1.699

1.284

1.584

Table 5. Solution times on the MPP for banded

systems of different sizes. Semi-bandwidth is 128.

Time is in seconds).

Size Solution Total

1024

2048

3072

4096

8192

12288

16384

Elimination

1.556 0.651

3.300 1.371

5.015 2.077

6.731 2.784

13.594 5.611

20.458 8.43_

27.321 11.26<

2.206

4.671

7.093

9.515

19.205

28.896

38.264

Table 6. Largest systems solvable on the MPP

Semi-bandwidth

128

256

384

512

1024

2048

2816

Size of Systems

21888

13184

9472

7552

4352

2944

2816

Table 4. Comparison of solutions in real and

complex variables on th_ MPP. (miliseconds)

Gauss Jordan Gauss Elimination

Order Real ,Complex Ratio Real Complex Ratio

128:

Elim. 77.88,334.89 4.3 77.95 334.96 4.3

Sol. 6.43 [ 12,43 1.9 49.30 244,58 &.96

Total 84.31r347.32 4.1 128.27 579.55 4.52

256:

Elim. 343.68 1513.80 4.4 277.76 1196,30 4.3

Sol. 12.28 24.88 2,0 125.61 576.48 4.59

Total 355.96 ]1538.68 4.3 1403.37 I1772.77 4.4

Table 7. Solution of large, dense, nonsymmetric

systems on the MPP. Time is in seconds.

Size _limination Solution Total CRAY X/MP

I024xi024 7.809 1.327 9.136 36.523

2048x2048 51.353 4.638 55.990
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STOCHASTIC SIMULATION OF CHARGED PARTICLE TRANSPORT ON
THE MASSIVELY PARALLEL PROCESSOR

James A. Earl

Department of Physics and Astronomy
University of Maryland, College Park MD 20742

ABSTRACT

Computations of cosmic-ray transport based upon
finite-diference methods are afflicted by instabilities,
inaccuracies, and artifacts. To avoid these problems, we have
developed a Monte Carlo formulation which is closely related not
only to the finite-difference formulation, but also to the

underlying physics of transport phenomena. Implementations of

this approach are currently running on the Massively Parallel
Processor at Goddard Space Flight Center, whose enormous
computing power overcomes the poor statistical accuracy that
usually limits the use of stochastic methods. These simulations

have progressed to a stage where they provide a useful and
realistic picture of solar energetic particle propagation in
interplanetary space.

Keywords: Cosmic-rays, Particle Transport, Interplanetary
Medium.

Over the past three years the computations have evolved through
simulations of rectilinear transport along a constant guiding field,
which were presented at the First Symposium on Massively
Parallel Scientific Computation (Rcf. 5), and of focused

transport with constant focusing length and mean free path (Ref.
6), to the present simulations, which allow arbitrary variations of
the focusing length and mean free path. In the interplanetary
context, this formulation includes all important effects except
those of convective motion of the background medium, which
significantly affect the slow variations of cosmic-ray modulation,

but which play a minor role during the rapid evolution of solar
particle events. It includes the two essential aspects of charged
particle transport. These are a strong inhibition of transport
perpendicular to the guiding field and a strong anisotropy of the
pitch-angle scattering by random fields.

TRANSPORT EQUATIONS

INTRODUCTION

The diffusion idealization, which has been almost universally
invoked in discussions of cosmic-ray transport is easy to treat
analytically. However, many observed phenomena give clear

evidence for non-diffusive effects. One example is the so-called
"scatter free" propagation of kilovolt solar electrons (Ref. 1),
which is inconsistent with diffusion, but which can readily be
interpreted in terms of a coherent mode of propagation. This
mode is novel, but it is just a manifestatation in a dynamic
situation of non-diffusive effects similar to those considered in

the steady-state by classical transport theory (Ref. 2). Although

these effects have been described analytically in References 3 and
4, the theory is very complicated. Consequently, there is a need

for reliable numerical computations which bypass these
complexities and yield concrete results suitable for comparison
with observations. This paper describes computations of charged

particle transport along a large-scale guiding magnetic field B
whose spatial variations are characterized by the focusing length
I., which is defined by

1 10B

L B Oz' (1)

Undcr the circumstances outlined above, particle transport is
described by

Oh Oh cg t_eC;OOhe__,
(2)

in which h is the number of particles per unit distance parallel to

the guiding field, Ia is thc cosine of the pitch-angle. The

parameter s = Vt, where V is particle velocity, plays the role of a
temporal variable. The Fokker-Planck coefficient of pitch-angle
scattering is given by

= 3(1 -/z2)[#] q-l
2A(2 - q)(4 - q)' (3)

where q is an index that measures the anisotropy of scattering
(Ref. 7). The function G that appears in Equation 2 is defined in

terms ofv by

where z is distance parallel to the guiding field. Particle trajec-
tories are scattered by small-scale random magnetic fields whose

effect is described by the mean free path k. Note that the

magnetic fields are visualized as static and that there is no

interaction among particles in an extremely tenuous distribution
of charged particles. This situation differs from those considered

by plasma physics, but it is closely analogous to those treated by
classical transport theory.

1 /o "l-v 2 (4-q) A l (4)
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In the discrete formulation, the continuous variables are replaced

by a three-dimensional grid whose spacings are Az, Ala, and As,

and the derivatives appearing in equation (1) are replaced by their
finite-difference analogs. The effect of these replacements is best
described in terms of the particles flowing in and out of a cell,

whose dimensions are AIX and Az, during a temporal increment

As. These flows are illustrated in Figure 1, where the integer M

refers to the pitch angle, and the integer Z refers to the distance z.
Here, particles passing through the top and bottom of the box are
those whose pitch angle changes because of scattering, and

particles passing through the sides are those whose distance
changes as a result of their motion parallel to the guiding field.
The flows due to scattering can be described in terms of

coefficients pM and qM, which characterize the flows out of box

M toward larger and smaller values of la, respectively, and

whose numerical values can be derived from Equation 2. The

difference equations that correspond to Figure 1 can be solved by
standard numerical methods, but these methods are difficult to

implement and subject to subtle errors, which are discussed in
Reference 8.
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Figure 1. The number of particles in each cell of the IX- z plane

changes, because scattering causes particles to flow in and out
through the top and bottom boundaries, while motions in space
cause them to flow through the vertical boundaries.

In the Monte Carlo formulation, the random history of a large

number of particles is followed under the assumption that the
coefficients p and q can be interpreted as probabilities in each

temporal step that _t will change by AIX toward more forward or

more backward directions, respectively. Obviously, this defines
1-p-q as the probability that a pitch angle will not change. After
their pitch angles are updated in each step, the particles move a

distance IXAs.

In Figure 2, the transition probabilities are plotted as a function

of IX for strongly anisotropic scattering, q = 1.8, similar to that

occuring in interplanetary space and for strong focusing, _./L = 5.

These probabilities exhibit the same gross features as the Fokker -
Planck coefficient, but there is a significant assymetry such that p
is consistently larger than q. This leads to the systematic drift
toward forward directions that is expected as a result of focusing.

Note that the probability of going backward through _t = 0 is

only 0.13% in this example. This leads to a coherent mode of
transport that is very different from diffusion, for any particle

that reaches the forward hemisphere has a very small chance of
going backward again.
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-I,0 0 ,_ 1.0

Figure 2. Forward and backward transition probabilites plotted
as a function of pitch-angle cosine.

THE ALGORITHM

To implement the Monte Carlo scheme outlined above, each
particle was assigned an integer distance and an index M cor-

responding to Ix that lies between 0 and 8. Because these

parameters occupy only three bytes for each particle, there was
plenty of storage for several parallel arrays of particles.

Consequently, the results given below are based on 32 arrays
which contained 32 * 16384 = 524288 particles. The fate of the
particles was determined by a single parallel array of random
integers ( ranging from -32767 to +32767) that was updated
frequently. To implement changes in the pitch-angle cosine,
forward and backward integers were assigned to each particle,

according to its pitch angle and distance, in such a way that the
probability of the current random number being larger than the
integer is the corresponding forward or backward probability

analogous to those poltted in Figure 2. Then the angular index
was incremented for those particles whose current random
integer was positive and greater than the forward integer, and
decremented for those whose random integer was negative and
less than the backward integer with its sign reversed. This

approach satisfies the basic requirement that the probabilities of
incrementing, decrementing and leaving unchanged the
pitch-angle must add to unity. After the pitch-angles had been
updated, each particle's distance was incremented. When the
desired number of temporal steps had been carried out, particles
were binned according to distance and pitch-angle.
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Figure 3. Density profile for rectilinear transport after a
collimated injection at the arrow.

SPATIAL AND TEMPORAL PROFILES

To set the stage for the simulations of interplanetary transport that
are the main subject of this paper, it is useful to consider first the

case of rectilinear transport, in which the guiding field is
constant, and focusing does not occur. Figure 3 presents results
obtained from the MPP as plots of the total number of particles in

each distance bin. This sum over pitch-angles is a measure of the
isotropic particle density. Because the total number of particles
was large, statistical errors are small and, consequently, are not
shown explicitly. However, slight irregularities in some parts of
the curves give an indication of their magnitude.

This density profile describes a situation very shortly after the
injection of a collimated beam of when the particles have had time

to move a maximum distance of only one mean free path. The
curve exhibits two features: an intense localized peak at thc right
and a broad wake spread on both sides of the arrow which
indicates the point of injection. Qualitatively, the peak appears

because particles become nearly uniformly distributed in the
forward hemisphere, while very few particles penetrate to the
backward hemisphere through the region of weak scattering at

IX= 0. This means that the particles in the forward hemisphere

move with nearly the same average velocity parallel to the field,
but statistical fluctuations in individual velocities give rise to a
peak centered around the average displacement. Such features
are designated as coherent pulses. They decay exponentially as

particles slowly escape into the backward hemisphere and join
the wake.

In the spiral pattern of the interplanetary magnetic field, the

focusing assymetry that appears in Figure 2 tends to keep
particles in the forward hemisphere. Consequently, the coherent
pulse is long lived and intense relative to the wake. Moreover,
the assymetry becomes very pronounced near the sun, for the

ratio X/-L varies approximately as l/r, where r is distance from the

sun.

To illustrate these effects, Figure 4 shows snapshot profiles of
number of particles vs. r for four equally spaced times after
injection into a model interplanetary field at r = 0. These profiles

describe a moving pulse whose width increases as it moves out,

which is the qualitative behavior expected. However, the exact
evolution of this width and the deceleration of the peak, which is
evident from a careful examination of the figure, are details
which crucially affect observations, but which are not adequately
described by the analytic theory of focused transport.

In contrast with the rectilinear profile illustrated by Figure 2, the
wake is virtually invisible in all of the four profiles. As was
discussed above, this enhancement of the coherent mode is a

consequence of focusing.
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Figure 4. Profiles of isotropic particle density vs. distance from

the sun for four different times after injection.
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Figure 5. Profiles of intensity vs. time at a fixed distance.

Observations from spacecraft generally take the form of profiles
of intensity vs. time at an essentially fixed position in space. In
Figure 5, results from MPP simulations, which are presented in
this form, show what happens when the coherent pulse sweeps
over an observer at a fixed location. The dotted curve, which

refers to a mean free path equal to the distance of the observer
from the sun, defines a peak followed by a very small wake. As
the mean free path becomes smaller, this pulse becomes less
prominent relative to the wake ( solid curve ), until it is
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submergedintheonset ( dashed curve ). Examples of all three
of these behaviors are seen among observed solar particle events,
along with events whose extremely slow onset can be understood

in terms of standard diffusion theory. Consequently, the MPP
results make it clear that all types of prompt solar particle events,
diffusive, abrupt onset and coherent, can be understood as
morphological stages in a continuous sequence of profiles

predicted for increasing mean free paths by the theory of charged
particle transport. The same basic physics explains all types.

ANGULAR DISTRIBUTIONS

The discussion above has focused on isotropic intensities in
which particles are counted regardless of their directions. In fact
both predicted and observed intensities are often highly
anisotropic, and valuable information can be derived from a

careful analysis of these anisotorpies. To illustrate this point,

Figure 6 presents numbers of particles binned according to la and

summed over a coherent pulse. Evidently, the intensity in the

forward hemisphere la > 0 is overwhelming larger than that in the

backward hemisphere. The solid curve which gives the result of
a MPP simulation is in very good agreement with the dashed
curve, which gives the function exp ( G ) which is expected from
theory.
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Figure 5. Angular distributions for particles summed over the

coherent pulse.

CONCLUSIONS

Results obtained on the MPP with the aid of Monte Carlo

methods are equivalent in every detail to those based upon careful
use of more traditional methods, but they are less subject to error
and are closer to the physics. These characteristics offer
tremendous advantages in the invcstigation of exotic transport

regimes for which no theoretical description is available. In
particular, the formulation of problems in which particles gain or
lose energy leads to prohibitively large conventional com-
putations, but their Monte Carlo versions are not significantly
more complicated than the one described here. We intend to

exploit these advantages in the investigation of two such
problems: Adiabatic deceleration of cosmic-rays due to

expansion of the solar-wind, and the loss of energy by electrons
in radio sources due to synchrotron radiation. On a more
immediate time scale, the current simulations, which embody an

accurate and useful description of solar particle events, will be
applied to the interpretation of observations.
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SUITABILITY OF SIMULATION OF A POPULATION OF

CHEMICAL POLYMERS ON THE MASSIVELY PARALLEL PROCESSOR
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ABSTRACT

We describe our investigation of the suitability of the Massively

Parallel Processor (MPP) for the execution of a program which

simulates the degradation of the heparin polymer by the enzyme
heparinase. The architecture of the MPP offers massive fine-

grained parallelism, with the following limitations: (1) There is

a single instruction stream, i.e., each of the 16,384 processing ele-

ments (PE's) executes the same instruction. (2) Each PE com-
municates directly with only four neighboring PE's, and the oppo-

site edges of the grid of PE's are logically connected to each

other. (3) Each PE has 1024 bits of local random access

memory as well as (slower) access to a large (20 Mbyte) Staging
Memory.

We report on the use of the MPP Pascal programming language

to implement the simulation program, including the representa-
tion of polymer chains, the cleaving of chains into smaller

chains, and the search for (gable) chains which are impervious to
the actions of heparinase.

Keywords: Massively Parallel Processor, Polymer, Simulation,

MPP Pascal, Heparin, Depolymerization

INTRODUCTION

The Massively Parallel Processor (MPP) was built by Goodyear
Aerospace Corporation for the NASA/Goddard Space Flight

Center, which utilized it for processing data sent to earth from

orbiting satellites (Ref. 1). In addition to image processing appli-
cations which included algorithms such as the Fast Fourier

Transform and maximum likelihood classification, the MPP has

been used for a wide variety of applications, including simulations
of plasma electrodynamics, lsing spin exchanges, neural networks,

and chemically reactive flows in two and three dimensions (Refs.

2-6).

We have conducted a test of the use of the MPP to simulate the

enzymatically catalyzed degradation of a population of chemical

(polymer) chains. The design of the algorithm to fit the com-

puter architecture and the use of the MPP Pascal Programming

language (Refs 7-8) to code the algorithm will be illustrated. We

describe the algorithm and the MPP Pascal code for the algorithm
in some detail.

HEPARIN DEPOLYMERIZATION

Heparin is an acidic mucopolysaccharide mixture that is found in

vertebrate blood. Despite its widespread clinical use as an

anticoagulant, the exact structure of heparin remains unknown

(Refs. 9,10). Heparin molecules vary in length (polydispersity)
and in composition (microhetereogeneity). Rice and Linhardt

(Ref. 11) have demonstrated that after degradation by the enzyme

heparinase, five types of chemical molecules can be isolated,

which together make up approximately 80% of the heparin

molecules. These so-called "fundamental fragments" form the
basic units of our simulation, and for purposes of discussion will

be referred to as units FI, F2, F3, F4 and F5.

Chemically, the fundamental fragments are well-characterized oli-

gosaccharides (Ref. 11), or small chains of sugar molecules.

Heparinase is believed to catalyze the dissolution of the bond

between any two fundamental fragments, with the exception of
free F1-F1 dimer (two unit chain), which is called F4. A molecule

of heparinase nonpreferentially ("randomly") attaches to a pair of
adjacent fundamental fragments, enables the splitting of the bond

at its site of attachment, and releases the product chains, with no
net change to the enzyme itself. This process occurs with massive

parallelism, owing to the presence of astronomical numbers of

heparin and heparinase molecules.

Our objective in performing the simulation was to test the

hypothesis that heparin polymer chains are a random arrangement

of fundamental fragments. We simulated the degradation of

heparin by heparinase, assuming a completely random arrange-
ment of FI, F2, F3, F4, F5, and the same relative molar concen-

trations as had been measured experimentally (Ref 12). By com-

paring the simulated rate of appearance of free (unbound) funda-
mental fragments with observed rates of appearance, we were able

to demonstrate that the observed data were not completely con-

sistent with the consequences of the above-mentioned hypothesis.

One aspect of the model in particular makes it difficult to predict
the rates of appearance of free fragments without the aid of a

computer. As indicated earlier, fundamental fragments FI
through F5 are either impervious to heparinase or are cleaved at

such a slow speed that they may be considered stable relative to

the time scales of our observations. The complicating factor
comes from the fact that F4 equals FI-F1 dimer or (F1)2, pro-

vided the dimer is not bound to any other fragments. We do not

observe F4 unless it is free. Hence a chain that is composed of
four FI fragments, i.e., (F1)4, has two kinds of cleavable bonds:

I ::ween the central two FI units and between the terminal F1

units and their neighbors. If the first kind of bond is cleaved, the

result is two F4 units; if the second kind of bond is cleaved, the

CH2649-2/89/0000/0241501.00 © 1988 IEEE
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resultisonefreeF1unitandachainofthreeF1units,(F1)3,
whichissubjecttofurtherdepolymerizationandwillyieldoneF1
unitandoneF4unit.

THE MASSIVELY PARALLEL PROCESSOR

The Massively Parallel Processor belongs to the SIMD (single
instruction stream, multiple data stream) category of parallel com-

puters (Ref. 13). It achieves massive parallelism by doing arith-

metic or logical operations on many short (l-bit) operands simul-
taneously.

The MPP is comprised of 5 principal parts (see Fig. 1). The

Array Unit (ARU) consists of a 128x128 planar array of bit-slice

microprocessors. Each of these processing elements (PE's) con-
tains a variable length shift register (2-20 bits), several l-bit regis-

ters, a full adder, logic circuitry, and 1024 bits of random access

memory (Refs. 14-16). Communication between PE's occurs via

the grid topology, with opposite edges logically joined together,
thus forming a cylinder or a torus.

Figure 1. MPP System Block Diagram

The Staging Memory serves as a large (20 Mbyte) random access

shared memory for each PE, with the 1024 bits of local memory
functioning as a high-speed cache. Communication between the

ARU and the Staging Memory is done in parallel, with 128 bits

sent simultaneously between the two components. Using pipelin-

ing, the 16,384 PE's can all send (or receive) one bit to (or from)

the Staging Memory in 12.8 microseconds.

The MPP runs as a peripheral processor, with the host machine

currently a DEC VAX-II/780 minicomputer. The program in the

host initiates the execution of a program in the MPP and can run

concurrently with the MPP. Data may be transmitted between

the MPP and the host via a high speed interface.

The Program and Data Management Unit (PDMU) is used for

hardware testing and diagnostics. It is a DEC PDP-II/34 mini-

computer, which played a larger role when the MPP first came

on -line.

The Array Control Unit (ACU) consists of three parts, all of

which can operate simultaneously. The Main Control Unit

(MCU), a serial processor, performs all of the arithmetic not

done by the array of PE's. The program running in the MCU
invokes the use of the Array Unit by sending a subroutine call to

the Processor Element Control Unit (PECU), the second com-

ponent of the ACU. The PECU maintains a queue of requests

and directs the computations to be performed by the PE's.

Lastly, the Input/Output Control Unit (IOCU) handles the
transmission of data into and out of the ARU.

Programming may be done in assembler, MPP Pascal, or MPP

Parallel FORTH. Assembler language programs are written either
in Main Control Language (MCL) for execution on the MCU or

the IOCU, or in Processing Element Array Control Language

(PEARL) for execution on the ARU (Ref. 17-19). An interac-

tive symbolic debugger is available as well as a simulator of the

MPP which run on the UNIX operating system or on the
VAX/VMS operating system (Refs. 7,17).

MPP Pascal derives from the programming language Parallel Pas-

cal, which was proposed by Reeves for use on SIMD computers
(Ref. 20). We shall discuss MPP Pascal in detail below. John

Dorband of the NASA/Goddard Space Flight Center designed and

implemented a compiler for the programming language Parallel
FORTH for use on the MPP (Ref. 21).

MPP PASCAL

MPP Pascal is an extension of standard Pascal (Ref. 22) for use

on SIMD computers. Aspects of the standard Pascal language

that have not been retained include recursive procedures, sets,

pointer variables and the character data type (Ref. 7). Three
additions to Pascal have been made, namely (1) the "parallel

array" data type; (2) the where statement; and (3) predefined

procedures and functions for use with parallel arrays.

Corresponding bit positions in the local store of the PE's comprise
a single "bit plane" of memory. Groups of continuous bit planes

can be treated a single bit plane of integer values or reals. MPP

Pascal allows for the declaration of parallel arrays of integers,
reals, or subranges of integers (of any desired bit length). As one

would surmise, all elements of a single parallel array have the

.came type, length of representation in bits, and location in the
local store of the PE's.

MPP Pascal provides the where statement as an alternative to

iteratively reading values from or writing values to the elements

of a parallel array. In fact, owing to the architectural restrictions

of the MPP, MPP Pascal does not allow the programmer to

address locations in a parallel array by index values; the where
statement is required.

The syntax of the where statement is the following:

where < boolean parallel array>
do < statement>

[ otherwise < statement> ]

where < boolean parallel array> is any parallel array of 1-bit

integers, with 0 signifying the boolean value of false and 1 signi-

fying true. For each PE whose entry in the boolean parallel array
is true, the MPP Pascal statement following the keyword do will
be executed. If there is an otherwise clause in the where state-

ment, then each PE whose corresponding entry in the boolean
array is false will execute the statement following the keyword
ot h erwi se.

MPP Pascal extends the use of arithmetic operators (+ , -, *, /,

div, rood), arithmetic functions (abs, sqr, sin, cos, exp, In, sqrt,
aretan), logical operators (and, or, not), and relational operators

(=, < >, <, < =, >, > =) to parallel array operands of

appropriate parallel array types. The result of applying an arith-

metic operator to two parallel arrays (say A and B) is a parallel
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array in which the value of element [i, j] is

A [i,j] <op> B[i,j]

where < op> is the operator as it is used in standard Pascal. The
result of applying an arithmetic function f to a parallel array A is

a parallel array whose [i, j] entry is f(A [i,j]). In the case of

logical operators or relational operators applied to two parallel
arrays (of appropriate type) called A and B, the result is a parallel

array of boolean (1-bit) values, in which the value of entry [i, j]

equals (again)

A [i,j] <op> B[i,j]

where < op> is the relational or logical operator as it is used in

standard Pascal. In all cases, restrictions on operators and func-

tions (no division by zero, div requires integer operands, In(0.0)

is undefined, etc.) carry over to individual elements of parallel
array operands (Refs. 22-23).

MPP Pascal provides several predeclared functions for computing

a scalar (non-array) value from the elements of a parallel array.
Functions min, max, sum, and prod return the minimum, max-

imum, sum and product (respectively) of the elements of the

(parallel array) parameter. In the case of a boolean parallel array,

functions all and any return the logical conjunction and logical

disjunction (respectively) of the elements of the (parallel array)

param eter.

In addition to functions for calculating a single value from a paral-

lel array, MPP Pascal provides three predefined functions for per-
muting the elements of a parallel array. The functions shift and

rotate perform an end-off shift (filling with zeros) and an end-

around shift, respectively. The direction of the rotation or shift is

given by the directions of the compass (north, south, east and

west) and is specified in the invocation of the function. A matrix
transpose operation on a parallel array can be accomplished by

invoking the function transpose.

The MPP Pascal run-time system automatically creates two paral-
lel arrays of integers, row__Index and col. Index, whose utility can-

not easily be overstated. The value of element [i, j] is i in array

row_Index and j in col__Index. To illustrate the use of these

arrays, consider the following problem: we want to assign the
value of 0 to all elements of rows 0, 1, and 2 of the (user-

declared) parallel array pixels and the value of 20 to the rest of
the elements. The following MPP Pascal statement suffices:

where row lndex < 3

do pixcls := 0

otherwise pixels := 20

Note that in evaluation of the expression

row_Index < 3

the compiler generates assembly code that directs the MPP to

compare row_Index with a parallel array all of whose entries have
the value of 3.

SIMULATION ALGORITHM

Generation of Initial Population of Chains

Overview-The structure of the computations performed during

the simulation of the model, together with the particular architec-

ture of the MPP, allow for massive concurrency in the calcula-
tions (Refs. 12,24). Each PE represents the location of one oli-

gosaccharide unit in a population of chains of oligosaccharides.

(The PE's have been assigned an implicit linear ordering,

corresponding to row-major ordering of the elements of the two-

dimensional array of PE's.) The identity of each oligosaccharide,
the locations of the ends of the polymer chains, and the types of
chemical bonds (see below) are stored in the local memories.

The simulation begins with an initialization phase, in which the
PE's compute the assignment of identities to the oligosaccharide

units, the locations of the termini of the initial population of poly-
mer chains, the types of the bonds between successive oligosac-

charide units, and the seeds (initial values) for the random

number generator.

Random Numbers-The random number generator uses the
current value of its parameter (seed) to compute the next pseu-

dorandom number. A linear eongruentiai algorithm (Ref. 25) is

implemented, generating uniformly distributed random numbers

in the range [0.0, 1.0). Next we demonstrate the use of random
numbers to select the identities of the oligosaccharide units.

Selection of Units- The choice of ollgosaccharide units can be

determined by assigning disjoint subintervals of [0.0, 1.0) to each

type of oligosaccharide unit, with the proviso that the extent of a
subinterval equals the desired fraction of units of that type in the

entire population of units. It is readily seen that the collection of
subintervals so defined covers the interval [0.0, 1.0). If the ran-

dom number lies in the interval belonging to type "x" of oligosac-

charide, then "x" is chosen for the identity of that particular

unit. The (mole) fraction and accompanying subinterval for each

of the fundamental fragments of the simulation are shown in
Table 1.

Table 1. Mole fractions and intervals used for

selecting the type of fundamental fragment to be

assigned to a PE.

Fragment Fraction Interval

FI 0.8184 [0.0000, 0.8184)
F2 0.0398 [0.8184, 0.8582)

F3 0.0589 [0.8582, 0.9171)

F4 0.0607 [0.9171, 0.9778)
F5 0.0222 [0.9778, 1.0000)

Termini of Subchains-After initially constructing a single (long)

polymer chain, we proceed by dividing the chain into subchains,

which will be the initial population of chains in the simulation.
As in the case of the selection of the identities of the units, the

simulation program uses the random number generator to deter-

mine the locations of the termini of subchains. A parameter
fractionTerminators which has a value between 0.0 and 1.0 serves

as the demarcation between the subinterval of [0.0,1.0) determin-

ing the presence of a terminus and the one which does not. The

value of fractionTerminators used in the simulation is 5.91%.
Roughly speaking, the value of fractionTerminators multiplied by

the populationSize (a parameter equal to the number of oligosac-

charide units in the population) approximates the number of

chains that will be formed. In fact, one can calculate (Ref. 26)

that if the algorithm for selecting the termini of the initial popula-
tion of chains is repeated N times (with different values for the

initial seeds), then the average number of chains in the initial

population will have a value of

populationSize X fractionTerminators
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and a variance of

I x
N

populationSiz_ X fractionTerminators

X (1 - fractionTerminators)

Simulation of Hepariuase

After estabfishing an initial population of heparin chains, the

simulation of depolymerization begins. The rate of the enzyme-

catalyzed chemical reaction obeys the following differential equa-

tion (Ref 27):

= -axx(t) (I)
dt [_+x(t)

where x(t) is the number of cleavable bonds at time t and time is

measured from the start of the depolymerization reaction. The

parameters ct and [3 are constants which are related to the max-

imum velocity and the Michaelis constant K,,, respectively, of
Michaelis-Menten kinetics (ReL 27). The number Ax(t) of

bonds to be cleaved at the current (discrete) time step is calcu-

lated from Equation 1, using a Taylor series method of second

order (Ref. 28). The parameter deltaTime represents the duration
of each time step and was kept at a fixed value for the entire
simulation. Different values for dehaTime resulted in differences

in the accuracy of the numerical integration and differences in the

time required for running the simulation to completion.

There are three kinds of bonds: "cleavable", "noncleavable" and
"nonexistent". A cleavable bond can be cleaved by heparioase,

whereas a noncleavable bond can not. Noncleavable bonds are

found only in the (FI) 2 dimer. Nonexistent bonds are considered
to lie at the termini of the polymer chains, each designating the
end of a chain. At each time step, a random number is calculated

for each cleavable bond. If the random number belonging to a

bond is below the value of the state variable threshold at the

current time step, then the bond will be cleaved at the end of the

time step. The formula for the threshold at time t is

threshold(t) = Ax(I) (2)
x(t)

In this manner, the expected number (in the statistical sense) of

bo_d_ cleaved during each time step equals the number deter-

m;aee, by Equation 1.

After the bonds have been cleaved, newly emergent chains of free

(FI)2 need to be detected, and the bond between the pair of F1
units changed to bond type "noncleavable". (Recall that a free

FI-F1 chain is impervious to heparinase, and is, in fact, a single

F4 unit.)

We define the value of fractionCompletion to be the ratio of the
number of bonds cleaved or rendered noncleavable since the

beginning of the depolymerization to the number of cleavable
bonds in the initial population of chains. At the conclusion of

each time step, the value of fractionCompletion is recalculated,

using the formula

x(t) (3)
f ractionC ompletion = 1 x (0)

The simulation continues until a desired value of

fractionCompletion has been achieved, at which time information

may be written to disk files. Then the program either continues
or terminates execution.

MPP PASCAL CODE

In this section we present the code in MPP Pascal for the depoly-

merization of heparin molecules (chains). We use two globally

declared parallel arrays called name and bond to hold the name
of each oligosaccharide unit and the type of bond between that

unit and its successor, respectively. Each PE stores information

concerning one fundamental fragment in the simulated popula-

tion. Recall that the PE's (and hence the fundamental fragments)

have an implicit ordering by rows of the Array Unit. In order to

clarify the presentation of the excerpts of the simulation program
which follow, we have used boldface print for the names of pro-
cedures and functions.

The function getNextStoppingFraction returns the next value of

fractionCompletion to be used as a stopping criterion for the

numerical integration routine. The function yetMoreStopping-

Fractions returns a boolean value of true ifthere are more stop-

ping fractions yet to be considered, and false otherwise. The

depolymerization begins with the invocation of the procedure

depolymerlzatlon.

procedure depolymerization:

begin
while yetMoreStoppingFractions do

begin

currentStop := getNextStoppingFraction:
while fractionCompletion < currentStop do

begin

{ Simulate one time step }
oneTimeStep;

{ Find free FI-FI dimers ]

modifyClea vableB on ds;

[ Recalculate fractionCompletion }

updateS tateVariables
end ;

[ Write data to disk }

printIn formation
end

end ; { depolymerization }

Next we provide code for procedures invoked from procedure

depolymerization, and then procedures invoked from within those

procedures, etc. These procedures are all declared within pro-
cedure depolymerization, though for ease of exposition we have

presented them separately.

procedure oneTimeStep;

{ Compute threshold and change bonds
from "cleavable" to "nonexistent". ]

var

nextRand : parallelArrayType ;

begin
{ seed is global parallel array;
randomNumber is a function that returns

a parallel array of random numbers. }

nextRand := randomNumbcr (seed) ;
where (nextRand < threshold)

and (bond = cleavable)
do bond := nonexistent

end : { oneTimeStep}
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procedure modifyClea vableB onds;

{ Find all occurrences of free FI-F1 dimers.
Look for a sequence of three units x, y, and z

such that y and z are F1 units; x and z have

nonexistent bonds; and y has a cleavable bond.

Change the bond at y to "noncleavable" }

var
leftName, leftBond, rightBond: parallelArrayType ;

begin
{ Shift array name to the left one position;

shift array bond to the left;

shift array bond to the right.

Use these shifted arrays to find all sequences

x, y, and z (as stated above). }
leftName := leftRowshift (name) ;

leftBond :-- leftRowshifl (bond) ;

rightBond := rightRowshift (bond) ;

{ Modify bonds, changing them
from cleavable to noncleavable. }

where (name -- FI) and (leftName -- F1)

and (bond = cleavable)
and (leftBond = nonexistent)

and (rightBond = nonexistent)
do bond := noncleavable ;

end ; [ modifyCleavableBonds}

procedure updat eS tateVaria bles;
var

temp: parallelArrayType ;

begin

where bond = cleavable do temp := 1

otherwise temp := 0 ;
numberCleavable := sum (temp) ;

{ Calculate new value for fractionCleavable, using

global variable initialNumberCleavable, which equals

nt_mberCleavable at time c = 0. }
fractionCleavable

:= I - numberCleavable/initiatNumberCleavable ;

end ; { updateStateVariables}

Each of the next two functions takes a parallel array parameter A
and returns the same array with the elements shifted one position

downward (leftRowShift) or upward (rightRowShift) with

respect to row major ordering of the elements of A. In the case of

shifting downward, the [0,0] element of A is lost (destroyed),

and the [127,127] element of the array returned by leftRowShift
is zero. In the case of shifting upward, the [0,0] element of the

array returned by rightRowShlft is zero, and the [127,127] ele-
ment of A is lost.

Each of the predeclared functions shift and rotate requires three

parameters: a parallel array A and two integer values ns and we.
If ns equals 1, the shift is upward (northward); ff ns equals -1,

the shift is downward (southward). If we equals 1, the shift is to

the left (westward); if we equals -1, the shift is to the right
(eastward). To illustrate, suppose that the ARU is a 3x3 array of

PE's instead instead of a 128× 128 array of PE's. If A were the

following parallel array:

123

456

789

then the matrix returned by leftRowShift would be

234

567

890

and the matrix returned by rightRowShift would be

012

345

678

Here are the actual functions:

function leftRowShift (var A : parallelArrayType)

: parallelArrayType ;
var

ns, we, maxlndex : integer ;
temp : parallelArrayTyp¢ ;

begin

{ Shift each row to the left, wrapping around

at the edges of the ARU. }
ns:= 0; we:--. 1;

temp :-- rotate (A, ns, we) ;

{ Shift rightmost column upward, filling with zero. }
ns:= 1; we:= 0; maxlndex :- 127;

where col_Index = maxlndex

do leftRowShift := shift (temp, ns, we)

otherwise leftRowShlft := temp ;

end ; { leftRowShift}

function rightRowShift (var A : parallelArrayType)

: parallelArrayType ;
var

ns, we, minIndex : integer ;

temp : parallelArrayType ;

begin
{ Shift each row to the right, wrapping around }

ns:= 0; we:_ -I ;

temp := rotate (A, ns, we) ;

{ Shift leftmost column down, filling with zero. }
ns:= -1 ; we:= 0; minlndex:= 0;

where col Index = minlndex

do rightRowShift := shift (temp, ns, we)

otherwise rightRowShift := temp

end ; { rightRowShift }

DISCUSSION

The MPP may be compared with two other SIMD (parallel) com-
puters, namely the Connection Machine (CM), manufactured by

Thinking Machines Corporation, and the ICL-DAP computer,

manufactured by Active Memory Technology, Inc. The Connec-
tion Machine series of computers (CM-1 and CM-2) resembles

the MPP in the massive number (65,536) and word size (1-bit) of

its processing elements. Unlike the MPP, the CM has a 16-

dimensional hypercube interconnection topology, 4096 bits of ran-

dom access memory at each PE, and a message-passing facility
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androuter(Ref.29-31).TheICL-DAPseriesof computers pos-

sess the grid (2-dimensional array) interconnection topology, like

the MPP (Ref. 32). The grid itself is smaller (32x32 PE's), but
each processing element possesses 32,768 bits of local random

access memory, considerably more than belong to a processing
element of the MPP.

Much attention has been shown in the last few years to algorithms

for the Connection Machine (including an entire issue of the

Communications of the ACM, see Ref. 33). To a lesser extent,

some exposure has been given to algorithms running on the MPP

(Refs. 34-35).

CON CLU S I ON

We have described a simulation of the enzyme-catalyzed depoly-

merization of heparin and shown how it can be mapped to the
architecture of the MPP. We explained the principal differences

between MPP Pascal and standard Pascal. Our presentation of the

actual program for the simulation illustrated the language con-
struets in MPP Pascal which allow for manipulation of the 16,384

processing elements in the Array Unit. The simulation included

algorithms for circulating data among the PE's (using an implicit
row-major ordering of the PE's) and for pattern matching.
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ABSTRACT

A new two-dimensional model of water flow in a

hillslope has been implemented on the Massively

Parallel Processor at GSFC. Flow in the soil both

in the saturated and unsaturated zones, evaporation

and overland flow are all modelled, and the

rainfall rates are allowed to vary spatially.

Previous models of this type had always been very

limited computationally. This model takes less

than a minute to model all the components of the

hillslope water flow for a day. The model can now

be used in sensitivity studies to specify which

measurements should be taken and how accurate they

should be to describe such flows for environmental

studies.

INTRODUCTION

One important part of the global hydrological

system is a catchment, which separates rainfall

into evaporation, overland flow, and infiltration.

For a heavy rain, infiltration excess reaches the

stream first as overland flow. Part of the

infiltrated water may then flow rapidly below the

surface to re-emerge downslope or enter the stream.

This is usually referred to as saturated subsurface

flow. The rest reaches the unsaturated zone. The

flow there is vertical and horizontal, and the

latter component may eventually contribute to the

stream flow. Another component which can

contribute to the stream flow is horizontal flow in

a perched water table above the bedrock.

The primary output of catchment models is the

hydrograph, in which the rainfall and fluxes to

the stream from each of the above processes are

plotted as a function of time. The rainfall

rate and the sum of all the output fluxes are the

usual data from a catchment, and a primary goal of

catchment modelling is to understand the

sensitivity of the output to the physical

characteristics of the catchment, such as

topography, cover type, soil characteristics, and

antecedent moisture.

Ref. 13 define catchment models as being of three

basic types, but with overlapping characteristics

so they may be considered a continuum. The first

is stochastic. These models are statistical, in

which time series of measured hydrographs (output)

are correlated to rainfall (input) using classical

time series analysis techniques. This leads quite

naturally to parametric models, their second class,

in which the parameters of the stochastic models

are related empirically to the physical properties

CH2649-2/89/0000/0249501.00 © 1988 IEEE
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of the catchment. The third class contains

deterministic models based on the laws of

conservation of energy, mass, and momentum, usually

expressed as time and space dependent differential

equations. As these almost always contain non-

measurable parameters which must be calibrated,

deterministic models are partly parametric.

There are many deterministic catchment models, but

none of them includes all of the processes in the

hydrological cycle. In part this is because we

don't even know what they all are, due to the

extreme complexity and variability of natural

catchments. However, no existing model even

includes all the processes previously

described, because no serial computer can model

them with a reasonable amount of computer time for

a spatially variable catchment and for a long

enough time period (Ref. 1,7,8,13.15).

The concept of partial (or contributing) areas is

one basis of our understanding of how catchments

distribute rainfall (Ref. 17). Due to the spatial

variability of catchment characteristics (soils,

cover, topography), different areas handle the rain

in different ways. For example, if the rain rate

exceeds the infiltration capacity for a particular

area, then the excess rain becomes overland flow.

Once the soil is saturated, the water can flow

rapidly below the surface and parallel to it. This

process is referred to as saturated subsurface

flow. The water will re-emerge somewhere

downslope, adding to overland flow. The areas

change over time, so the saturated partial area

which contributes to overland flow varies in time

as well as in space.

We have tried to overcome the computing limitations

by developing a model on the Massively Parallel

Processor (MPP). The model consists of a set of

partial differential equations, solved in parallel,

and so adapts naturally to a parallel architec-

ture. The MPP hillslope model includes the

following components"

-- Surface retention

-- A complete surface energy balance (tempera-

ture and moisture) with separate evaporation

rates from the soil, plants (with water

extraction from the unsaturated zone), and

surface retention

-- Overland flow

-- Saturated subsurface flow parallel to the

surface
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-- Horizontal and vertical flow in the unsatur-

ated zone

-- Horizontal flow in an unconfined aquifer

Our model is a vertical slice of a hillslope, so it

is basically a two-dimensional model. It may be

considered three-dimensional only if the gradients

are all downslope, not across the slope. It is

based on a catchment model of Ref. Ii, which is

simply a series of uncoupled one-dimensional soil

columns placed side by side. We have improved

their design by allowing for horizontal flow in the

unsaturated zone between the columns, and including

the soil and surface temperatures.

We decided at the beginning of this research effort

to create one-, two-, and then three-dimensional

models in succession. The one-dimensional model

(Ref. 6) was compared to a similar one which runs

on a serial machine (Ref. 5,10) to make sure the

equations are solved correctly on the MPP, and as a

timing benchmark. After the two-dimensional model

is completely tested, we plan to develop a three-

dimensional version.

Our use of a parallel processor significantly

reduces the execution time. Typically a 24 hour

period may be modeled in about one CPU minute.

Ref. ii state that their model does not use

excessive computer time on a serial machine, but

they only present results from 6 hour simulations.

THE TWO-DIMENSIONAL MODEL

The specifications for each of the components of

the model given in the first section are described

here as flux and continuity partial differential

equations. The method of solution is also briefly

described.

Unsaturated Zone

Moisture flow is modeled as described in Ref. 5,

except we now have a horizontal component in the

soil moisture flux. The surface temperature is

modeled by the force-restore method.

Boundary value fluxes must be specified for

moisture at the top and bottom of the hillside

(vertical direction) and at the hillslope divide

and surfaces (horizontal direction). The top

boundary flux is the infiltration or evaporation

rate, computed from the surface energy balance.

The horizontal flux into the hillslope at the

divide is zero. The horizontal flux at the

hillslope surface depends on whether that cell is

saturated. If it is and the sum of the vertical

fluxes plus the horizontal flux into the cell from

the interior of the hillslope would cause soil

moisture to exceed saturation, then the flux onto

the surface is set to whatever value is needed to

keep moisture just as saturation. Otherwise, it is

zero. This is the mechanism which allows

subsurface return flow.

Saturated Zone

The water table height in each column is HB. The

horizontal flux is QB, and the vertical flux is QZ.

The fluxes and vertical boundary conditions are

calculated by the one dimensional Boussinesq

equation (Ref. 14). The flux into the water table

from the unsaturated zone is modelled as the

vertical hydraulic conductivity of the layer, and

the bottom boundary condition is an input parameter

representing an impervious layer or upward or

downward seepage.

The flux at the catchment divide is set to zero.

At the seepage face the height HB is a fixed input

parameter. Therefore the time derivation of HB is

zero for the last column, and the discretized form

of this derivative may be solved for the horizontal

flux at the seepage face. This is the saturated

zone flux which contributes to the hydrograph.

Overland Flow

If the surface water height is larger than a

critical value, the overland flow flux is

determined by Manning's equation (Ref. 7).

The infiltration rate is basically the Green-Ampt

model (Ref. 9), with the usual modification which

replaces the depth of the wetting front with the

cumulative infiltration:

l(t) _ a + bZ_tl(t ') dt' (I)
u--

Surface Energy Balance

The energy balance equation provides the surface

fluxes:

G = R + LE + I,H (2)

All fluxes are positive downward. G is the heat

absorbed by the soil, R is the net radiation flux,

LE is the evapotranspiration energy flux, and H is

the sensible heat. After finding the solution, the

surface moisture flux q0 is set equal to the soil
evaporation rate, and G is used in the force-

restore model. The surface temperature needed to

evaluate the fluxes is known from the force-restore

equation. The latent and sensible heat fluxes are

the usual resistance formulations. We imagine the

soil and vegetation as one surface with the

temperature T . We also allow for some surface
s

water storage. This affects the evaporation rates,

because the surface resistance is zero for the

fraction of the evaporation which comes from the

stored water.

Method of Solution

The soil moisture and temperature continuity

equations are solved by calculating the spatial
derivatives of the moisture fluxes and then

computing the time integral using numerical models.

The soil is divided into cells by creating a grid

of N layers and M columns of varying widths Az. and

Ax i respectively, which are input parameters, iAt a

specified time the fluxes at the interior
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boundaries are calculated. The surface energy

balance equations are evaluated and all boundary

conditions applied. The continuity equations are

of the form:

dy _

..... f (t,y)

dt

(3)

The vector y represents the state of the system in

the unsaturated zone and _(t,y) represents the

model equations. This is solved with an Adams-

Bashforth predictor-corrector method (Ref. 3,16).

This solution is described in detail in Ref. 5.

Since double precision is not available on the MPP,

the form of the predictor-correction equations with

the calculations done with the derivatives instead

of the backward differences was used. New values

of the state vector, y(p)(t+&t) are predicted in

terms of the previous derivatives. The derivatives

are recalculated from the model equations, and then

_he corrected value of the state vector,

y(c)(t+At), is obtained.

_)The difference between y(p end y(c) is a reliable

estimate of the discretization error, and the

software determines if each element of this

difference lies within a user-specified window. If

all differences are smaller than this window, the

integration step size (At) is doubled, leading to

increased computational efficiency and reduced

roundoff errors. If any difference is too large,

the step size is halved. Doubling of the time step

was accomplished by saving the previously

calculated derivatives and using them. Thus,

maximum accuracy could be retained. Where the time

step could be doubled because the errors are small

enough but there were insufficient back

derivatives, doubling was postponed until there

were sufficient back data. When the error window

checks required that the time step be halved, three

of the required derivatives for the predictor-

corrector were available, and two were missing.

The Runge-Kutta method was used to calculate these

needed derivatives. The continuity equations for

surface and saturated flow are solved using a

Runge-Kuttm method throughout.

UTILIZING THE MPP ARCHITECTURE FOR SPEED

Since identical calculations were needed at each

soil cell, the mapping of the two dimensional model

of the hillslope was accomplished by assigning an

individual processing element to each soil cell

(see Fig. i). Thus, the local memory of each

processor contains the values which belong to that

cell, i.e. moisture, position, thickness, depth,

conductivities, etc. Surface temperature, deep

soil temperature, cumulative infiltration, overland

flow, and saturated flow were all stored as vectors

in the same array as the moisture values since they

were part of the state vector.

The first step in the solution required calculation

of the fluxes at the interior boundaries of the

PROCESSOFI8

I I

Hill Top

1

Figure i. One processing element is assigned

to one soil cell

soil cells. These calculations involved only array

arithmetic and nearest neighbor (in one direction

for horizontal fluxes and in the other direction

for vertical fluxes) calculations. Since the

interconnect- scheme of the MPP is a nearest

neighbor network, all of the array arithmetic and

nearest neighbor calculations could be done in

parallel. The next step in the solution required

the surface energy balance equations be evaluated

and the boundary conditions applied. These all

involved vector calculations. Numerous input

vectors were required to do these calculations over

the course of a model run. Some were time

dependent vectors such as the air temperature

across the surface of the hillslope throughout the

day and some were static throughout the model run,

such as surface slope, surface roughness, and

surface vegetation properties. These vectors were

packed into array columns. To get the vector data

to a convenient place to do calculations, the row

and column broadcast capability of the MPP was

used. This allows fast broadcast of one element

from each row (column) to the other processor

memories in the same row (column) (see Fig. 2).

It is not necessary that the broadcast row (column)

be composed only of elements in a horizontal

(vertical) direction but merely that one element

per column (row) be selected. The MPP's capability

to select arbitrary areas of an array for

calculation via boolean masks allowed the completed

vector calculation results to be placed for example

into the processor memories of only the surface of

the hillslope. This combination of data movement

via broadcast and boolean selection enabled the

vector calculations to be done simply. In

addition, since many of the vector calculations

were similar, it was possible to do more than one

set at a time.

Once the derivatives were calculated, the

predictor-corrector equations were used and the

differences between them found. The tests on the
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Figure 2. The row and column broadcasting

feature of the MPP allows quick

movement of data for vector

calculations

halving (doubling) converted to a hardware

instruction on the MPP and could thus be done in

parallel. This global testing ability of the MPP

was also used to decide if whole blocks of code

needed to be executed or could be skipped. This

occurred for example with the infiltration

calculations under surface saturation. If no part

of the surface was saturated, then these

calculations could be skipped entirely. This also

contributed to the overall speed of execution.

In summary, the program's speed was achieved

through array arithmetic (masked and unmasked),

parallel data movement through nearest neighbor

communication and row and column broadcasting, and

global testing of conditions using 'any' or 'all'

for the purpose of choice in the next set of

calculations. All of these fitted naturally with

the MPP architecture and the computational

requirements of the model. A comparison of the

times (see Table i) for the model as it has evolved

from a 14 layer, one-dimensional limited flow model

to the current two dimensional model shows that a

single day of data run through the model requires

only about a minute of CPU time.

Table I. Timing measurements comparing MPP and

a serial processor for 24 hours of data

processed.

One Dimensional Model

(14 soll layers, no rain, vertical flows only)

IBM (Full processing capability): 4 sec

MPP (14/16384 processors): I0 sec

Two Dimensional Model

(102 soll layers, 102 soil columns, horizontal

and vertical unsaturated flows, saturated flow,

overland flow, one hour of rain)

MPP: 57 sec

MODEL OUTPUT

We have not yet completed unit testing of all the

processes in the model. Here we present the

results of one test, which includes the surface

energy balance of and infiltration into an

initially very dry sandy loam soil.

The hillslope is divided into 102 columns of width

• 5 meters each. The first column has I00 soil

layers of thickness .i m and the bottom two layers

• 5 meters. The last column has only the bottom two

layers. The slope is a llne drawn from the top of

the first column to the top of the last, so the

area modeled is a right triangle with height ii

meters and base 60 meters. These soil cells plus

the additional cells for temperature, infiltration,

overland flow and saturated flow use approximately

one-third of the Array Unit Processor capacity•

The initial volumet_ic_oisture in the unsaturated

zone is set to .05 m m everywhere. To model a

sandy loam we have set the parameters in the

hydraulic conductivity and matr_c potential models

to 8 s - .375 K - 2 8 x i0 m_s -9 - - 43 m
' s ' s ' '

and 5 - 5. These values were derived from fits to

the characteristic curves measured during an

experiment near Phoenix in 1972 (Ref. 12). They

were reused for each of the 6 days modeled here.

Ref. 4 show how these data were fitted to the

surface energy balance model. The rainfall rate

was 1.6 cm h-- for the first 3 hours.

Perhaps the most important result is that the

simulations took approximately i minute of CPU time

per 24 hour period, or 6 minutes for the entire 6

day run. In numerical simulations on earth science

problems, computer runs of an hour or more are not

uncommon. In such a time, it is feasible to

simulate 2 months or more of model time on the MPP.

This will allow for simulations of many storms and

inter-storm periods.

Figure 3a and 3b show the force restore solutions

to the surface and deep soil temperatures as

functions of time and column number. Time zero is

the start of the simulation, which here is

midnight• Column I is at the hillslope divide

and column 102 is at the seepage face. It is

difficult from these plots to project the daily

maximum value onto the time axis, but for each day

this occurs at 2 p.m. The temperatures range from

22 to 40 (°C), increasing as the soil surface

dries. The temperatures in the last three columns

show some problems, which we are examining.

Figure 4a shows soil moisture in the top soil layer

as a function of time and position. The rapid rise

as the initially dry soil absorbs all the rain and

the subsequent decline over the next 5 days are

physically realistic.

Figure 4b shows the soil moisture profile in column

50 (halfway down the hillslope) as a function of

time. This shows that the moisture never

penetrates deeper than the top 5 layers, or , 5

meters. It also shows that after 2 days the

surface exhibits small oscillations about a value

of .05 (same as in Fig. 4a), increases to a value
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Figure 3a. Force-restore solution for the surface

temperature as a function of time and

position on the hillslope

Figure 4a. Surface soil moisture as a function

of time and position on the hillslope
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Figure 3b. Force-restore solution for the deep

soil temperature as a function of

time and position on the hillslope

of about .12 at about .3 meters then decreases to

an unchanging value of .05 below .5 meters. Thus,

the dynamic zone seems to be the top .5 meters.

Figure 4c shows the variation of the top cell soil

moisture as a function of time. The effects of

infiltration and evaporation, as well as of

capillary action, can be seen.

Figure 4b. Soil moisture profile for column 50 as

a function of time

Figure 5a shows the infiltration rate as a function

of time and4Posit_n. The maximum rate shown here

(414 x I0" cm s- ) equals the rain rate, 1.6 cm

h . Figure 5b shows the cumulative evaporation

everywhere as 4.8 cm, exactly equal to the

cumulative rainfall. For this simulation, then,

all the rain immediately infiltrated into the soil

surface. Figure 5b also shows that the cumulative

infiltration calculation is correct. There is no

surface retention.
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radiation, a rather large value. The problem is

not in the values for thermal conductivity and heat

capacity, as may be seen in Figure 7. These vary

with soil moisture as they should.

Figure 4c. Surface moisture for column 50 as a

function of time

Figure 5b.
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Cumulative infiltration as a function

of position and time

Figure 5a. Infiltration rate as a function of

position and time

The surface energy balance fluxes are plotted in

Figs. 6a-6d. The net radiation (Fig. 6a) is the

data used to drive the energy balance model. These

are the same very day, as we simply reused the 24

hour data set each day. The latent heat flux (Fig.

6b) decreases each day as the soil dries out. The

sensible heat flux (Fig. 6c) exhibits peculiar

behavior, being predominantly positive (towards the

soil in the sign convention of Eq. 2) for the first

4 days and negative thereafter. Finally, Figure 6d

shows the soil heat flux. It is positive during

the day as it should be for a soil surface which is

getting warmer every day, but it is also 50% of net

Figure 6a. Surface net radiation as a function of

time and position

These peculiarities in the surface fluxes are most

likely due to the use of the same net radiation

every day, which cannot be representative of all

the surface conditions modeled here. This is being

checked out by using modeled instead of measured

radiation.
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Figure 6b. Latent heat flux as a function of

time and position

Figure 6e. Sensible heat flux as a function of

time and position

SUMMARY

We have presented a new model of the hydrological

response of a hillslope to rain. It runs on a SIMD

parallel architecture computer, the Massively

Parallel Processor, at Goddard Space Flight Center.

Its major advantage over other models of its type

is its much reduced execution times (due to the

parallel architecture of the MPP) from what one

gets on a serial machine. This allows the model to

include more of the hydrological processes than any

other model has been able to, including saturated

subsurface flow and a sophisticated surface energy

balance.

Figure 6d. Soil heat flux as a function of

time and position

Figure 7a. Thermal conductivity of the top soil

layer as a function of time and

position
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Figure 7b. Heat capacity of the top soil layer

as a function of time and position
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Abstract

This paper describes progress toward the full imple-

mentation of a version ofTACO3D, a 3D thermal anal-

ysis code, for use on the CM-2 Connection Machine.

We have implemented a combination of a parallel con-
jugate gradient solver, which runs on the CM-2, and a

serial calling program, which resides on the VAX front-

end in order to assess the feasibility of utilizing this

type of massively parallel computer in the engineer-

ing production environment. Preliminary results have

shown this implementation, running on a 16K proces-

sor CM-2, is over 5 times faster than a single XMP

processor in the solution of a ,-, 30,000 node 3D appli-

cation. We will also discuss future plans to complete

the optimum implementation of the entire code.

Keywords: finite element, diffusion, parallel com-

puting

1 Introduction: Parallel Pro-

cessing in the Production En-

vironment
¢o

Application of parallel processing in the production

environment requires the development of algorithms

that efficiently solve problems of interest to design

engineers. Aside from fast floating point processing

modern production codes require the availability of in-

put/output (I/O) devices for the storage and retrieval
of temporary information as well as online databases

of material properties. Modern production codes also

rely heavily upon the ability to present the numeri-

cal results in an easily understandable graphical form.

With the availability of floating point performance of

over 100 Mflops, mass storage and graphical frame

buffers, massively parallel processors are now being

considered as viable additions to the engineering pro-
duction environment.

Many of the currently available examples of engi-

neering applications of parallel processing solve sim-

plified problems which have been tailored to specific

architectures. The true measure of the utility of par-

allel processing in the production environment should

be based upon the ability to solve larger problems and
solve them faster than currently possible on Cray class

supercomputers. In order to assess the feasibility of

incorporating a massively parallel processor into the

production environment we have undertaken the trans-

lation of TACO3D, a finite element heat transfer code

currently used for production applications at Sandia
National Laboratories, for use on a number of different

computational platforms. The structure of the code al-

lows this process to performed in a stepwise manner,
as will be discussed later. This paper describes the

progress of an implementation for use on the Thinking
Machines Corporation CM-2 and results from several

application problems. The current phase of implemen-

tation uses a conjugate gradient solver, running on the

CM-2, interfaced to the main program, which resides
on the front-end machine.

2 The Connection Machine

Computer

The CM-2 Connection Machine system is a massively

data parallel computer consisting of up to 216 = 65536

CH2649-2/89/0000/0257501.00 © 1988 IEEE
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bit serialprocessorsarrangedin a hypercubetopol-

ogy. Each processor has 64K bits of local memory,

so a full machine has an overall memory capacity of
512 megabytes. The processors and their associated

memories are arranged in hardware with 16 to a chip.

Every pair of chips, i.e. 32 processors, is supported

by 32-bit floating-point unit (FPU) resulting in 2048

FPU's per full machine. A nominal performance fig-

ure, averaged over a variety of applications, is in the
vicinity of 2.5 GFlops, with a peak performance rat-

ing of more than an order of magnitude greater than

that. The CM-2 operates in SIMD, single instruction

multiple data, mode and is further characterized by

a sophisticated communications network linking all of

its processors.

In addition to the memory and computational ca-

pacity of the CM-2, the machine has an I/O structure

that allows for parallel input/output. This is accom-

plished by I/O controllers, of which there are eight on

a full CM-2. An 80 bit wide I/O bus connects each of

these I/O controllers with the device that it controls.

The I/O devices currently available fill the need for
mass storage and graphics capability essential in the

production environment. The DataVault, is a parallel

disk drive unit, capable of transfering data to or from

the CM-2 at approximately 40 Mbytes/second. This

system could be used to enable the solution of prob-

lems that are larger than the current memory size of
the machine. The second device is a high-resolution

graphics display that can receive and display data

stored in the CM-2 at approximately 1 Gbit/second.

In addition to the analysis of results, this interface

would enable the development of interactive mesh gen-

erators for large problems.

The CM-2 Connection Machine system uses a con-

ventional front-end computer. Currently, it may be

either a VAX with the ULTRIX operating system, or

a Symbolics 3600-series Lisp Machine. The front-end

machine supports the operating environment and all

programming is done via the front-end. The control

structure of program is maintained by the front-end,
which issues commands to the CM-2 processors when-

ever necessary. Because the front-end could not pos-

sibly broadcast instructions directly to the Connec-

tion Machine processors as fast as the latter could ac-

cept them, high-level instructions are instead sent to

a sequencer which in turn translates a corresponding

packet of microcode from a control store into many
instructions of nanocode and broadcasts these to the

processors for execution.
In order to make the granularity of the machine

somewhat flexible, the Connection Machine system al-

lows tile use of virtual processors (VP's). This is soft-

ware that allows the programmer to treat one physical

processor (@P) as though it were really some larger
number of processors in a fully transparent manner. It

thus enables makes the machine to simulate a system

with more processors. The abstraction of virtual pro-

cessors is supported by segmenting the local memory

of each processor, and by having the sequencer mul-
tiplex over these memory segments as necessary. The

degradation in the speed at which a program executes

varies linearly in the number of virtual processors used;

this is because the different virtual processors within

a single physical processor operate sequentially.

Connection Machine processors are arranged in a
Boolean hypercube configuration. Thus, for a Con-

nection Machine with 65536 processors, a processor

address is a sixteen-bit cube address that specifies the

location of the processor on a sixteen-dimensional hy-

percube. Using a Gray code mapping it is possible to

embed a one-dimensional array in a binary hypercube

of n dimensions in such a way that nearest neighbors

are preserved. By applying the Gray code to m succes-
sive subsets of bits within the sixteen bit cube address,

it is possible to embed an m-dimensional Cartesian ar-

ray into the hypercube so that nearest neighbors are

preserved, as long as m < n. It is therefore possible

to address processors on a Cartesian grid of m dimen-

sions, where m < 16, through the use of this Gray
coded grid address.

Interprocessor communication can be either regular
or irregular. An example of regular communications

might be every processor getting data from some spec-

ified memory location of the processor whose grid ad-

dress differs by -1 in some direction, e.g. along the

z-axis. The Gray code mapping allows this to be done

along unique cube wires with no resulting conflicts.

An example of irregular communications, on the other

hand, might be every processor getting data from pro-

cessor 0. In this case, some data might have to traverse

many cube wires to reach its destination, e.g. to get

from processor 0 to processor 65535 it is necessary to
traverse 16 cube wires, and some form of control is

necessary to resolve resulting conflicts in the commu-
nications requests.

Regular communication is done by having each pro-

cessor simply send its message over the cube wires di-

rectly; in this case, there is no possibility of contention.

Irregular communication also uses the cube wires, but
only in a manner that is controlled by special purpose

adaptive communications hardware called the router.

Any processor can use the router to send information

to any other processor with a command that is ap-

propriately called SEND. It is also possible to specify

logical and/or arithmetic operations to be performed
in case of a "collision", i.e. two data being sent to

the same location within the same processor simulta-
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neously.
When a processor wants to SEND data, it hands

that data to the router. The router keeps track only

of the relative address of the destination processor

with respect to the current cube address. The rel-

ative address is continually updated as the messages

move through the network toward the destination pro-

cessor; when it reaches zero, the message is at its des-

tination cube position and is delivered to the proces-
sor there. The router is responsible for buffering con-

flicting communication requests when more than one
message wants to move along the same edge of the

hypercube.

Due to the lack of contention, regular communica-

tions, using the cube wires directly, are going to be

faster than irregular communications, using the router.
As we shall see in the next two sections, finite element

analyses in some geometries can be done with regular

communications only, while in other geometries irreg-

ular communications are required.

3 The TACO Code

TACO3D is a three-dimensional finite element code for

the solution of heat transfer problems in arbitrary ge-

ometry. It can perform both linear or nonlinear anal-

yses on either steady-state or transient problems. Ma-

terial properties, transport coefficients, and boundary

conditions, may be specified as functions of space and

time for inhomogeneous heat transport, or of temper-

ature for nonlinear heat transport.

TACO3D also has a variety of specialized features

that make it a valuable engineering production tool.
These include the treatment of enclosure radiation,

bulk nodes, and master/slave internal surface condi-
tions which are useful for handling the material inter-

faces. The code has user-friendly input/output options

such as free-field data input format, and user-specified

functional representation of any independent variable.

Graphical output plots in time or space are easily ob-

tained by a variety of post-processing tools.

Here we adopt the notation from Reference [1],
which should be consulted for additional details.

The basic equation solved by the TACO3D code is

the diffusion equation:

pevO = (kijOj),i + Q, = LO. (1)

The boundary conditions can be any combination of
Dirichlet conditions

o = o,, (2)

or Neumann conditions

kijO jni -q-q -" O, (3)

and an initial condition must be specified for 9 as well,

e = e0 (4)

Here, t9 is the temperature, the commas denote differ-

entiation with respect to the spatial coordinates, the

overdot denotes differentiation with respect to time,

p is the mass density, cv is the specific heat, kij is

the thermal conductivity tensor, Q is the internal vol-

umetric heat generation rate, ni are the components
of the unit normal to the boundary surface, 6, is the

temperature boundary condition which is a specified

function of space and time, q is the surface heat flux

which is a specified function of space time and tem-

perature, and 00 is the temperature initial condition

which is a specified function of position.
The flux boundary conditions may be written in the

general form:

q = t) (ea - , (5)

where f, a, b, and 8f depend on the specific type of
boundary condition used, e.g. conduction, convection,

radiation, etc. This may be recast into the form:

q = fo(O, t) + h(O, t)(O - O,), (6)

where the f0 term is necessary to account for the case
when a = b = 0. In what follows, we shall assume

that the Neumann boundary conditions are expressed
in this form.

Because our dependent variable is a scalar quantity,

its finite element representation is particularly simple:

O(x,, t) = ___ Nj(xi)Oj(t), (7)
i

where the 0j (t) are nodal temperatures, and the Nj (xi)

are basis splines. Employing the Galerkin principle, we
can insert this representation into the dynamical equa-

tion, Eq. (I), and the boundary conditions, Eq. (3), to

get the matrix equation,

C._+K .e-F, (S)

where
f

Cij = ]v NipcvNjdV
(9)

f,,N,,oko  , dv+f ,N,h y (XO)

F,- [ N,Q V+[ N,(hO,- (:1)
JV N

where SN denotes the subset of the boundary sur-

faces on which Neumann conditions are specified. This

must be suplemented by the Dirichlet conditions on
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Figure1:
TACO3D

User Interface and I/0 Routines]

IM.  ix and Lo.d V aor Ass . bluJ

[ Matrix Solution: Az = b [

Diagram of the coarse grain structure of

the components 0j(t) corresponding to nodes that lie
on boundary surfaces on which Dirichlet conditions are

specified.

The integration in time of Eq. (8) is accomplished

by a generalized midpoint method, described in Refer-

ence [1]. The essential point is that time is discretized,

so that the value of the temperature is represented
by Ok at time tk. Then, O(t) and O(t) in Eq. (8) are

represented by various linear combinations of Ok and

8t+x at time tt. Exactly which linear combinations are

used depends on what sort of time differencing (e.g.
forward-explicit, Crank-Nicholson, backward-implicit,

etc.) is desired. Differencing Eq. (8) in this manner

yields an equation of the form:

K_ • 0_+t = F_, (12)

that must be solved at time step tk for the new tem-

perature, 0_+t. The matrix K* and load vector F*
are linear combinations of C, K, and F at timesteps

tk and tk-x. For example, in a steady-state analysis,

the 0 term in Eq. (8) vanishes, so that K* = K and

F* = F, and Eq. (12) needs to be solved only once.

When the dynamical equation, Eq. (1), or boundary

conditions, Eq. (3), are nonlinear, the matrix equation,

Eq. (8), will also be nonlinear. That is, K* will depend

on 0, and/or F will depend nonlinearly on 0. In this

sort of situation, Eq. (12) is solved iteratively by the
TACO code. That is, K* and F* are evaluated based

on 0 at the last iteration, and are used to solve for the

next iterate. As a first guess, the value of 0 at the last

time step is used.

Thus, regardless of whether the analysis is steady-
state or time-dependent, and linear or nonlinear, the

main computation done by the code is the solution of

the matrix equation, Eq. (12). This must be done at

least once at every time step.

4 Implementation of the Con-

jugate Gradient Algorithm

for TACO3D

The coarse structure of TACO3D, Figure 1, consists

of a user interface, input-output routines, the global

conductance matrix and load vector assembly and the

solution of the matrix equation, Eq. (12). The natural
breaking point for the first step in the code conversion
is at the level of the matrix solution. It was decided to

implement the conjugate gradient routine on the CM-

2, written in C-Star and Paris, and interface it to the

main FORTRAN program running on the front-end.

The matricies generated by Taco are in general
found to be symmetric positive-definite. These con-

ditions allow some simplifications of the generalized

conjugate gradient algorithm. The Cray version of

TACO3D used in this study includes the conjugate

gradient routine from SPDPACK [3], a package of rou-
tines developed by J. Grcar and J. Meza of Sandia.

The detailed algorithm used in both the CM-2 and

Cray XMP versions of the solver is:

To solve Az = b:

M

k

_go

r0

P0

loop:

k

ot

_k

rk

zk

P_

goto loop

= diag(A)

= 0

= 0

= b

-- Zo = M-lro

-- k+l

= z__t .r_-t/P__t . A.pk_t

: xk-1 + _Pt-1

= rt-l-aA.p

-- U-lrt

-- Zk " l'k/Zk-1 • rk-1

= z_+_pk-I

The bulk of the computational effort is in computing

A.p, but only one of these matrix-vector dot-products

is required per iteration.

Taeo solves the finite-element problem in terms of

nodal equations rather than elemental equations. That
is, an n-node problem involves solving a system of n

linear equations at each time step. A very natural ap-

proach is to assign each node to one virtual processing
element. The result is that each processing element

contains data pertaining to one of the nodal equations,

i.e., one row of the matrix and its right-hand-side ele-
ment.
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Problem

11 x 11 x II

21 x 21 x 21

31 x 31 x 31

Grid Solver Routing Solver
Nodes grid I ..s/.er II vPRI msli,erII
1331 32 x 16 x 16 10.5 1 38.8 30

9261 32 x 32 x 32 16.6 1 41.5 49

29791 32 x 32 x 32 16.6 2 88.5 159

Cray Solver ]ms/iter

Table 1: Comparison of the Cray XMP-24 and the CM-2 solution times for the regular cubic solid with varying mesh

sizes. The solution time for the CM-2 is found to scale linearly with the virtual processor ratio (VPR).

I II Routing Solver Cray SolverProblem Nodes IIVeR I ms/.er II ms/iter
Domel6 2544 1 42.0

Dome32 5088 1 42.3

Dome64 10176 1 42.7

Dome128 20352 2 81.0

Dome256 40704 4 180.7

13.4

27.6

53.0

106.4

Table 2: Comparison of the Cray XMP-24 and the CM-2 solution times for the hemispherical dome problem with

varying mesh sizes. The Dome256 problem was too large to run on the XMP-24.

4.1 Routing Version

The most general way to represent the matrix A is to

store row n in processing element n as a vector of pairs

(Ni, Wi), the node numbers and weights, respectfully,

corresponding to the i nonzero entries in that row of
the matrix. This is a parallel analog to the IJA storage

scheme used in PCGPAK [4,5].
All the vectors, such as the right-hand-side b, are

simple to represent: processor n gets element n of the

vector. Vector addition then becomes a simple addi-

tiQn of two values within each processor; the whole

vector sum is computed at once in parallel, and it in-

volves no interprocessor communication. A vector dot-

product is a simple multiplication of two values within

each processor, followed by a sum-reduction across all

processors. The sum-reduction is an O(logn) opera-
tion on the CM system.

Computation of the matrix-vector dot-product A • p

is a little more complicated. Each processor computes

an element of the product, given by _i WiPN_. The
values Wi and Ni are local to the processor, but the

value PN, is not. However, with the use of a single
Paris instruction each processor can get the needed

value from another processor, to which it has a pointer,

using the parallel GETinstruction. This must be done
i times each iteration, and is by far the speed-limiting

operation in this approach.
The router in the CM-2 system is a message sending

system; GETs are implemented as multiple SENDs. A
SEND instruction tells each selected processor to send

a datum to a processor to which it has a pointer. The
messages are all sent in parallel through a message

"routing network". This ability to efficiently pass mes-

sages through pointers to other processors is what sep-
arates the Connection Machine computers from other

massively-parallel architectures.

We can take advantage of the symmetry of the ma-

trix to make it go somewhat faster using SENDs. Since

Ajt = Akj, we can arrange, for some i, to have
Ni = j in processor k, and Ni = k in processor j

and Wi = Aj_ in both. That is, for step i of the
matrix-dot-vector operation, pairs of processors will

be exchanging their vector elements using a SEND.

The weight Wi does not need to be sent, since it is the

same at both ends of the exchange.
This is the general-purpose "routing" implementa-

tion; it deals only with the solution of the matrix prob-

lem, and takes no advantage of the geometry of the

problem which lead to the matrix.

4.2 Grid Version

If the geometry of the problem consists of a paral-
lelepiped mesh a special purpose solver can be used

to obtain large performance gains. One can configure

the CM as an n-dimensional grid of virtual processors,

with each dimension taking on an integral power-of-2

length. As discussed above, it is much faster to shift
data from neighbor to neighbor along a grid direction

than to use the general-purpose SEND instructions.

A large class of problems solved by Taco involve

3D parallelepiped element grids. For each node, Taco

generates contributions from the 6 directly-connected

neighbor nodes and the 20 "diagonal nodes". There-
fore, each internal node typically has 26 nonzero ma-
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trix elementsin each row plus the diagonal.

We can take advantage of the geometry by config-

uring the CM as a 3-dimensional grid large enough

to hold the grid of nodes in the problem. Then, the

layout of the nodes in the CM reflects the layout of
the nodes in the real problem. All communication can

be done locally, since all matrix row contributions are

nearby on the CM grid.

If the problem is mapped onto the CM grid in this
manner, the Ni aren't needed; we can simply use the

convention that Wi refers to the coupling of the node in

direction i, hence this implementation uses less mem-

ory per processor.
However, there are some drawbacks. First, the grid

must be regular. Second, the CM system software cur-

rently requires each dimension to be a power-of-2 in

length; if we have, say, a 33 x 33 x 33 grid of nodes, we

need a 64 x 64 x 64 grid of processors, and we are only

using a little more than 1/8 of the processors. One

can assume that on average, a little less than half, i.e.

(3/4) 3, of the configured processors will be used if the

grid generators don't know about the power-of-2 limi-
tation.

Nevertheless, the grid version is so much faster that

it is the right choice whenever it is topologically pos-
sible to use it. The speed increase is sufficiently large

that it may be beneficial to tune the mesh generation

package toward the production ofa parallelepipecl grid.

5 Results and Timings

We ran several sample problems on both a Cray XMP

24 with scatter-gather hardware and a 16K-processor

CM-2 at the Naval Research Laboratory.

The first class of problems are rectangular solids di-

vided up into equal rectangular elements. A constant-

temperature boundary condition is imposed on one
side. This problem is an obvious fit to the grid solver.

The results for problem using several various mesh
sizes are listed in Table 1.

Note that the Cray times scale linearly with the
number of nodes in the problem. The CM grid solver

scales better than linearly because nearest-neighbor

communications scale better than linearly. Also note
that the times are the same for the 21 x 21 x 21 and

31 x 31 x 31 problems with the CM grid solver, because
it needed to use the same number of virtual processors

to solve the problem.
The second set of problems involves a more compli-

cated geometry. It is a hemispherical volume of three
materials: the curved "dome" shell, a disk-shaped

plate, and the interior volume. This mesh is gener-

ated by spinning a 2D mesh about the symmetry axis

of the dome shell, resulting in a grid that is periodic in
the O direction. A 3D solution is required due to the

application of nonsymmetric heat load applied to the
surface of the dome. The results listed in Table 2 show

that the CM-2 versions perform the solution step up

to 5 times faster than the Cray version.

6 Conclusions and Future

Work

We have presented here the initial step toward the

complete conversion of TACO3D to run in the Con-

nection Machine environment. Results for a parallel

implementation of the conjugate gradient routine have

been shown to be faster than the Cray XMP-24 results.

The greatest speed increases have been demonstrated

for a grid version of the solver, which requires a par-

allelepiped mesh. The more general solver, which uti-

lizes the router communication scheme, is still able to

perform at up to 2 times the speed of the Cray solver

on a 16K CM-2. One of the major gains in perfor-

mance comes from the fact that the CM-2 algorithm

scales linearly with the number of virtual processors

required to solve the problem, where the Cray imple-
mentation scales linearly with the number of nodes

in the finite element mesh. Extrapolating the CM-2

timings to a full 64K processor, Figure 2, shows that
this machine is capable of up to 8 and 30 times the

performance of the Cray XMP for the router and grid

versions of the solver respectively.

The next step in the conversion of the TACO3D
code would be the generation of the global conduc-

tance matrix and load vector using the CM-2. The

parallelization of these tasks appears to be simplified

by the fact that they can be broken into independent

operations on individual elements of the mesh. The
only communication necessary in these steps would be
the transfer of the assembled matrix and load vector

into processor geometry required for the solver.

The capability of solving large finite element prob-
lems may also require the renovation of several related

processes, including mesh generation techniques and

graphical analysis of the resulting information. These
are both areas in which the computational power of

the CM-2 may be useful. It may also be possible to

solve problems which are several orders of magnitude

larger through the use of the DataVault mass storage

system.
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ABSTRACT

Fractal based Iterated Function Systems

are producing very highly compressed

graphics, images and movies, as well as

being a promising approach to pattern

recognition. The processing

requirements are severe, and this paper

examines the algorithms best suited to

an SIMD processor array (in particular

the AMT DAP510) both for encoding and

image generation (decoding). One image

generation algorithm, RCTA, has been

implemented, and another quite different

algorithm, ITA, is being implemented

that will enable real time movies to be

played. The paper both introduces and

contributes to the IFS literature.

Keywords: Iterated Function Systems,

Fractals, SIMD, Array Processor, Image

Compression, Graphics, Movies.

INTRODUCTION

Images are not random arrays of pixels,

but have structure; if this structure

can be discovered, there is great scope

for data compression. The aim of

compression may be later regeneration,

or it may be to help recognise or match

patterns. The work may start from an

image or movie, or conversely the aim

may be to generate graphics or

animation. The applications potential

is very wide.

Parts of images often have some

similarity to other parts, often with a

change of scale. The newly emerging

science of Iterated Function Systems

(IFS) exploits the self-similarity of

images as a means of compactly defining

images. Compression ratios as high as

i0,000:i have been claimed for some

images, and even higher ratios for

movies. The generation of images from

the compact form has been reported to

take up to 30 minutes on a Masscomp 5600

and compression has been reported (Ref.

I) to take up to i00 hours of man-

machine interaction!

This paper has overlapping purposes. Of

most direct interest to the conference

is how an SIMD computer with an array of

1024 processors (the AMT DAP510)

achieves high performance on some IFS

algorithms. It is also a partial review

of, and contribution to, the IFS

literature from more of an engineering

than mathematical angle. This is to

help readers understand the algorithms

and get into this rapidly expanding

field. Ref. 1 is an easy introduction

to IFS algorithms, and Refs. 2-5 are

more detailed and up to date. Finally,

some alternative machine architectures

are discussed.

IFB IMAGE REGENERATION THEORY

Boolean Images

In simple IFS images, the compact form

is represented by n contractive affine

transformations with 6 coefficients each

that map the whole image onto part of

the image:

x' = ax + by + e

y' = cx + dy + f

The 6 coefficients are a to f, and there

are n sets of these. Provided all the

transforms are contractive, a unique

binary image is defined solely by the

recursive property that application of

any transform to points in the image

produces other points in the image. The

image is known as the attractor of the

CH2649-2/89/0000/0265501.00 © 1988 IEEE
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IFS, because iterative application of

the transforms to arbitrary starting

points converges to the attractor. This

iteration can either be done by

repeatedly applying every transform to

the current set of points (pixels) and

merging points falling into the same

pixel, or else choosing a sequence of

transforms according to probabilities,

using them to progressively transform

the coordinates of a point, and

recording the pixels visited. The

probabilities used in the second method

do not affect the image (attractor)

eventually generated, provided they are

non-zero; however, the image is covered

most uniformly and quickly if the

probabilities are proportional to the

area into which a unit of area is

transformed. (The latter is given by ad

- bc). Both methods converge at a rate

dependent on the least contractive

transform. If a fern is being

generated, the least contractive

transform has a linear contraction of

about 15% and about 40 iterations are

needed. (log (n)/log (l/S), where n is

the required linear resolution, say 512,

and S is the linear contraction, 0.85).

Thus the first regeneration algorithm

must generate about 40 intermediate

images of steadily increasing accuracy,

whilst the second algorithm should

discard the first 40 points before

recording pixels. The first algorithm

lends itself to working in image space,

with the transforms compressing,

distorting and moving (binary) pixels

arranged in raster arrays in the

computer memory; it is thus termed the

Image Transformation Algorithm (ITA).

The ITA algorithm can be applied to

points (pixels) held as coordinates, but

the merging step (which is essential to

prevent a combinatorial explosion of the

number of points) is then more awkward.

A key aspect of the ITA algorithm is

that image resolution can start low and

grow steadily. The second algorithm has

been termed the Random Coordinate

Transformation Algorithm (RCTA) and

performs arithmetic on point

coordinates.

Grey and Colour Images

A simple way of providing some colour is

to associate a colour with each

transform and colour a pixel according

to the (last) transform that wrote the

pixel. If the picture has been divided

into segments that each have separate

ets of IFS transforms, then the segments

can be separately coloured.

However, a better approach to grey and

colour is to use "measure theory", or in

simple terms to include intensity. With

RCTA, a count is kept of the number of

times a pixel is visited, and the

probabilities may be adjusted to achieve

intensity effects. Full colour can be

achieved by generating an intensity

image and two colour difference images

which may be at a lower resolution.

With ITA a weight is used instead of a

probability, and the intermediate (and

final) images are typically held as 8-

bit pixels; the pixel values are carried

through the transformation, being added

or interpQlated when pixels are merged,

and multiplied by the weight before

being added to the next image. Either

the weiqhts are normalised in such a way

that average intensity levels remain

constant, or else the image will need to

be renormalised at intervals. Colour

can be dealt with as before, with

intensity and 2 colour difference

images.

Negative weights or probabilities can be

permitted. The implication is that the

transformed image is subtracted instead

of added. In RTCA the pixel counter is

decremented.

Effect of Probabilities on Image Quality

Ref.6 proves that RCTA converges to the

same result as ITA; however, convergence

is slow. For example, if it is desired

that a particular pixel should have a

95% probability of being within 20% of

the true intensity, it needs to be

visited about 100 times. Similar

accuracy with the ITA algorithm requires

working to 4 or 5-bit precision,

although one or two more bits may be

desirable for dealing with low intensity

parts of the picture.

Extensions to the simple IFS

representations

One extension to the simple scheme is to

have several partially connected images.
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Each image will have its own set of

contractive transforms which may map its

own image onto part of itself, or else

map one of the other images onto part of

itself. One of the images is the

desired output. This extension is

described in Refs. 2 and 7, and does not

add any basic problems to the image

generation algorithms. The RCTA

algorithm can be adapted by keeping

independent points for each image, but

recording the pixel hits only for the

output image. Either the points for

each image are updated in turn, or, more

economically, points are updated only

when new points are needed to serve the

output image. Pixel storage is required

for the output image only. The ITA

algorithm may require storage for all

images, but can take images in non-IFS

form more easily than the RCTA

algorithm.

Another extension, which can be viewed

as a variant of the above, is to compose

the final image from several separate

images. This can either be by spatial

segmentation referred to earlier, or it

can be by adding overlapping images.

The latter could provide a basis for

compression. An ordered overlay of

images is also possible, controlled by

zero pixels in one of the images. The

compressed IFS form is extended from the

simple case by:

a) dividing the list of transforms

into separate images,

b) specifying the output image, and

c) adding to each transform an eighth

number specifying the source image.

The techniques of this section are

called "condensation" in Ref.2.

Animation and Movies

Movies could be made with a succession

of independent images. However, it is

better to specify how transform

coefficients change with time, as well

as sometimes introducing new transforms

(or images) and killing old ones. Thus

every coefficient can be accompanied or

replaced by rate of change coefficients,

which do not need to be updated as

frequently. Indeed, the update rate

could be related to how quickly the rate

of change is changing (ie acceleration)

for that coefficient or transform. Thus

the new data could be tagged to say

which coefficient it applies to,.

One technique to produce interesting

graphics is to progressively interpolate

between two unrelated images.

IMAGE GENERATION ON DAP

An adaptation of the RCTA algorithm has

been implemented on the AMT DAP 510,

which is a SIMD computer with 1024 bit-

organised Processing Elements (PEs). The

ITA algorithm is currently being

implemented on the DAP, and offers the

prospect of eventually being an order of

magnitude faster than the RCTA

algorithm could ever be. For high

quality colour images, the prospective

improvement is more than two orders of

magnitude, because of the effect of

probabilities. The following sections

are an update of Ref.8. The improvement

in the RCTA algorithm of using the local

random bit to choose between two

transforms rather than selectively

ignoring one transform is due to A Horn.

Adaptation of the RCTA algorithm for the

DAP

Each of the 1024 PEs generates in

parallel a semi-independent point

sequence as follows:

ao Two Monte Carlo selections of the

next transform are made globally.

b. Each PE uses a local random bit to

decide which of the two transforms

to use.

C. New points are converted from

coordinate space to a 1024 x 1024

image space.

Fortran Plus code for the inner loop is:

c

c

DO i00 J = I, n

K1 and K2 are scalars that choose

the next transforms.

K1 = choosevsl (J)

K2 = choosevs2 (J)

get a random plane. Cost 200

cycles, including generation

rp = rps (,,J)

perform transform in 1024 PEs.

6600 cycles
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c

cc - merge (c(Kl), c(K2), _)

tmx*cc

aa - merge (a(Kl), a(K2), _)

bb - merge (b(Kl), b(K2), rp)

ee = merge (e(K1), e(K2), _)

x = x * aa + y * bb + ee

dd - merge (d(Kl), d(K2), rp)

ff = merge (f(Kl), f(K2), _)

y = t + y * dd + ff

convert to integer.

ix = x

iy = y

500 cycles

write dots to image space.

cycles (special putdots)

call putdots (ix, iy)

6600

I00 continue

Note the implemented code includes 2500

cycles for scaling and positioning the

coordinates prior to "putdots". The

above code assumes the transform

coefficients have been changed to make

this unnecessary.

Illustration of semi-lndependence

If the globally selected pairs of

transform sequences for an image with 7

transforms, TI, T2, .... T7, are:

T5 T3 T5 T7 T4 T2 T5 . . .

T1 T5 T2 T2 T5 T3 T5 . . .

and the corresponding random bits in 2

PEs are:

1 0 0 I 0 I i ...

1 1 0 1 1 0 0 ...

then the transform sequences in the 2

PEs are:

T5 T5 T2 T7 T5 T2 T5 ...

T5 T3 T2 T7 T4 T3 T5 ...

Generation of the Transform Choice

Integers

Fortran - Plus Code:

c

c

pr is the cumulative probability,

randl and rand2 are each 1024

c

c

200

c

c

random numbers and choose1 and

choose2 are each 1024 integers

choosel = L1

choose2 = L1

do 200 J = L1 + I, Ln

choosel ((randl + pr(J)).LT.l.) = J

choose2 ((rand2 + pr(J)).LT.l.) = J

continue

convert choose integers from

matrices to vector sets.

call convmv 2 (choosel)

call convmv 2 (choose2)

Performanue of RCTA on the DAP 510

cycles for 1024 new points 14K

new points/second 740K

typical time/image 1 second

(A Masscomp 5600 workstation apparently

goes at about 10K new points second).

RCTA Movies on the DAP

The technique of adjusting coefficients

is illustrated by the movie of a waving

fern. Note that the fern is changing

shape, not merely rotating.

A fern has 4 transforms. Loosely

speaking, 2 generate the first branches

on either side of the stem, one

generates the start of the stem and one

causes the structure repetition

including a gentle curve. The 2

coefficients (out of the 24) that

control this curvature are progressively

changed. Adding 2 successive images

introduces motion blur.

The binary version of this simple RCTA

movie has the following performance on

the DAP510:

New points/sec

Points/basic image

Points/displayed image

Display resolution

Frames/sec

Approx data required

550K

238K

476K

1024 x 1024

2.3

50 Bytes

The ITA Algorithm on the DAP

IFS transforms are usually expressed for

Derforminq arithmetic on point
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coordinates . The ITA (Image

Transformation Algorithm) algorithm

moves raster image data around memory.

The primitive operations are:

a)

b)

linear shrink (can be negative)

along a raster axis

shear (or skew) along an axis

c) translation along an axis

In terms of 2 x 2 transform matrices, a)

can be written:

<_ _ or_ _> orfOr shrinks alongXy axes,

and b) could be written:

(_ _I °r (_ _) offershearSy, along x

It is usually fastest to do the shrinks

first, so as to do most work with the

least data. Thus one way of rewriting a

general 2 x 2 transform is:

Solving this gives:

xCx0
0)
Y

X = a

y = (ad - bc)/a

V = c/a

u = ab/(ad - bc)

This rewrite will often give

satisfactory parameters for the

primitives; however, one of the

"shrinks" may be an expansion, or else

an angle of shear may be inconveniently

acute. Other rewrites with the

primitives are possible, and,

fortunately, well-behaved parameters can

always be found.

Image Mapping

Because image iterations are built from

parts (which in turn are derived from

the whole image), the implementation is

using a 2D sheet mapping (Ref.9).

Shear Primitive

Shears do not change the number of

pixels, and, because ITA is a robust

convergent algorithm, interpolation is

of little value; thus a row of pixels is

shifted along its length by a whole

number of pixel positions. Different

rows in a sheet are shifted by different

amounts. This is achieved by activity

control of shifts of i, 2, 4 and 8.

Shrink Primitives

A shrink is split into a power of 2

shrink and a shrink of between 0.5 and

i. The former might be re-used.

Shrinks reduce the number of pixel rows.

The new pixels can be formed in various

ways. Selecting some rows and

discarding others is one way; a better

way is to interpolate so as "pixel mass"

is conserved. Pixel mass is conserved in

the power of 2 shrinks, and in the other

shrink a new row of pixels is either an

unchanged row, or else the average of

two rows. The shifting for th_ power oT

2 shrinks is done with Parallel Data

Transforms (Ref.10), and for the other

shrink by shifts of i, 2, 4, 8 . .

applied to a whole sheet-row, with

activity-controlled overwriting.

Translation

The i.ntention is to eliminate

translation as a separate primitive by_

achieving translation alignment with DAP

sheet boundaries as part of other

primitives, and whole-sheet translations

by addressing the correct sheets.

Performance on ITA

Many factors will affect performance.

If resolution is increased appropriately

through the iterations, then performance

is dominated by the last one or two

iterations only. An image with many

highly contractive transforms will mean

a lot of control work and work on

partially filled sheets, but if all

transforms are highly contractive few

iterations are needed. For Boolean

images control work will be more

important, but for many bits/pixel,

multiplication by the transform weight

is not negligible. The overlap of

transforms affects performance.

L

For this type of work the programming

level and effort is very relevant; a

target of 500 cycles per bit-plane of

final image is reasonable, but initial

high level implementation may be more

than an order slower. For a 1024 x 1024
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colour image with 8-bit pixels, plus two

8-bit colour difference images at half

resolution, the above target performance

is 600 msec. A Boolean image of the

same size would be 50 msec.

Movie Performance

Because one frame is similar to the

previous one, image iteration can start

with the previous image. This might

typically speed up by a factor of 1.5.

But if data is supplied as rate of

change of transform coefficients, then

only rapidly changing transforms need be

updated frequently; the contribution of

each transform can be saved, and on

update the old can be subtracted and the

new added. On the DAP510, only the

relevant part of the framestore is

updated. If the movie contains a lot of

rapid movement then the DAP510 will not

be able to prevent the movement looking

jerky at 1024 x 1024 resolution; then

the resolution can be dropped to 512 x

512.

COMPRESSION ALGORITHMS

Whilst IFS fractal graphics and

animation have a promising future

independent of the compression of

natural images, the greatest interest is

in compression, either for later

regeneration or else as an aid to

pattern recognition and matching. Less

has been published about compression,

maybe because it has mostly been

done with manual interaction. We have

not implemented compression on the DAP,

but have considered some algorithms.

These are: some variations on the

collage theorem approach, 2D projections

of 3D primitives, image segmentation,

the use of moments, and the Fractal

Transform.

Collage Theorem

This theorem is most easily pictured for

Boolean images that represent shapes,

but it is more general. If a shape is

approximately covered by multiple copies

of itself that are contracted, sheared,

rotated and translated, then the

corresponding IFS maps (transforms)

collectively define an attractor (image)

that is also an approximation of the

original image (shape). The smaller

distorted copies can overlap, but it is

desirable that they are significantly

shrunk, as the attractor is up to 1/(I-

S) times bigger than the error in

"covering" or "tiling" the shape. Here

S is the shrink factor (<i) in the least

contractive direction in the least

contractive map (transform), and an

error measure such as Hausdorff distance

is used. Errors in the "tiling" of a

smooth shape may result in fractal

shaped attractors, but the technique can

be applied to arbitrary images. Both

the theory and the technique can be

extended to grey and colour images,

where a different distance metric is

used, and overlapping distorted copies

are added. The aim is still to produce

approximate images.

Application of the Collage Approach

Ref. 2 describes interactive use of the

Collage theorem; the human is good at

pattern recognition. A more automatic

approach might be to try all sensibly

different transforms and measure how

good a fit to part of the image is

achieved for each one, with a view to

selecting a set of the best fits

(smallest distance measures) while

avoiding heavy overlap between pairs in

the set. This initial approximation

should avoid the local, minima

difficulties of Ref ii.

"All sensibly different" transforms

implies a large number. If the

criterion is differing by at least one

pixel position, then for a linear

resolution of n, there are approximately

n**6 different transforms, and the

average number of pixel pairs involved

in comparing the distorted image against

part of the original is nearly n**2.

The work thus appears to vary as n**8;

advanced algorithmic techniques

involving re-use of intermediate

results, for example with convolution

methods, should reduce this dependence

to nearer (log n)* n**6. This work is

still prohibitive for full resolution

images; for example, a I000 x i000 image

would involve 10-,24 pixel operations

with direct methods, or 10,,19

operations with advanced methods.
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An encouraging approach is to perform

the initial collage search with a very

coarse version of the image; a i0 x I0

image would require around 4,10,'6

operations, which is quite feasible in

real time. Even for Boolean originals,

coarse images are grey; the above

analysis has not explicitly allowed for

choosing the transform weights.

Having selected a limited set of good

transforms (plus weights) that do not

greatly overlap, the set can be iterated

in detail to improve the fit. This can

either be done as a collage applying

each transform to the original image, or

by generating the attractor (including

intensity) of the set. Either way,

smooth variation of the IFS parameters

gives smooth variation of the image. At

this iteration stage the image

resolution can be increased. When

further improvement seems to be limited

with that set of transforms, a full

resolution attractor is generated and

subtracted from the original image.

This remainder (which may include

negative pixels) can then be put through

the full cycle again to generate an

attractor that forms a further "layer"

of the image. The process can continue

until a satisfactory approximation is

achieved. It would seem desirable to

keep the number of transforms in each

set quite small in order to ease the

optimising work in the iterations.

The above "layering" is a form of

segmentation of pixel intensity, with

the final pixel value formed by adding

the layers. Another approach is to

spatially segment the image (or image

remainder) prior to choosing transform

sets. The IFS sets may then be chosen

so the attractors do not overlap (or the

overlapping intensities are small), or

else an ordering can be specified with

later segments overwriting earlier ones.

Segmenting may be automatic or manually

assisted; for the former, the algorithm

will involve rules that may be difficult

to devise effectively, especially for

non-specific images.

Repeated patching-in of variations of an

object can be a powerful tool, and can

be achieved with multi-screen

techniques. The automatic recognition

of such possibilities may be difficult;

looking for good matches of parts of the

original images mapped onto other parts

could be one way that might be feasible

for 2D distortions. Real world pictures

are 2D images of a 3D world, and it

would seem that this is used to

advantage in the "sunflower" picture

publicised by Barnsley's group (Ref.2).

The individual sunflower primitive is

described as an overlay of 4 IFS

attractors; this would be one screen,

which is then overlayed (by

"condensation") onto the final image

once for each flower in the picture. It

would seem, however that the sunflower

"primitive" must be a 3D IFS with

different projections used for the

different flowers. This is a good model

of the real world, but it is difficult

to see that IFS structure being

automatically generated from a single

photograph; with human knowledge of the

real world it becomes feasible.

Moment Theory

If 2D space is viewed as the space of

complex numbers, then the nth moment of

an image can be defined as the sum of

the products of the pixel values and the

nth power of the pixel coordinate. The

IFS literature contains some discussion

of moments, and in particular the idea

that the first n moments of an image can

be calculated and that an IFS can then

be sought with an attractor (plus

intensity) having approximately the same

moments. If high order moments are

relatively unimportant, a reasonable

approximation to the image might be

obtained with, say, i0 or 20 moments and

the approach can be used recursively as

with the collage approach. The

advantage is that the image information

has been reduced to I0 or 20 numbers and

it is these that are used to fit the IFS

approximation. The powers of the

complex coordinate can be calculated

once and for all, and stored; with

coarse resolutions of order I00 x i00,

the storage space should not be a

problem.

Yractal Transform

A recent press release from Iterated

Systems (1988) claims to have discovered

a "Fractal Transform" that could
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compress and regenerate images. This is

either with exact reproduction and

typical compression ratios of i0 to

i00:i, or else approximately, with much

higher compression ratios. The speed

for either compression or regeneration

of under i0 seconds for a 256 x 256

image of 8-bit pixels on a SUN

workstation indicates that an extensive

optimisation process cannot be involved

in the compression; possibly moment

theory is involved. For the time being

ISI are keeping the details

confidential.

SUITABILITY OF THE DAP FOR COMPRESSION

Collage approach

Central to the Collage approach is the

measuring of the difference between

pairs of images. This may either be

between a small number of pairs of quite

big images in the optimisation stage, or

else be between a large number of small

image pairs (one or more to a PE) in the

initial "try everything" stage. A

family of algorithms for performing

similar measurements has been studied on

the DAP (Ref.12) ; the algorithms can be

extended to the re-use of intermediate

results for the try everything stage.

The work is done entirely in raster

pixel space, rather than in coordinate

space. The distortions (transforms of

the original image) are a very minor

part of the try everything stage,

because partially transformed data is

used many times over. For example, a

line of pixels resulting from a rotation

and a linear shrink along the line, will

be matched against lines resulting from

many different translations, skews and

linear shrinks in the orthogonal

direction.

The core work in the try everything

stage is differencing pixels and summing

the differences, together with a little

data movement that is mainly

broadcasting data. In mapping arrays

onto the DAP, "crinkle" mapping ("domain

partitioning") of arrays is important.

This ensures that most of the summation

is within PEs, that there is little data

movement and that the multi-grid aspects

of changing resolution are efficient

(see for example Ref.13).

In the optimisation stage the work is

mainly generating intermediate

resolution images with the ITA

algorithm, starting with a good

approximation; also important is

measuring the difference between images.

An indication of DAP 510 performance on

measuring the difference between images

can be derived from the above reference

as less than 5 msec for a pair of 1024 x

1024 images of 8-bit pixels. The try

everything stage for i0 x i0 resolution

would take about 40 msec. Clearly,

there is a trade-off of speed against

quality. For TV it is difficult to

predict the quality achievable in real

time. The use of rate of change

techniques (see 2.5) can greatly improve

the compression ratio and the

compression speed.

Moment Theory Approach

The calculation of moments could be done

quickly on the DAP. With the complex

coordinate powers pre-computed, each

moment requires 2 multiplies and 2 adds

per pixel; with 8-bit pixels and a 256 x

256 image, each moment could take as

little as 2 msec.

ASSESSMENT OF ARCHITECTURES AGAINST

ALGORITHMS

For image generation the RCTA and ITA

algorithms have very contrasting

requirements. Aside from random number

generation, which the DAP can do very

fast (Ref.14) , the RCTA algorithm

requires arithmetic on coordinates, and

incrementing one out of a raster of

counters. A normal scalar machine can

perform these operations fairly

efficiently. An MIMD array could

perform quite powerfully, provided it

(a) had a fast random number generator,

(b) had enough space for a complete

raster in each processor, and (c) was

effective in summing the rasters across

the processors. An SIMD array without

local indexing is likely to be fairly

slow in converting its arrays of data

from coordinate space to raster space.

This is the case on the DAP, although

its fast central addressing of the array

memory means that it takes only about

half the total time. A bit-organised

array like the DAP would be able to
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tailor arithmetic precision with

considerable advantage, because the

precision requirement is modest. The

implemented code uses 24-bit floating

point for convenience. A factor of

about 3 on the arithmetic (about 2

overall) could be achieved by further

tailoring, but this is not worthwhile

because the ITA algorithm is a much

faster prospect. Decision-making with

random bits suits a bit-organised

machine. With the modified RCTA

algorithm there is no shortage of

parallelism for the arithmetic,

especially for high quality pictures.

The DAP 510 measured achievement of

600,000 points/second on RCTA is good,

but might be bettered on some

architectures.

The ITA algorithm has the potential for

being at least an order of magnitude

faster than RCTA on the DAP, and more

than two orders for high quality images.

However on most machines RCTA will still

be faster than ITA except for very

precise images. At its heart, ITA

requires data to be moved around memory

in a raster-like way, but with fairly

flexible control patterns. It also

requires some pixel-precision array

arithmetic. This is almost ideal for

the DAP; even higher performance could

be achieved if more flexible array

routing hardware were provided. Neither

conventional scalar machines nor MIMD

arrays provide the fast and flexible

array shifting capability required for

high performance. The DAP 510

performance on a 1024 x 1024 colour

image with about 5% pixel accuracy might

eventually be about 400 msec or about

2.5 million 6-bit pixels/second; the

RCTA algorithm for similar precision

would need to generate about 400 million

points for a standard deviation of 5%,

so the RCTA equivalent performance would

be about i000 million points/see. That

is a difficult figure for any machine to

match with the RCTA algorithm. (The

DAP610 is four times more powerful than

the DAPSI0).

The Collage approach to compression

involves highly parallel low precision

work, change of resolution and use of

the ITA algorithm. Thus the DAP

architecture looks to be almost ideal.

Calculating moments for the moment

theory approach is also close to ideal.

An advantage of DAP over specialised

hardware is that IFS work is likely to

be part of a wider application. For

example, compression might be used as a

first step to pattern recognition.

Doing the whole job in the DAP is a

great advantage.

_PPLICATIONS

If the results live up to the claims

made for it, then the prospects for

these techniques , and future

developments of them, are extremely

bright. The techniques are wide,

covering graphics, animation, TV, movies

and images of all kinds, with impact on

transmission, storage and pattern

recognition. The potential application

fields are very wide, covering medical,

defence, (for example, image

understanding) , TV etc. The leading

company in the field is Iterated

Systems, whose first product is known as

VRIFS, which was first implemented on a

SUN; the company now has a DAP 510, and

is porting code onto the DAP.
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ABSTRACT

Molecular dynamics is used to examine melting of a

free cluster of up to i000 sodium and fluoride

ions. An algorithm designed originally for the

Distributed Array Processor (DAP) is implemented

on the Connection Machine (CM), and their

performance for this problem is compared with that

of the Cray I. The CH would be twice as fast as

the DAP using twice the number of processors as

the DAP's 4096 if not for saturation of the VAX

front end. Saturation of the front end increases

the run time by 50% in typical cases.

Keywords: Molecular Dynamics, Massively Parallel

Processing, Connection Machine, Distributed Array

Processor, Single-Instruction-Multiple-Data

Computers, Melting, Sodium Fluoride, Ionic

Clusters.

INTRODUCTION

Molecular dynamics (MD) simulation is becoming an

increasingly important tool for research in

materials science, owing to new methods for

deriving realistic interatomic potentials and

advances in computer performance. Even though

future major advances in computer performance are

likely to involve parallel computation in some

form, relatively few MD calculations have actually

been carried out on massively parallel machines.

Here we discuss some techniques available for MD

simulations which exploit the power of massively

parallel computation, focusing especially on a

relatively simple approach for simulating the

dynamics of free clusters of particles using

massively parallel single-instruction multiple-

data (SIMD) computers.

Molecular dynamics simulations are usually carried

out for systems with periodic boundary conditions.

The use of periodic boundary conditions has some

advantages over cluster simulations: I) it

presumably requires fewer particles to simulate a

"bulk" property and 2) the pressure on the system

is easily controlled, since all of space is

filled. In addition, periodic boundary conditions

can be exploited in developing algorithms for

massively parallel systems. Specifically, for

systems with little or no diffusion, one can map

the particles to processors in a manner which

allows easy transfer of data between neighboring

particles. This clearly leads to great efficiency

if the particles do not interact with long range

forces. Pawley and coworkers (Ref. I-3) have

employed this approach in a number of MD

calculations using the ICL Distributed Array

Processor (DAP) at the University of Edinburgh

(Ref. 4). An algorithm which exploits periodic

boundary conditions for computing long range

forces, the so called p3M method (which scales as

NInN, where N is the number of particles), also

has been applied recently in MD calculations using

the DAP (Ref. 5).

The first MD simulation of free clusters using a

massively parallel computer were carried out on

the DAP (Ref. 6). An algorithm called the row-

column difference (RCD) method was introduced

which proved to be remarkably efficient for the

DAP. The DAP is an SIMD machine consisting of

4096 single-bit processing elements connected on a

square grid. In the RCD method the coordinates of

a group of 64 particles are put in the rows of one

of the natural 64x64 matrices and the coordinates

of another group of 64 particles are put into the

columns of another natural matrix. Subtracting

the two matrices gives the relative coordinates

between all possible pairs formed from the two

sets of particles. Forming a double loop over all

distinct sets of 64 particles one can compute and

accumulate the forces due to all pairs by doing

them 4096, or very near to 4096, at a time. Some

special care must be taken when computing the

interactions involving only one set of 64

particles (see Ref. 6 for detail). Even though

this "brute force" approach is an N 2 algorithm,

i.e., the time scales as the square of the number

of particles, it efficiently exploits the parallel

architecture. Thus, it can be more efficient than

NInN algorithms for N up to a thousand or more.

As mentioned above, simulation of certain

phenomena require both free surfaces and long

range forces: For such problems the N 2 algorithm

is essential.

The simulation of free clusters, i.e., systems

with free boundaries rather than periodic

boundaries , has some advantages over bulk

calculations. Obviously, free-cluster

calculations provide the most realistic zero

pressure simulations. Moreover, one can study

both bulk and surface properties by the same

technique provided the system is sufficiently

large. Calculations of thermal expansion of NaF

(Ref. 6) suggest that "sufficiently large" is

approximately 500 hundred or more particles.

CH2649-2/89/0000/0275501.00 © 1988 IEEE
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While surface effects are clearly of great

interest in their own right, the proper simulation

of certain phenomena requires both large systems

and surfaces; two examples being melting and the

response of a system of charged particles to an

electric field (Ref. 7-8).

APPLICATION OFT HE RCD METHOD

The RCD method is most easily illustrated by

considering a specific example: assume we have a

computer with 16 processing elements (PE's) on a

4x4 NEWS grid. Let our system contain at least 8

atoms located at positions (xl,yi,zl). The

position coordinates are simply a set of numbers

stored in some convenient fashion among the PE's

whose values have no relation to the structure of

the PE's. The procedure begins by transferring

sets of 4 of these numbers to rows and/or columns

of the natural sized 4x4 matrices. In particular

let

Xl x2 x 3 x4

Xl x2 x3 x4

XR - x I x 2 x 3 x 4

Xl x2 x 3 x4

be the matrix whose rows are the x coordinates of

the positions of atoms 1-4, and

x5 x5 x5 x5

x6 x6 x6 x6

XC - x 7 x 7 x 7 x 7

x8 x 8 x8 x8

be the matrix whose columns are the x components

of atoms 5-8. Then the relative separations of

all pairs from these two sets of atoms are given

in the matrix

R - SQRT((XR-XC)**2 + (YR-YC)**2 + (ZR-ZC)**2)

where YR, YC, ZR and ZC are the analogous matrices

for the y and z components. If the atoms interact

with the Coulomb force then the x components of

this force are given by elements of FXC-(XR-

XC)/R**3 . The forces on atoms 1-4 are obtained

by summing the rows of FXC and the forces on atoms

5-8 are the negative of the values derived from

summing the columns of FXC. Techniques for

handling interactions between atoms in a single

set of four and in partly filled sets are

discussed in Ref. 6.

In an MD simulation the time required to update

the positions and velocities is usually a

negligible fraction of the time required to

compute the forces. This is certainly the case

for our problem. Observe that three separate

operations are required to compute the forces

using the RCD method; I) spreading data from a

vector to form a matrix with identical rows or

columns, 2) performing the arithmetic operations

required to compute the forces, and 3) collecting

the results by summing over rows and/or columns.

Obviously, the spreading and collecting operations

must be performed efficiently for the RCD method

to be a viable approach, since this time is

independent of the functional form of the

potentials. The calculations carried out on the

DAP employed a functional form consisting of the

Coulomb interaction plus 4 exponential terms (Ref.

9), which resulted in approximately 60% of the

total time being spent on the arithmetic

operations.

The particular Connection Machine used to carry

out the calculations reported here consisted of

512 chips, with 16 PE's per chip. Communication

between chips occurs along wires with connections

prescribed by a 9 dimensional hypercube.

Communication between PE's within a chip are much

faster. Floating point operations on the CM were

performed by 256 floating point units accompanied

by "Sprint" routers to handle communications

between the PE's of designated chip pairs and the

floating point units. NEWS programming for the

Connection Machine is accomplished by a software

package, which gives the user some freedom to

select the number of "virtual" processors in a

virtual NEWS grid. Increasing the VP ratio

(number of virtual processors per physical

processor) permits the plpelining of data through

the floating point units, which can give a

substantial increase in performance (Table i).

Table I. Timing results (sec per time step) for MD

simulations on the CM (8192 PE's), DAP (4096 PE's)

and Cray XMP-24 computers.

_12 ions i000 ions

Computer Block VP CM Elapsed CM Elapsed

Type Size Ratio Time Time Time Time

CM 128 2 0.34 1.26 1.18 4.42

CM 256 8 0.23 0.48 0.76 1.44

CM 512 32 0.23 0.32

DAP 64 0.5 2.0

Cray 0.3 1.14

On the other hand, the RCD method becomes less

efficient when the number of processors exceeds

about (N/2) 2. These two effects combine to give

only small improvement in going from a VP ratio

of 8 to 32 for the N - 512 system. For the 1000-

ion cluster we were limited to a 256 grid by

memory constraints. The most efficient

calculation for the 512 ion cluster was achieved

for the 512x512 NEWS grid; specifically, 0.32 sec

per time step. (The elapsed time is larger than

the CM time because the host, which in our case is

1 processor of a VAX 8800, is 100% saturated by

our process. Using larger NEWS grids dramatically

lessens the burden of the host, but even for a VP

ratio of 32, the host is still the bottle neck.)

This compares with 0.5 sec for the DAP (negligible

time on the DAP host) and 0.3 sec on the Cray XMP-

24. About 75% of the CM time was spent spreading

and collecting data, whereas on the DAP these

operations required only about 40%. On going from

N-512 to N-1000 ions, the DAP time increases by a

factor of 4, rather than (1000/512) 2 - 3.81,

because the same number of operations are required

for an N-f000 or an N-I024 cluster. The Cray

scales by the expected factor of 3.81. On the CM,
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the calculations for the N-IO00 ion system are

somewhat more efficient than would be expected

from the timing of the 512 ion system.

RESULTS FOR NaF

Molecular dynamics simulation of 216- and 512-ion

clusters of NaF have been performed to study

various properties: thermal expansion, melting,

diffusion and responses to external electric

fields, specifically, electrostrlctlon and

infrared absorption (Ref. 6-8). One of the more

intriguing results of these calculations pertains

to the melting transition and the presence of a

rather dramatic kink in the plot of "temperature"

vs energy. Temperature is placed in quotation

marks because very long simulations are needed

near the transition to obtain a good average

kinetic energy, from which the equilibrium

temperature is determined. Interestingly, a klnk

occurs for both melting (increasing energy) and

freezing (decreasing energy), the details of which

permit one to make the following statement with

confidence. The energy range for which solid and

liquid phases coexist in these clusters is much

less than the latent heat.

This poses a fundamental question: Does the

presence of the kink and associated absence of

two-phase coexistence result from not having a

truly macroscopic sample? Or, does two phase

coexistence result when a system is not in perfect

isolation long enough to achieve equilibrium? To

help answer this question we have performed

calculations which simulate melting for a 1000-ion

cluster of NaF. Results for temperature (T) vs

half the total energy (E/2) are shown in Fig. I.

A slope of unity on such a plot indicates exact

equipartition of energy, which results for

perfectly harmonic systems.
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Fig i. Plot of temperature vs half the total

energy, both expressed in Kelvin, for a lO00-ion

cluster of NaF. The energy has been shifted to

give zero at T-0 . Filled circles indicate that

longer simulation could well change the

"temperature", while open circles results showed

no drift in the kinetic energy. The experimental

melting temperature is 1265 K.

The simulation was started with the ions in a

perfect cube shaped microcrystal at low

temperature. Constant energy simulations were

performed for ~I0 psec to determine the

temperature at each energy. Near the melting

transition longer simulations, up to ~I00 psec,

were carried out in an effort to avoid

superheating. The energy of the system was

changed by scaling the velocities, and the points

in Fig. 1 were obtained by increasing the energy

of the previous point. The solid points are used

to indicate that longer simulations could well

produce a further change in temperature. The

results obtained thus far do not show substantial

differences from the simulations of the 512-ion

system. For both systems the vertical dimension

of the kink is -250 K and the horizontal dimension

agrees well with the experimental latent heat.

Simulation of the corresponding freezing curve is

underway and will be reported elsewhere.
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ABSTRACT

The Perkin-Elmer Advanced Development Center at MRJ in-
stalled the first commercial Connection Machine TM (CM) super-

computer in August 1986. A second 16K CM was installed in
March 1987 and was upgraded to a CM-2 in January 1988. A
Data Vault and Frame Buffer have also been added.

Previously, a variety of CM applications at MRJ have been re-
ported. These include maze solving, line of sight, text process-

ing, HI-CAMP target tracking, automatic target detection, FFT,
image processing primitives, image model matching, stereo
matching, knapsack, neural networks, nonlinear network optim-
ization, thermal diffusion, wave equation, pyramid linking for

image segmentation, and rapid 3D rendering.

This paper surveys diverse current CM applications at MRJ.
Both contract and internal R&D activities are addressed. These

include: 3D electromagnetic scattering models using both finite

difference and method of moments; signal processing; system
scheduling; synthetic aperture radar pattern recognition; robotic
arm control; optimal resource allocation; traveling salesman; 3D

shape recognition; large matrix solution and eigenvalue determi-
nation; Monte Carlo techniques; computational fluid dynamics;
communications network reconstruction; multispectral image

analysis; strateg.ic defense simulation; battlefield analysis; optical
system ray tracing; logistics models; and symbolic computation.
A FORTRAN to CM language semiautomated translator facilitat-
ed these efforts.

Keywords: Applications, Scattering, Images, Signals, Opera-
tions Research, Engineering, Fluids

The Perkin-Elmer Advanced Development Center at MRJ in-
stalled the first commercial Connection Machine TM (CM) super-
computer in August 1986. A second 16K CM was installed in
March 1987 and was upgraded to a CM-2 in January 1988. A
Data Vault and Frame Buffer have also been added. The CM

produced by Thinking Machines Corporation in Cambridge,
Massachusetts, is a fine-grain massively parallel supercomputer.

The CM-1 has a Symbolics 3675 host and is characterized by a
4MHz clock and 4K bits per processor. The CM-2 is a second

generation of this technology with a 16-fold increase in memory
per processor, floating point hardware, faster clock, and a much
increased input/output rate. The CM languages in use at MRJ are
PARIS, *LISP, and C*.

Previously, a variety of CM applications at MRJ have been re-
ported. These include maze solving, line of sight, text process-

ing, HI-CAMP target tracking, automatic target detection, FFF,

image procesing primitives, image model matching, stereo

matching, knapsack, neural networks, nonlinear network optim-
ization, thermal diffusion, wave equation, pyramid linking for

image segmentation, and rapid 3D rendering.

This paper surveys diverse current CM applications at MRJ.
Both contract and internal R&D (IR&D) activities are addressed.

Electromagnetic scattering models have been implemented on the
CM for computing the near and far fields of diverse 3D bodies.
Initial efforts addressed both f'mite difference time domain mod-

els and method of moments models, and considered a range of
materials, shapes, and sizes of both simple and complex objects.
The finite difference time domain code addressed nonhomogene-

ous time domain composite dielectric or perfectly conducting
scatterers. The scattering object size on a full 64K sized CM-2

can be as large as 24 lambda x 24 lambda x 10 lambda, where
lambda is the wavelength of the incoming wave.

The method of moments code addresses homogeneous dialectric
scatterers. Matrices are complex and dense and are solved to size
4000 x 4000.

A system study addressing the insertion of a CM into a large op-
erational system for expedited system scheduling was success-

fully concluded. A benchmark activity executed a scheduling al-
gorithm on a variety of computers including an IBM 3090/200,
Cray X-MP1, and Cray Y-MP8 for comparison with the CM-2
with 8K, 16K, and 32K processors.

Vector and Parallel Computing for Large Scale Network Optimi-
zation, research performed by Professor Stavros Zenios of the

Wharton School of the University of Pennsylvania and Dr. Rob-
ert Lasken of the Advanced Development Center at MRJ won in
March 1988 a special award in the Gordon Bell competition or-
ganized by the IEEE computer society. The research was per-

formed in part on the CM and supported by MRJ. The topic was
drawn from the field of Operations Research and deals with the

optimal flow of a commodity through a network characterized by
nonlinear costs. Runtime comparisons were made with Cray and

other computers showing an advantage for the CM in speed and
problem size.

A variety of operations research/control theory problems were
addressed by the CM under contract. Multiply articulated robot

arms of complex configuration were manipulated in the same
physical workspace without collision and without constraint
(cable wrap, velocity, acceleration, jerk, etc.) violation in mini-
mum time.

A large set of diverse resources was allocated to competing de-
mands in an optimal way with provision for both rapid replan
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andminimumdisruptionupon changes in demand. Orbit optimi-
zation planning was also performed. Several other operations re-

search problems have been studied in a CM context. These in-
clude parallel algorithms for the traveling salesman problem for
which near optimal solutions for very large tours are obtained
very quickly.

The traveling salesman problem seeks the optimal (shortest) path
among N nodes uniformly distributed in a plane based on a Eu-

clidean distance metric. MRJ devised a two-step approach that
obtains a good fu'st guess solution by fractal seeding and then
refines that solution using a barter method. Eight thousand
nodes were solved to within 1% of optimal in 20 minutes on the
CM-I.

Under DARPA funding, the CM is being employed to develop

pattern recognition algorithms for synthetic aperture radar imag-
es of the ocean surface.

Perkin-Elmer makes a ranging/imaging sensor with active laser
ground scan illumination. This IR&D effort uses the CM to con-
vert range data to elevation information, thereby resolving range
ambiguity, and then applies 3D pattern recognition methods to-

gether with reflectance images to detect objects in a ground
scene. For this project the ranging data were processed to find
net covered camouflaged trucks among trees. The laser ranging
data were produced by the Perkin-Elmer 3-D Line Scanner. This

laser line scanner looked down at Earth from an air breathing
platform flying at a 229 meter altitude. The scanner sweeps a
collimated beam of laser radiation through a 120 degree arc. The
laser radiation has a wavelength of 0.85 microns. From the re-
turning laser radiation both the range and surface refiectivity are
recorded.

Processing included two broad areas. The ftrst area included re-
moving artifacts in the data. These artifacts are ambiguities
caused by the collection process, which are not naturally found
in the scene. The second area was pattern recognition. This ef-

fort succeeded in highlighting trucks hidden in the image.

Trucks represent a good focus for pattern recognition. Automati-
cally identifying trucks in an image is of military interest for in-
telligence purposes or for targeting purposes. Methods that work
for trucks should extend to other military targets such as tanks

and mobile missiles because they are all of similar but unique
size and shape.

Automatic techniques are necessary because the laser line scan-
ner produces large amounts of data; in the unprocessed data
there is low contrast between the trucks and the background, and

there is not enough manpower to analyze the data in a timely
manner. By highlighting the trucks, automatic target recognition
solves these problems.

Stereo image matching was used to generate a 3D scene model

for interactive manipulation. Using two airborne visible USGS
images of Tysons Comer, VA, acquired from unknown altitudes
and at different times of day, an apartment complex was dis-
played at arbitrary azimuth and elevation angles and range with

an arbitrary illumination direction in about a second per view.

The major functions of the 3D scene model are:

1) registration (2D)
2) determination of the axis of shift
3) feature extraction

4) image segmentation
5) matching
6) elevation computation
7) model display.

One unusual characteristic of this method is that the matching
works with a 5D feature vector associated with each pixel. One
set of five features that works well is:

1) neighborhood average
2) edge magnitude

3) edge direction
4) constant false alarm rate

5) max-min texture.

Structures analysis using NASTRAN is a major MRJ business
area. This IR&D project's first task was to design a method of

using the CM for the computationally intensive sections of NAS-
TRAN runs. The second task sought methods for the analysis of
dynamic structures. The primary thrust of this effort to date has
been the development of linear algebra tools: matrix solvers, ma-

trix inversion, and eigenvector determination. Versions of these
tools are available for dense unstructured matrices and special

versions are also available for certain matrix types. For example,
for block tridiagonal matrices, sizes of up to 64K x 64K are ac-
commodated.

Calculation of the behavior of optical systems is known to be
computationaily intense. An example of such a calculation is the

examination of the behavior of the diffraction pattern formed by
an objective lens or mirror under varying conditions of obscura-
tion by, for example, secondary optics support structures. There

are a number of ways to perform this computation, including an-
alytically (symbolically) and by use of Fourier transforms. In the

present case, the use of Monte Carlo techniques for determining
the diffraction pattern by direct calculation is explored, making
use of the substantial computational capabilities of the CM to
produce results rapidly.

A program, written in the parallel computing language *LISP,
calculates the interference pattern produced by a user-selected
number of randomly chosen rays passing through the chosen
aperture relative to the central reference ray. These interference

patterns are ultimately summed, and their square gives the ob-
served luminous intensity of the diffraction pattern. A number of
typical apertures can be specified, including those for Newtonian
and Cassegrain reflector designs, as well as some more unusual

choices. The program user may also select the aperture size and
the wavelength of light in use and observe the effect that these

choices have on the resulting pattern in the focal plane.

The CM and its host computer provide a particularly effective

model for this problem, as the system structure parallels that of
the physical model: the host computer plays the role of the aper-

ture, while the CM is analogous to the focal plane. Light rays
passing through the aperture and forming patterns over the entire
focal plane correspond to the movement of data from the front-

end computer to the various CM processors in parallel. This cor-
respondence of structure makes the implementation of the central
computation routines quite straightforward, while the substantial

graphics capabilities of the Symbolics host computer allow the
development of a convenient and high-powered user interface.
The details of the implementation also serve to illustrate such
valuable parallel processing techniques as problem replication
and segmentation, the former being used for the parts of the

problem much smaller than the configured number of proces-
sors, with the latter being employed where the problem was big-
get than the machine.

Turbulent flow around vehicles moving through the atmosphere
has previously been modeled in FORTRAN on sequential com-
puters in the WAKE program. This code is being migrated under
this project to the CM for faster execution.
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A secondcomputationfluiddynamics activity addressed gas-
seous diffusion polution modeling. The CM solves the diffusion
equation in three dimensions to propagate smoke plume size and

shape subject to effects of the surrounding terrain, local wind
velocity, and other model parameters. A time averaged model in
512 x 512 x 21 cells generates a graphic display.

Using terrain models, doctrine, equipment constraints, and other
criteria, a CM-based system derives the topology of probable
military communications networks from signal externals. A
demonstration of this capability addressed the Fulda Gap area of
Germany in which spoke/hub relationships are extracted from

among hundreds of emitters. The approach is to use a knowl-
edge-based system for situation assessment--the knowledge is
separate from the control and the chaining of applicable knowl-

edge is driven by goals and data.

Image Processing research is developing a range of CM-based
software for image processing, pattern recognition, and display.

Specific items involved principal components data compression,
shape recognition in two and three dimensions, frame buffer and

Megatek display tools, registration of terrain elevation data to
maps, flythrough DTED demonstrations with cast shadows, and
so forth.

A diverse project used the CM to perform a variety of functions

in support of a remote sensing system. Computationally intense
background suppression was performed on the data. The data
for this activity are derived from a mobile facility with a Perkin-
Elmer sensor termed a Fourier Transform Spectrometer. One ex-

ample application is the sensing of spectral data associated with
the smoke from a Consolidated Edison client facility to deter-

mine whether the fuel used was coal or natural gas.

Launch Missiles is a program that demonstrates the CM's ability
to run strategic defense simulation games. In this demonstration,
one-thousand missiles are launched from sites in the Soviet Un-

ion. A few minutes into the flight, each missile MIRVs into eight

warheads (making a total of 8,000 warheads). The warheads
continue along their flight path until they reach their targets. Ra-
dar dishes are stationed along the flight path to monitor
progress. A total simulation takes about 3 minutes real time

while simulating approximately 30 minutes of flight time.

The simulation has two displays. The first shows a polar map of

Earth and plots the course of each missile or warhead. The sec-
ond display simulates six radar screens and plots each missile or
warhead as it would be seen from this radar position. All dis-
plays are updated in real time. During the simulation it is possi-

ble to place a new radar dish at any point on the map. The radar
will immediately begin displaying from its new position.

Each missile can have its launch position, launch time, MIRV
time, flight time, and destination independently controlled. The

problem of Gauss is solved separately for each missile.

The CM is responsible for three separate activities during the
simulation. First, for each step in the simulation the CM calcu-
lates the new position and velocity of each missile or warhead.

After calculating the new position, the CM calculates how this

warhead would be seen in each of the radar displays (if it can be
seen). And finally, the CM calculates which bits to turn on or off
in each of the two displays. In each of these activities the CM
does the work for all 8,000 warheads simultaneously using

8,000 processors.

Camouflage, Cover, and Deception (CC&D) techniques by mili-
tary units include using trees for concealment, nets and tarpau-

lins over emplacements, background matching paints, decoys,

and a variety of other hiding methods. Image analysts seek to

exploit reconnaissance pictures for opposition deployment and
order of battle information. To facilitate rapid image exploitation
in the presence of CC&D activity, a phase 1 prototype soft-copy

image analyst workstation was developed on the CM.

This workstation consists of a Symbolics 3675 host for the CM,
a high-resolution color image display unit, a map projection unit,

an ancillary computer running an expert system, and a print sta-
tion that issues a formatted exploitation report. The Symbolics-
CM-display system performs image manipulation under operator
command. The expert system, which in phase 2 will be integrat-

ed onto the Symbolics, functions as an analyst associate to im-
prove the productivity of analysts with low-to-moderate skill
levels under time pressure. The expert system addresses tactical
situations using a specified ER (exploitation request), doctrine,
terrain, weather, and collateral reports to advise the operator re-

garding the most effective image manipulation algorithms to ap-
ply for enhancing the digital imagery.

A substantial program has aimed at finding better ways to exploit

the CM's parallel advanced architecture. FORTRAN to CM-
language semiautomatic translation, improved fast Fourier trans-
forms, linear algebra, and other primitive math tools have been

addressed. Interprocessor communication efficiency has been
emphasized.

The CM code translator software converts FORTRAN or LISP

programs into LISP-PARIS for parallel processing on the CM.
The translator will also convert to LISP, C, and C-PARIS.

The translator is used mainly for converting large blocks of

FORTRAN code into PARIS, a parallel-operation language, so
that individual instructions can be run in parallel on the CM.
(There are two CM's available to the user. A CM-1, front ended
by two Symbolics 36xx, contains 16K processors. There is also

a CM-2 16K processor machine front ended by both the VAX
8300 and the Symbolics 36xx.) Input is a file or a string contain-
ing working code written in the original programming language.

Output, which has been translated to the selected language, is
sent to either a file or the screen.

The translator resides on both the Symbolics 36xx and VAX
8300. A user needs some basic knowledge of the machine, edi-
tor, and operating system upon which the program is run as well
as knowledge of the output language to integrate the output into
operational code.

Text processing research examines the utility of the CM for rapid
document search and retrieval. An innovative and powerful ap-

proach termed Euclidean Concept Space (ECS) was identified
and developed. ECS defines mapping the documents of a text
data base into points of an N dimensional space (N>20) based
on content. Then the tools of analytic geometry are employed to

explore relationships among the documents and their meaning.

Many applications not described here are being pursued as well.
We are gratified to note that almost every application area we've
examined of relevance to our client base responds well to mas-

sively parallel methods.
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ABSTRACT

Research into medical imaging using general purpose

parallel processing architectures is described and a review of

the performance of previous medical imaging machines is

provided. Results demonstrating that general purpose parallel

architectures can achieve performance comparable to other,

specialized, medical imaging machine _rchitectures is pre-

sented.

A new back-to-front hidden-surface removal algorithm

is described. Results demonstrating the computational

savings obtained by using the modified back-to-front hidden-

surface removal algorithm are presented. Performance

figures for forming a full-scale medical image on a mesh

interconnected multiprocessor are presented.

Keywords: parallel processing, medical imaging,

mesh, data parallel, image processing pipeline, hidden-

surface removal.

INTRODUCTION

Medical imaging is inherently computationally

intensive. There are many computational aspects of medical

imaging: the most prominent being the massive amount of

data to be processed I,preferably in real-time, the need for long

range retention of data, and the need for data manipulation

and display of the resulting three-dimensional (3D) images of

complex anatomical structures, again preferably in real-time.

These displays differ from the more familiar CAM/CAD and

other graphics applications in that they do not have underlying

geometrical structures which can be exploited to reduce the

computational burden. Only a limited amount of abstraction

from the raw data is permitted because disease diagnosis is

based upon departures from the norm, and high level models

would reduce, or eliminate, these differences. These stringent

imaging and performance requirements combined with the

associated heavy computational demands indicate that a

massively parallel approach is worthy of consideration.

This research has two objectives. First, unify,

capitalize and expand previous work in medical image

processing. Second, demonstrate that a medical imaging

machine operating in a general purpose massively parallel

architecture can achieve the performance of specialized

medical imaging machines operating on specialized architec

tThc average computerized tomography procedure generates one million

voxels per single slice of a patient scan, magnetic resonance imaging

and ultrasound procedures produce similar amountS of data. In 3D

medical images, which are the subject of this paper, there can be 100

million data points generated per padent scan.

Air Force Institute of Technology

assigned to

University of Michigan

Ann Arbor, MI 48109

tures. Hence, in terms of cost and reliability,they are a viable

approach to the interactive display of medical data. The

research has been through two phases. The first phase,

described in [Sty88], mapped the parallelprimitives of the Voxel

Processor machine described in [Go187] onto mesh

architectures. In the second phase, described here, we develop a

new algorithm which reduces the computational overhead

without sacrificing image quality and apply it to simulated

mesh computers. The results of this investigation provide a

foundation for cost effective,high quality three-dimensional

images for disease diagnosis and treatment.

This paper is organized as follows. The next section

provides a brief review of medical imaging terminology and a

discussion of previous medical imaging machines. Section 3

presents a modified back-to-front algorithm which reduces the

computational time required to generate an image. Section 4

describes the proposed medical image processing pipeline.

Section 5 presents performance results obtained when the

pipeline uses the modified back-to-front algorithm in the

demonstration architecture. The final section contains our

conclusions and outlines our future work.

MEDICAL IMAGING: TERMINOLOGY AND PREVIOUS
APPROACHES.

Medical imaging employs many of the image quality

enhancement operations used in other graphics applications,

and consequently has adopted many graphics terms as well.
We define these terms below.

Anti-aliasing (see [Cro77] and [Cro81] for examples) is

a graphics operation used to smooth the jagged edges which

would otherwise appear in the final two-dimensional (2D)

image when the scene isrotated.

The cuberille model, described in [Her79], describes the

contents of a volume with identically sized, tightly packed,

cube shaped small volumes called cuberilles. Each cuberille

represents one or more properties of the associated volume

within the irradiated space. A three dimensional set of

cuberilles, therefore, represents the entire irradiated volume.

Cuberilles have four characteristic properties: They are all of

the same size, they are discrete, they lie in one of three

mutually perpendicular directions, and they are very small

relative to the object being imaged. The cuberille array is

naturally represented within a computer by a three-

dimensional (3D) array, in which each array element's value

isthe density value of the corresponding cuberille.

Hidden-surface removal ( see [Fo183], [Fri85], [Fuc79],

and [Mea82]) is a graphics operation used to remove from the

final 2D image those portions of the scene which the observer

can not see. Hidden-surface removal can be accomplished
using, for example, a z-buffer or back-to-front readout

algorithm. A z-buffer aMorithm makes use of two buffers. The

refresh buffer, which is always required when forming a
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digitalimage,isusedfor storing pixel intensity values. The
other buffer is a z-buffer which is used to store the z-value of the

each cuberille that is currently mapped to a screen pixel. The z-

buffer is initialized to the largest representable z-value and the

refresh buffer is initialized to the background value. Each

cuberille isthen scan converted. The conversion yields a depth

z(x,y) at screen position (x,y). If the newly computed z(x,y) is

less than the z(x,y) stored in the z-buffer, then the current

cuberille is closer to the observer than the cuberille previously

stored at (x,y), so the z value and intensity of the current

cuberille replaces the z value and intensity stored in each

buffer at position x,y.

Another class of hidden-surface removal techniques is

back-to-front readout of the cuherilles in the scene. Front is

defined as the point(s) in the scene closestto the observer. Back

is defined as the point(s) furthest from the observer. The

algorithm is simpler to implement than the z-buffer algorithm

and requires less space since there is no z-buffer to maintain.

The operation of the algorithm requires that the entire data set

be accessed in back-to-front order relative to the observer. This

is accomplished by correctly oriented the scene relative to the

three coordinate system axis. Once the correct viewer-object

orientation isachieved, the cuberillesin the scene are read-out

in back-to-front order and mapped onto the image display.

Pixel is an abbreviation for picture element. A single

pixel is the smallest element of a picture that can be displayed,

itis essentially a single point on the display screen.

Shading (see,for example, [Che85}, [Fuc83], [Hef85], or

[Pho75]) is a graphics process whereby the appearance of a

visiblesurface is altered to account for the number and types of

light sources illuminating the surface, the surface texture,

surface color, surface reflectance, and the position and

orientation of surrounding surfaces.

Five medical imaging machines were examined with

a view toward defining their capabilities. Figure 1 contains

the performance figures for the five machines. In brief,their

performance can be characterized as follows. The Image

Overlay Machine, [Far85], is a high resolution, hlgh-speed

machine implemented on a general-purpose mainframe and

workstation. The graphics processing algorithms are encoded

in software, and the common 3D image formation operations

are avoided, with a 3D effectbeing provided by colorand image

rotation. The Pixel-Planes machine, [Fuc85], is a medium

resolution, medium speed machine which is implemented as a

special purpose processor. The Pixel-Planes graphics

processing algorithms are hard-coded into the hardware of the

machine, with an apparent 3D view formed using shading,

shadows, and hidden-surface removal techniques. The Voxel

Processor, ([Go187]), is a medium-resolutlon, high-speed

machine which is implemented on a special-purpose

architecture. The graphics processing algorithms are encoded

in hardware, with the apparent 3D image formed using

shading and hidden-surface removal techniques. The True

3D machine, ([Rob85] and [Rob86]), is a low-resolution, high-

speed machine which is implemented on a general-purpose

architecture using a special purpose graphics display device.

The graphics processing algorithms are placed in software,

with the 3D image formed using a varifocal mirror and a

series of frame buffers to provide a true 3D image (thisis the

only machine of the five which does form a real 3D image).

The Medical Image Processing Group (MIPG) machine,

[Her86], is a low to medium resolution, slow machine which is

implemented on a general-purpose architecture. The graphics

processing operations are placed in software, with shading,

motion, and hidden-surface removal algorithms employed to

create a 3D effectin the displayed scene. A thorough survey of

medical imaging modallties and medical imaging machine

architectures can be found in [Fri88].

MEDICAL IMAGING MACHINES
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Figure 1: Medical Imaging Machincs

Even in this brief survey it is evident that there is no

one architecture or approach which dominates the medical

imaging field. In broad terms, these machines can be
characterized as follows. The serial machines sacrifice

image quality or speed in order to accomplish their image

processing tasks. On the other hand, the parallel processing
machines are special purpose architectures and therefore

relatively costly for their performance, especially in a medical

imaging environment. Additionally, the special purpose

parallel processing machines sacrifice the processing

flexibility provided by software encoding of algorithms for the

speed advantage that comes from hardware encoding in order

to achieve their real-time performance. Note that each

machine has a suite of capabilities which distinguishes it from

the other four. These capabilities, such as software encoding of
algorithms, use of general purpose architectures, apparent 3D,

high speed, and high resolution, are not mutually exclusive.
These capabilities should be able to be combined within one

medical imaging machine to provide a richer, more flexible
imaging environment for the clinician. Our research has

concentrated on melding the advantages possessed by each of

these machines into one unit which is fast and has high

resolution while remaining cost effective.

We began by implementing the parallel operational

primitives of the Voxel Processor within a mesh architecture.

This choice was motivated by three factors. First, the Voxel

Processor operational primitives are geared toward parallel

processing, albeit on a special purpose architecture. Second, the
parallel primitives employed in the Voxel Processor are

scalable. Third, the stages operate independently except for

message passing to move the data through the machine. This

aspect provides flexibility when tackling the performance

bottlenecks in each stage because modifications to a stage are

transparent to all other stages in the pipeline. Thus, we were
able to quickly implement the machine with confidence in its

ability to scale to full-size medical images and in its ability to

accommodate improvements to the operation of each stage. We

employ the cuberille data model so as to reduce the pack-

ing/unpacking overhead in the processing of the images (note
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that this does not preclude any compression of data for retention

purposes). Anti-aliasing is accomplished using super

sampling to high resolution with averaging to a low

resolutionflnal image as described in [Cro81]. Pixel intensity

values are assigned using an 8 bit gray scale. Our evaluation

is done on various mesh architectures that are simulated using

C under HP-LIX 5.3 on a Hewlett-Packard 9000 Series 300 with a

CPU running at 16Mhz. Message passing is used to simulate

the node interconnections of the architectttres. While the

environment is simulated, the algorithms are actually

executed under the assumption that each node isactually a HP

machine, thus actual displays are produced. The elapsed time

required for each stage to perform its processing is obtained

using the timing callsprovided in HP-UX. Total elapsed time

for formation of a single image is taken to be the sum of each

stage's processing time plus the communication time between

stages.

The image processing machine consists of a multistage

pipeline which operates on a three-dimensional scene formed

by interpolation of computerized tomography, magnetic

resonance imaging, or ultrasound image data. Figure 2

portrays the image processing pipeline used to obtain the

baseline and modified back-to-front implementation results.

p] °..

lop.tHostSSG Sub-Scene Generator

MP Merge Processor

OH Output Host

OH x Output Host Co-Processor

Figure 2: Image Processing Pipeline

Each stage of the pipeline operates as follows. The Input

Host gathers user scene editing inputs and broadcasts them to

all the processors in the machine as well as performing the

initialdata distribution of the floating point cuberille values to

the Sub-Scene Generator (SSG) processors. The data which

forms the 3D scene isequally distributed among the Sub-Scene

Generators with each SSG receiving a continuous volume for it

to operate upon. Figure 3 demonstrates how the image volume

is divided into eight octants, and the numbering scheme used to

identify each octant. Each octant is recursively divided by
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Figure 3: Octant Numbering Scheme

repeatedly applying the Figure 3 scheme until the data volume

has been divided into as many suboctants as there are SSGs, at

which time each volume issent to the corresponding SSG. Each

Sub-Scene Generator performs anti-aliasing, scene rotation

and objectspace to image space mapping on itssubset of the

image volume based on the user inputs broadcast by the Input

Host. When a SSG finishes processing, itsends itsoutput 2D

scene, consisting of a floating point density value and an

integer z value for each coordinate, to its Merge Processor in

the next stage. Each Merge Processor (MP) gathers the

output of the eight SSG's or MP's which send it input and

performs a back-to-front merge of the eight input scenes to form

its larger output scene. The finalpipeline stage, consisting of

one MP,merges the eight scenes from the previous stage of

MP's into the final,full-scalescene. The last stage MP output

is divided among the Output Host and three coprocessors

(Output Host1, Output Host2, and Output Host 3) for shading to

provide a three dimensional effect before final display by the

Output Host. Shading is performed in soRware, even though

image shading hardware exists, to demonstrate that the

pipeline operates correctly within the realm of the simulation

environment. The results obtained for the final stage are not

presented as they are based on a serial mode of operation for the

display device, and this mode masks the performance speedup

obtained from parallel processing. The questions of shading

and image display will be addressed separately as they have a

great impact on the performance of the pipeline.

Timing results were obtained using a message packet
size of 64k bytes and a 16 x 16 x 16 scene at each SSG. As our

goal was identifying the bottlenecks in the pipeline, production

times for each stage were gathered as an integral part of each

simulation run. Refer to _gure 4, where the elapsed time spent

in each stage of the baseline pipeline is presented. Note that the

SSG stage, where back-to-front readout of the suboctants is

performed, is the main bottleneck in the image processing

pipeline. This bottleneck motivated our development of a new

back-to-front hidden-surface removal algorithm.
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Figure 4: Mesh Stage Performance Results

THE MODIFIED BACK-TO-FRONT ALGORITHM

In the second phase of the research, we developed an improved

back-to-front algorithm which reduces the amount of

computation required in the Sub-Scene Generator (SSG) stage.

The algorithm produces a two-dimensional slice of the scene

which is useful for scene editing purposes (see [Rob86]). Once
the user has achieved the desired orientation of the scene, we

then switch to the full three-dimensional (3D) scene processing

scheme. This approach permits rapid editing of the imaged

volume as well as full 3D viewing of the volume of interest by

the user. Our algorithm is based on two observations. First, if

graphic output is placed in the output buffer in back-to-front

order, then the final image contains only those portions of the

scene observable from the viewer's position. Second, any

portion of the scene which is closer to the back of the scene and

further from the scene's cutting plane than is the geometric

center of the scene can not be observed from the user's position.

We capitalized on these two observations and developed a new

hidden-surface removal 'algorithm which reduces the

computation burden at each SSG by roughly a factor of 4 as

compared to the standard back-to-front algorithm. A brief

description of the algorithm follows, it is not complete as it does

not allow for rotation of the scene but is presented to give a feel

for the algorithm's operation.

Assume an imaged volume of size N x N x N, where N

is a power of two, and a cutting plane through the volume which

is perpendicular to the y-z plane. The origin lies at the front,

lower, left of the scene. First, divide the imaged volume into

eight equal sized octants of size N/2 x N/2 x N/2. Division in

this manner allows us to perform the remainder of the scene

subdivision process with shifts rather than divides. The

octants thus formed are labeled as shown in Figure 3. We then

place the observer at the center front of scene, coordinates N/2,

N/2, 0. A back of scene reference point is placed at coordinates

N4_
N/2, N/2, T

Next, compute each of the eight octant's center coordinate as

follows:

For octants 0,2, 4,6: x coordinate = NI4

For octants 1,3, 5,7: x coordinate = 3 * N/4

For octants 0, 1,4,5: y coordinate = N/4

For octants 2,3, 5,7: y coordinate = 3 * N/4

For octants 0, 1,2;3: z coordinate = 3 * N/4

For octants 4, 5,6, 7: z coordinate = N/4.

Let i represent octant i of the scene, ij represent the

octant j which lieswithin octant i,and so on. Let C represent

the center of the scene, C i represent the center of octant i,and

Cij represent the center of octant j, which lleswithin octant i,

and so on. Drp(X) returns the distance from a point x to the

back-of-scene reference point. Dp(x) returns the distance from

the point x to the scene's cutting plane. Perform the following

steps in back-to-front order on each of the eight octants. First,

determine ifthe octant contains data which isvisible from the

observer's position. The octant is obscured if Drp(C i)< Drp(C)

and Dp(C i)> Dp(C). If these conditions are met, ignore the

remainder of octant i. If either test is not met, process the

remainder of the octant. Octant i now becomes a parent octant

of dimension M x M x M, where M=N/2. Now, treat parent

octant i as though it were the entire scene and determine in

back-to-front order which of its eight octants are visible as

follows. First, if i encloses 2 x 2 x 2 primitive data elements

write i to the output buffer in back-to-front order. Otherwise,

divide i into eight new octants iO...i7 using the method

employed above to divide the entire scene. Determine which of

the new octants ij are visible to the observer. The visibility

determination is made by following the steps originally

performed to determine which scene octants are visible. First,

the new suboctant centers, Cij, are computed as shown above,

and then the distance from the new octant centers to the cutting

plane and the back-of-scene reference point are determined. If

Drp(Cij) < Drp(C i)and Dp(Cij) > Dp(C i)then do not process the

remainder of ij. If either test fails,consider ijto be a parent

octant and perform the octant division and distance

determination steps for each of the new octants ijk. Continue

processing smaller and smaller portions of each scene octant i

until each element has been either cast away or written to the

output buffer. When processing concludes, the two-

dimensional slice of the volume defined by the cutting plane

will be in the output buffer.

The modified back-to-front algorithm rapidly

determines the front of the scene as defined by the cutting plane

by reeursively examining the scene to determine the set of

cuberilles the cutting plane intersects. This determination is

made by applying two tests to each octant. The first test
determines if there is another octant between the current octant

and the observer, this test is accomplished by computing the
distance from the current octant to the back-of-scene reference

point and comparing this to the distance of the parent oetant to

the back-of-scene reference point. The second test determines

if the cutting plane passes through the current octant. This test

is accomplished by comparing the distance from the octant

center to the cutting plane with the distance from the octant

center to the furthest point in the octant. These tests allow the

SSG to cast away substantial portions of its subscene early in

the hidden-surface removal process, thereby reducing the

computation performed at the SSG. This is in contrast to the

other hidden-surface removal algorithms described in Section
2 which must examine each element in the SSG's subscene to

construct the required view of the image.

Refer back to Figure 4, where the baseline image
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processing pipeline performance using the modified back-to-

front algorithm is presented. The results were gathered on a

simulated 16 node mesh connected multiprocessor using 64k

byte message packets with a 16 x 16 x 16 scene at each SSG. The

reduction in time spent in the SSG stage when the modified

back-to-front algorithm is used instead of the standard back-to-

front algorithm is demonstrated by the results presented in the

figure. The SSG stage was then timed independently to gather

performance data for various SSG scene sizes,ranging from 8

x 8 x 8 to 64 x 64 x 64, at a constant packet size of 64k for both the

standard and modified back-to-front algorithms. These

results are presented in Figure 5. Note that the amount of time

spent at the SSG stage decreases linearly with decrease in

scene size at the SSG, or, equivalently, with the increase in the

number of nodes used in the SSG stage. These promising

results led us to develop the front end to an image processing

pipeline, based on the baseline image processing pipeline

described above, which is capable of matching the performance

exhibited in special purpose medical imaging machines.

SSG Performance vs Data Cube Size

100

lo

° i
i o+

.+

Figure 5: Sub-Scene Generator Performance

FULL SCALE MEDICAL IMAGING PIPELINE

To demonstrate the performance of the full-scale

medical imaging pipeline when operating within a general

purpose parallel processing machine, the simulation results

were extended to 512 x 512 x 128 cuberiIIemedical images (33.5

million data elements), which is a reasonably sized volume of

CT scanner data. This extrapolation isvalid because our data

allows us to employ a data parallel approach, as defined in

[Tuc88], for programming the machine. Recall that the PEs in

each stage operate in concert, with no interference from other

stages. As a result, the timing results for a given stage remain

valid as the overall image size is increased because the amount

of work performed by a PE in a given stage remains constant.

The graphics pipeline we use to obtain these

performance figures is modified from the baseline pipeline

described earlier. This new configuration is motivated by the

observation that image shading is now the performance

bottleneck. Because the time required to shade an image

decreases linearly with decreasing image size, the

performance of the shading stage can be improved by dividing

the shading operation among many processors which each

shade a very small portion of the overall scene. To move the

shading operation forward in the pipeline, the processors in the

shading stage must exchange the information needed to shade

their portions of the scene. The first two stages remain as

depicted in Figure 2. For ease of exposition, the scene

dimension at each SSG is the dimension without supersam-

pling, and the time to perform anti-aliasing operations is not

included within the SSG figures we use below. The third stage

performs Sub-Scene Generator output shading using the

gradient shading algorithm described in [Sty88]. The

simulation environment only permits software shading, at a

cost of one shading node per SSG. An actual implementation

could replace the software shading nodes with a hardware

shading capability and thereby reduce the multiprocessor node

count and the time required to process an image. The fourth

stage performs image translation and merging. A naive

implementation of the remainder of the pipeline would have

subsequent Merge Processor (MP) stages forming successively

larger 2D scenes, with the last stage of MPs sending their output

to the Output Host for display. Adopting this configuration for

the pipeline results in elapsed times in later stages of the

pipeline which nullify the benefits realized by

multiprocessing. To better highlight the performance

available, we omit the scene merging times from this

discussion and concentrate instead on the operation of the first

four stages (the front end) of the pipeline.

RESULTS

The timing results for the first four stages of the full-

scale image processing pipeline described in the previous

section are based on a message packet size of 64k bytes. The

mesh processors are assumed to run at the speed of the

simulation CPU, which is 16Mhz. The scene size is 512 x 512 x

128 cuberilles and the observer is placed at the front, center of

the scene. Each of the four stages of the pipeline were timed

independently in the simulation computer, and the individual

stage results combined to determine the performance achieved

by the first four stages of the full-scale pipeline. The results are

conservative in their assessment of each stages' true

performance because of hardware and software limitations

inherent in the simulator used for the research. Hardware and

software improvements can be made in the actual machine

which would yield substantial performance improvements.

For example, multiprocessor computers with nodes running

significantly faster than the 16Mhz of our simulator are avail-

able. Since the machine's performance is presently

constrained by the amount of computation performed at each

node, rather than communication between stages, an increase

in the CPU speed at each node translates to decreased elapsed

time at each stage resulting in improved machine

performance. In addition, the code for each stage was not

optimized in that function calls and recursion are freely used,

especially in the SSG stage. Unwrapping the recursion and

eliminating the function calls will yield further significant

performance improvements in each stage. Replacing the

software shading in the third stage with a hardware shading

capability at the end of the pipeline would yield a significant

performance improvement, thereby removing the shading

bottleneck from the pipeline.

There are two components to the performance of the

pipeline we have proposed: The image production rate and the

elapsed time through the pipeline. The image production rate,

Tr, is the rate at which images emerge from the pipeline. In
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general, T r isequal to the processing speed of the slowest stage.

In the full-scale medical imaging pipeline, T r is equal to the

amount of time spent in the shading stage when the modified

back-to-front algorithm isused, and isequal to the elapsed time

in the SSG stage when the standard back-to-front algorithm is

used. The elapsed time through the pipeline,Te, isdefined as

the amount of time which must elapse before the image

corresponding to a user input is displayed, ie., the time

required for an input to be converted into an image. Both

components are used to describe the full-scale pipeline's

performance. The results below describe the pipeline's

performance when producing a continuous stream of images

using the modified back-to-front algorithm.

Placing a 64 x 64 x 64 scene at each SSG gives a T r for

the four stages of 1.97 seconds and a T e of 4.15 seconds

employing 128 SSG nodes on a mesh connected multicomputer

using software shading. This is not acceptable performance in

a clinical environment, therefore a higher degree of

parallelism is required to achieve our goal of real-time perfor-

mance. By decreasing the subscene at each SSG from 64 x 64 x

64 to 32 x 32 x 32 cuberilles,we incense the number of SSG nodes

required to lk. However, T r decreases to .49 seconds and T e

decreases to 1.03 seconds. By removing the recursion and

using state of the art technology processors at each node this

machine approaches real-time speeds using software shading.

Multicomputers capable of supporting 128 SSG nodes are

well within the scope oftoday's technology, but the elapsed time

iswell beyond the real-time range. The 32 x 32 x 32 SSG scene

size offers the most promise at this time. The numbers of SSG

nodes required is small enough, lk, that computers with this

number of nodes are available. The performance, .49 seconds

to form an image, combines high image quality with low

image formation times.

CONCLUSIONS

Medical imaging on mesh connected architectures is

practical, especially when the modified back-to-front

algorithm is used to accomplish the initial scene editing

operations. The front end of the image processing pipeline

described above offers a unique combination of high image

quality, high speed, and scalability. Its performance along

these three dimensions using state of the art technology

compares favorably with the special purpose parallel

architecture medical imaging machines described in Figure

1. The machine is suitable for medical imaging applications

within a general purpose parallel processing architecture.

We have several projects underway which will bring

about the realization of a full-scale medical image processing

pipeline. Of primary importance is developing methods for

subscene merging and scene display which do not cancel the

benefits which accrue from parallel processing. One

bottleneck remaining in the pipeline is the time required to

move the image from the end of the pipeline to the display. This

bottleneck arises from the fact that in the simulator pixels are

written to the display buffer serially by a single processor.

This bottleneck is not caused by the algorithms employed or the

pipeline architecture, but is solely due to the serial display

hardware. To eliminate this performance constraint, an

investigation of display methodologies which scale along with

the multiprocessor size is underway. A second bottleneck is the

time required to merge the subscenes into the full scene. This

processing takes place in the later portions of the pipeline, and

like the image display process itself, largely cancels the

benefits which come from parallel processing. We are

investigating alternative pipeline architectures and

algorithms which eliminate merge processing. Third, we are

investigating methods for reducing the elapsed time required

for the 3D image formation process. We expect that this can be

done by changing the image/Sub-Scene Generator data

assignment algorithm and by employing an image processing

pipeline that overlaps the operations of the stages. The data

assignment is made such that each SSG has data from each

scene octant, and the octants are processed sequentially in

back-to-front order by the pipeline. Preliminary results for

this new data assignment scheme are promising and will be

presented in a future paper when they are more conclusive.

Finally, we are attempting to quantify the performance

improvement achieved when hardware shading replaces

software shading in the pipeline. We plan on implementing

the pipeline on an actual, scalable multicomputer to further

validate our conclusions with actual performance

measurements.
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ABSTRACT

The solution of the nonlinear Poisson equation of semiconductor
device theory is important for the design of sub-micron devices used
in VLSI circuits. A new algorithm for the numerical solution of this

equation has been described in Ref. 1. This algorithm is inherently
parallel and is thus well suited to implementation on a computer
with large parallelism. This paper describes the initial implementa-

tion and testing of this algorithm on NASA's Massively Parallel Pro-
cessor (MPP).

Keywords: Modeling of semiconductor devices, Nonlinear Poisson

equation, Parallel algorithm, Global convergence, MPP implemen-
tation, Parallel Pascal.

INTRODUCTION

Numerical modeling of semiconductor devices is becoming increas-
ingly important in the design of sub-micron devices used in VLSI
circuits, as well as in the characterization of materials and processes
used in the manufacture of these circuits. A complete model of the
device requires the solution of three coupled equations: the Poisson

equation for electrical potential combined with the continuity equa-
tions for electron and hole currents. Because electron and hole den-

sities are nonlinear functions of potential, the first equation is known
as the nonlinear Poisson equation.

Solution of the nonlinear Poisson equation is directly applicable to
determining the thermal equilibrium value of the potential within
the device. Furthermore, problems involving reversed biased p-n junc-
tions can be reduced to the solution of the nonlinear Poisson equa-

tion using standard low-level injection approximations.

The conventional approach employed for the solution of the non-
linear Poisson equation is based on the Newton-Raphson method
applied to simultaneous discretized equations. This approach has two

major difficulties. First, the Newton-Raphson method possesses only
local convergence, and thus global convergence using this technique
is not assured for an arbitrary initial guess. Second, the amount of
computation and storage required to solve the simultaneous equa-

tions is large, especially for high-density meshes, requiring the use
of high-performance computers with a large main memory capacity.

A new, inherently parallel algorithm for solving the nonlinear Pois-
son equation has been described in Ref. 1. This algorithm has none
of the disadvantages of the existing method. First, it has guaran-

teed global convergence for an arbitrary initial guess. Second, ex-
plicit algebraic formulas are used to update the value of electric

potential at each mesh point, minimizing the amount of storage re-
quired per mesh point. Third, the calculations used to update the
value of electrical potential at each mesh point can be performed

concurrently for all mesh points, making the algorithm especially
attractive for implementation on a parallel computer.

The MPP was selected as a good candidate for implementing this
algorithm because of the large parallelism it possesses--16,384 Pro-
cessing Elements 0aE). The Single Instruction Multiple Data (SIMD)
architecture of the MPP matched well with the algorithm charac-

teristics of updating the potential at each mesh point, using the same
steps, in parallel. Also, the two-dimensional interconnection struc-

ture of the MPP's Processing Elements is ideally suited to the al-
gorithm's nearest neighbor communications requirements.

Subsequent sections of this paper are organized as follows. The next
section develops the discretized equations for implementing the two-
dimensional version of the algorithm. Using these equations, the ma-
jor computational steps of the algorithm are described. The follow-

ing section provides a brief description of the parallel architecture
of the MPP, highlighting the features exploited by our numerical
implementation. The fourth section describes the specifics of the al-

gorithm implementation using the Parallel Pascal language of the
MPP. Refinements made to the algorithm implementation to im-
prove run-time efficiency are also discussed. The last section sum-
marizes the algorithm implementation, and outlines future work.

NONLINEAR EQUATION

Poisson's equation (1) describes the variation of electric potential
within the MOSFET device shown in Figure 1.

02(J_ 020 q

.... (n - p - D) . (1)
OX2 "_" 0- ,Y2 _s

Here, n and p represent the mobile electron and hole concentrations,

respectively, D is the concentration of ionized impurities, q is the
electron charge, and _s is the permittivity of silicon.

At thermal equilibrium in a nondegenerate semiconductor the con-
centrations of mobile electrons, n, and holes, p, are approximated

by Boltzman's statistics. By using these statistics in equation (1), we
end up with the nonlinear Poisson equation (2),

--I (if-T) (_-T_)I -qDqni exp q¢ - exp - -- ,
_s _s

(2)

where ni represents the intrinsic mobile carrier concentration, k is

Boltzman's constant, and T is absolute temperature. This equation
applies for any position within the boundaries of the device in Fig-
ure 1.

There are three classes of boundary conditions that apply to the
MOSFET geometry of Figure 1. The boundary conditions for the
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Figure 1. MOSFET Device Geometry With Boundary Conditions.

potential at the ohmic contacts (source, drain, and substrate) can

be determined by assuming charge neutrality. The artificial bound-

aries in Figure 1 are intended to isolate the MOSFET device. This

isolation is well approximated with a zero Neumann boundary con-

dition. The dioxide-semiconductor interface, under the gate electrode

of Figure 1, is well approximated by an impedance-type boundary
condition as described in Ref. 1.

Equations (3), (4), and (5) describe the boundary conditions for the

ohmic boundaries, the artificial (Neumann) boundaries, and the

impedance-type boundary, respectively.

kT 2 + +n;

0 = -- In - . (3)

q n_

OO
- 0 . (4)

(gv

&, aO 6
O + - v_ + -- O- (5)

Here, 6 represents the thickness of the dioxide, Vg is the voltage ap-

plied to the gate, Q represents the charge trapped at the dioxide in-

terface, _s is the permittivity of silicon dioxide, and v is an outward
normal.

For a numerical solution the problem is discretized by choosing two

sets of mesh lines, one set parallel to each of the x and y axes of

Figure 1. The mesh lines are specified by:

x_ ; i = 0, 1, 2 .... imp, - 1, im_

)) ; j = 0, 1, 2 .... Jm_tx -- 1, Jmax.

with both x° and yo specifying the top left corner of the MOSFET

device of Figure 1. Furthermore, the mesh line spacing must form

a monotonically increasing sequence, such that xi < xi+ i (and yj

< y:+ _ ) for all i(/). The intersection of these mesh lines forms a

set of mesh points at which the physical quantities of interest will

be calculated. Each mesh point can be uniquely identified by the

pair (ij), which will be used in subsequent equations to denote the

values of physical quantities at specific mesh points (these indices

were chosen to conform with the MPP's convention for identifying
PEs).

The discretized version of the two-dimensional nonlinear Poisson

equation, which describes the electric potential at mesh point (ij),

is given in Equation (6),

2 ((4_i+lj - Oij) (4_i-i<-- @ij))
gi + gi- i gi g,- i

2 ((_ij+t - _b,a) (eij_2 - 0,j) )+ hj + hi_, h; hi_, (6)

--[ (_) (-qcbia_) - -qDiJqniEs exp - exp \_/ e_- ,

where g_ and hj are the distances between adjacent mesh lines in

the x and y directions, respectively, and are defined by hi. _ y¢+ 1.
- yy and gi = Xi+l - xi. Combining terms of Oij wltla taenUcal

q¢ij qni

subscripts, and introducing the notation: @_j = _ ,/3 = --,
£s

and fij - qDia- , we arrive at equation (7).
£s

Orb{ cI_i,j+l + OrS' (I_i,j-I + _'E" O_' _i+I,J I,J I,J _i- I,j + hJ I,j

-- _.C.,,j @i,j -- _ (exp(@ia ) - exp(-@U)) = f_d •

(7)

The mesh constants c_S,a, cc_,a, c_e,a, c_w,a, and o_c are given in terms
of mesh lines by Equations (10), (11), (12), (13), and (14). (Note that

these constants are defined only for nonboundary mesh points).

2kT 2kT
o_S -,j (8)

q(hj - hj i)h) q(Y)+l - Yj-t)(Yj - Yj-l)

a,_'. 2kT 2kT
,j = = .(9)

q(hj - hj_l)hj_ I q(Y_+l - Y_-I)(Yj+_ - Yj)

e_E -
_J

2k T 2k T

q(gi - gi _)g, q(xi+_ - x___)(x_+_ - x,)

w 2kT 2kT

°_ia q(gi - g,-] )g,-_ q(x,+] - x__ l)(x_ - xi_ 1

(10)

.(I 1)

a c = ot_- o_W e[ _ aS (12)

The discretized forms of the boundary conditions, and the values

of the mesh indices for which they apply, are given by Equations

(13) through (18).These equations include the effects of external vol-

tages applied to the MOSFET device, which include the gate volt-

age, V_, the source voltage I/_, the drain voltage V a, and the
substrate voltage V_ub . The end points of the gate electrode are

demarcated by the indices ig_, and ig¢. The maximum indices of

mesh lines in the x and y directions are given by im_ and Jma_'
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Ohmic Boundaries

qV_
_'J = k--T + _

q_
@'_' - kT + In

q Vsub

@ij = k--'_ + In

ni

ni

forj = 0,

O <_ i <_ig, .

(13)

for j = 0,

ige < i < imax .
(14)

ni 0 _< i -< imax .

(15)

Side (Neumann) Boundaries

@i+lj = cbie for i = 0, 1 < j _ Jma, - 1 . (16)

cbi-la = @ia for i = ima_, 1 < j -< Jmax -- 1 . (17)

Dio_de Boundary

_ij =

((y,+j - yj) tSQ + %x Vg)q

((Y_+I - Y_) %x + b¢s) kT

fs _Pi.j+ I

+ for j = 0, ixs < i < ige .

(18)

According to the algorithm in Ref. 1, simultaneous Equations (7)
are solved using the following iterations:

F(,m+l) = Ot N @(m) S, _.(m)
id 1,3 /j+l "_ OOd Id-I

t.j , :,l i+ lj -- ftd ,

and

(19)

O¢ _ (I)(m+ 1) (re+l),a ia + /3 exp(-@_f+l))) _ _,,,+l)(exp(@,j ) - ,a = O.
(20)

The algorithm starts by choosing an (arbitrary) initial guess for poten-
tial at all nonboundary mesh points (i _ i < imax - 1), and then

proceeds as follows: (1) Use Equation (19) to calculate F_ '_ + i) from
ij at all nonboundary mesh points in parallel. This computation

step is referred to as the outer loop, with index m. (2) Insert F_ "+"
into Equation (20) which then must be solved for @!" +11,j at all mesh
points in parallel. Because equation (20) is transcendental and can-
not be solved for _c_+_) directly, the one-dimensional iterativet..I

Newton method is employed. Formula (21) is the one-dimensional

Newton-method formulation of Equation (20), which is applied to
find cl,t_÷l_ until the selected convergence criterion is satisfied.Id

(1)tI_ pl+l)(n+l) : (I)i_ 'l+l)(n) __

c_j ,,: + B (exp(q',_"+I'''')- exp(_@of+ ,>_.r)) _ ,J

c_c,J + _ (exp(@,_"+lll"_) + exp(-q_i_"+'""l))

(21)

The repetitive application of Formula (21) is referred to as the inner
loop, with index variable n. (3) The value of • ('_ +_)iu found by For-
mula (21) is compared to _I,[__. If their difference, for all nonboun-
dary mesh points, is less than some convergence threshold, the

algorithm terminates with _I,_e'+_),j as the solution. (4) Otherwise,
computations proceed again to step 1.

MPP ARCHITECTURE

Before describing the specifics of the implementation of the above
algorithm, it is appropriate to describe briefly the MPP architec-
ture. Complete details on the MPP are available to the interested
reader in Ref. 2. We present only the architectural details of the MPP

that are significant to the understanding of the implementation of
the above algorithm.

The MPP operates as an attached processor to a host computer,

which is currently a VAX 11/780. The host computer performs high-
level control, provides disk storage, and supports software develop-
ment tools for the MPP.

There are three basic units of the MPP: (1) the Array Unit (ARU);
(2) the Array Control Unit (ACU); and (3) the Staging Memory that
reformats and buffers data passing between the ARU and the VAX
host.

The ARU consists of 16,384 PEs, which are interconnected to form
a two-dimensional mesh with 128 PEs on a side. PEs that are not

on the boundary of the matrix have a direct connection to their four
nearest neighbors, designated as its East, West, North, and South
PEs. The boundary processors have only three nearest neighbors;
the remaining connection for these PEs is determined by a software-

configurable topology control register. For our implementation, the
boundary PEs were left unconnected.

In addition to the four communication paths, each PE has a single-
bit ALU, 35 single-bit registers, and 1024 bits of local RAM. One
of the single bit registers is the mask register, which is used to con-

trol the activity of the PE. The purpose and operation of this mask
register will be described later.

The PE instruction set includes the standard arithmetic and logical
operations, as well as inter-PE data transfer primitives. Moreover,

the ARU hardware supports array reduction operations. Reduction
operations provide a parallel method for finding a selected quanti-
ty; for exanaple, the maximum value across all PEs in the ARU.
Both the inter-PE data transfer primitives and array reduction oper-
ations were architectural features exploited by our implementation.

The single-bit ALUs in the MPP PEs mean that the PE instructions
operate on single-bit operands. Multiple-bit fixed-point arithmetic
is emulated on the MPP by performing multiple single-bit instruc-
tions. The MPP can be programmed to perform arbitrary precision
fixed point arithmetic as well as floating point arithmetic.

The MPP is classified as Single Instruction Multiple Data (S1MD)
architecture. This means the following. At each instruction cycle,
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a Single Instruction (SI) is executed concurrently by all PEs, acting
on Multiple Data (MD) points. In the MPP, there exists the capa-
bility to individually "mask" off PEs, disabling them from execut-
ing current instruction. The control of this mask register is available

to the programmer. The stream of parallel operations for execution
in the ARU is generated by the MPP's Main Control Unit, which
will be described in a subsequent section.

The MPP Stager facilitates movement and reformatting of data be-
tween the VAX host and the MPP array unit. It connects to the

MPP through the s-plane, and to the VAX through a 6-MByte/sec,
16-bit parallel bus. For each PE in the ARU, the Stager contains
an additional 16K bits of RAM memory. These data can be trans-
ferred between the ARU and Stager at a high bandwidth (180
MBytes/sec.). Data to be transferred from the VAX to the ARU

(i.e. an input data set) is first transferred to the Stager at a
12-MByte/sec. rate. The Stager reformats the data, and then trans-
fers the data to the ARU, through the s-plane, at the high rate. Be-
cause of the low bandwidth between the Stager and the VAX, it is
desirable to minimize the amount of data traversing this path.

The Main Control Unit (MCU) controls both the Array Unit and
the Stager. It is a 16-bit minicomputer that runs the MPP assembly
language code. It contains separate controllers for the Array Unit
(PECU) as well as the Stager Unit (IOCU). The PECU and IOCU

are slave processors, taking commands from the MCU and then oper-
ating in an independent fashion, in parallel with the MCU as much
as allowed by the constraints imposed by the executing program.

The MPP can be programmed at the microcode level, the assembly
language level, or using a high-level language. The usual tradeoffs
for selecting the level of programming apply to the MPP as if it were

any other computer. The MPP currently supports the PASCAL and
FORTH languages.

The MPP implementation of PASCAL is called parallel Pascal (PP)
(Ref. 3). It is an extension of the standard PASCAL language to
include constructs that are directly supported by the MPP hardware.

These extensions are: (I) parallel data-type declaration, for parallel
arrays that reside in the MPP array memory; and (2) parallel oper-
ators and functions for operating on parallel arrays. The Where-
do-otherwise statement for selected parallel assignments uses the mask
feature of the PEs.

PP makes the power of the MPP available in a high-level language
format. This gives the MPP the appearance of a general purpose
computer, especially from the PP code level. The only nonstandard
aspect about programming the MPP using PP is that the program-

mer must specify the movement of data from the VAX host to the
Stager memory and then into the Array Unit. This is due in part
to the limited memory available in the Array Unit and the Stager.
The programmer is in the best position to decide when data can be
moved and where local PE storage is available.

IMPLEMENTATION SPECIFICS

Coding of the algorithm to run on the MPP was considerably sim-

plified by the use of PP, which provided function calls to imple-
ment the ARU's hardware primitives (such as the array reduction

and inter-PE data transfer operations). In addition, PP provided
microcode support for all basic floating point operations, as well
as higher order functions (i.e. exponentials).

This implementation provided for the use of grid sizes up to 128
x 128 mesh lines. Meshes that were smaller than this were mapped

into the Northwest corner of the MPP ARU; see Figure 2. The un-

used processors in this figure were masked from performing any un-

desirable operations (i.e., divide by zero).

Reference x° x, xio_x Unused

yi!°ln_l Source .... Git _ .... Drain _

\ mesh XX

•, 128 PE =

Figure 2. Variable Size MOSFET Geometry Mapped to the MPP
Processor Array.

In PP, Equation (19) was efficiently implemented by four shift oper-

ations, four floating point multiples, and four floating point addi-
tions. For example, a shift operation transfers all values of _i,/

north by one mesh line (from PE,j to PE, o,__) where it then is mul-
tiplied by cts • Subsequent shift and multiply operations, for the re-
maining three directions, would generate the other terms of Equation

(19). The boundary PEs (i.e. i = 0, i = imax, j = 0, j = Jmax) do
not implement Equation (19).

Implementation of Equation (21), while slightly more complex mathe-
matically, is still quite straightforward. While this equation doesn't
require any inter-PE data transfers, considerably more computation

is required to calculate the exponentials and to perform the floating
point division. Moreover, different PEs might require a different
number of iterations of Equation (21) before satisfying the conver-
gence criteria. Initially, we chose to disable any PE that had saris-
fied the convergence criteria from performing any more iterations
of the Equation (21), the inner loop.

The boundary conditions were implemented separately for each
boundary, according to Equations (13) through (18). Most of these
are simple expressions, except for the dioxide boundary Equation
(18), and require only a shift or an assignment operation.

This initial implementation was validated by comparing the results
with those from a previous implementation in FORTRAN running
on a VAX. Figure 3 shows art example of results generated by our
implementation on the MPP. It illustrates the variation of electric
potential within the MOSFET device as a function of both the x
and y coordinates. This implementation used a mesh constructed
from 128 x 128 mesh lines. Simplistic (constant) doping profiles
were used in this example, with doping in the n region D = 1 ×
10 TM cm-3, in thep region D = - 1 × 10 TM cm -3, t5 = 0.05 #rn,

Q = O, and Vg = Vs = Vd = Vsu_, =Ovolts.

Some efforts have been made to improve run-time efficiency. The
most inefficient aspect of the algorithm implementation was reali-
zation of the boundary conditions. In the later case, only about 200

PEs were doing any useful operations at a given time; the remain-
ing PEs were sitting idle, for a PE utilization of approximately 1%.
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Figure 3. Plot of Potential Versus Position in a MOSFET Device.

To improve efficiency, we reorganized the computations to include

the boundary condition computations into the general nonboundary

mesh point equations. The motivation for this was the fact that im-

plementing the boundary condition equations required only shifts

and multiplies, which were already being performed in all PEs dur-

ing the solution of Equation (19). Because the boundary PEs are

not involved in the realization of Equation (19), and thus remain

idle, they could possibly be used during this period to improve exe-

cution efficiency.

Substituting in the boundary conditions into Equation (19) at the

appropriate pre-boundary mesh points, new values for the mesh cons-

tants were derived. The modified a's for each boundary condition,

and the mesh indices for which they apply, are presented as Equa-

tions (22) through (27).

Ohmic Boundaries

cxC,a = aE_J = a_t,a = W",j = c_s,a = 0 (22)

for j = 0,0 <- i <- ige;

j = O, ige <- i <_ ima,_;

J = Jmax, 0 <- i -< /max;

and ¢ia given by Equations (16), (17), and (18) remains constant

Vrn (for all outer loop iterations).

Neumann Boundaries

Boundary PEa

a c = ore = or"( = otN = sIJ td t,.I Q ij = 0

fori = O, 1 < j <Jmax - 1;

i = /m,_, 1 _J<Jma,, -- 1,

Pre-boundary PEa

a w = 0;c_9. =ae. +_ +oesj for/= 1,1 < i<-jmax - 1 (24)t,J td td -- "

cxE,a = O; (xc = °:iJW+ otN,a + °tsiJ for i = im_x - 1, 1 _< j _<Jmax - 1
(25)

Dioxide Boundary

Boundary PEa

o_C = ore o_w ot_' stj tj = td = td = otij = 0

forj= O, igs < i< i_e ;

(Yl - Y0) (6Q + Cox Vg)q vm (26)
(_'J = -_Y; -Yo)'ox + re,) kT'

Pre-Boundary PEa

c_C = ctE. ctW a, ctN [ (yl - y°) %x ]

forj = l, ig_ < i < ige (27)

The second source of inefficiency for this algorithm has been in the

inner loop. Here, some PEs require more iterations of Newton's

method before satisfying the convergence criteria. It is important

to note that solving Newton's method, Equation (21), requires con-

siderably more computation steps than the outer loop, Equation (19).

From our observations of the algorithm's execution characteristics,

after the first few iterations of the outer loop, at most, three itera-

tions of Newton's method (the inner loop) were required before all

PEs satisfied the convergence criteria. The PEs that required two

or three iterations were those whose mesh positions were in a region

that was undergoing large changes of Fj,_, the inner loop forcing

function. Since the value of potential in these PEs is very likely to

change again during the next iteration, determining their accuracy

to high precision is inefficient.

Rather than let each PE determine for itself when it had satisfied

the convergence criteria, Newton's method could be applied a fixed

number of times by all PEs. This method trades off the time spent

computing in the inner loop against the total number of outer loop

iterations required for termination of the algorithm. Table 1 sum-

marizes the trade-off results we have collected. It presents the num-

ber of outer loop iterations (and the total number of inner loops

executed) required for algorithm termination as a function of the

number of inner loop applications, for different mesh sizes.
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Table 1. Inner Loop versus Outer Loop Trade-off Results. SUMMARY

Mesh Size

Maximum inner

loop iterations 32 x 32 64 x 64 128 x 128

*OL = 82 OL = 170 OL = 285
1 tTIL = 82 TIL = 170 TIL = 285

OL = 84 OL = 182 OL = 309
2 TIL = 168 TIL = 364 TIL = 618

>3
OL = 85

TIL = 183

OL = 182
TIL = 381

"OL is the number of outer loop iterations.

OL = 309
TIL = 631

tTIL is the total number of inner loops performed.

These experimental results indicate that computing the solution of

Equation (20) to a high accuracy, by allowing a large number of
inner loop iterations, does not improve and can actually retard (see
Table 1) the global convergence of the algorithm. This characteris-
tic appears to be a function of the initial guess used.

Intuitively, this make sense by the fact that an accurate solution to

Equation (20), for an initial guess that is far from the actual solu-
tion, can cause the new estimate to remain farther away than a less
accurate computation. This can result in an increase in the total num-
ber of outer loop iterations to achieve global convergence.

This paper has described the implementation of a new, inherently
parallel algorithm for solving the nonlinear Poisson equation of semi-
conductor device theory on the MPP. This parallel implementation

has also provided insight into techniques for improving run-time ef-
ficiency of this algorithm, including integrating the boundary con-

ditions into the standard mesh point equations, and the
interrelationship between the number of inner loop iterations and
the number of outer loop iterations required for global convergence.

Plans for additional work with this algorithm include extending the
algorithm to the modeling of a three-dimensional MOSFET device.
Next, electron and hole continuity equations can be incorporated
into the discretized implementation. Furthermore, realistic doping
profiles can be added using a program similar to SUPREM (Ref. 4.).
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ABSTRACT

A heterogeneous network of parallel computers

developed for complex distributed processing

applications is described. Network computers include

a Connection Machine, a Butterfly multiprocessor, a

WARP systolic array, a Symbolics and several SUN

Workstations; an Ethernet and high-bandwidth APTEC

bus supports data transfers. Distributed applications

are built from individual processes executing on

computers in the network. A powerful asynchronous

communication facility is built upon the multiple

computer operating systems to provide uniform

message passing, global memory variables and remote

process execution services to processes. An Executive

Controller and the LISP+ functional language provide

a method of integrating distributed processes into an

application with transparent control of network
resources and communications. Additional

applications can be rapidly built from existing

processing to support experiments in distributed and

parallel applications.

Keywords: Message Passing, Data Flow, Software

Backplane, Distributed Computing, Parallel Computing,

Parallel Processing

INTRODUCTION

Efficient imagery exploitation is a complex activity

that requires the application of diverse algorithms.

Technical challenges include the detection and

recognition of image signatures; understanding of

non-imagery based cues such as terrain; automated

hypotheses generation and inference; information

fusion; and control of distributed applications. These

algorithms require diverse machine architectures to

be efficiently implemented (Ref. 1-2), and flexible

control strategies to manage distributed resources. We

describe the Defense Advanced Research Projects

Agency (DARPA) Sensor National Testbed (SNTB) as an

integrated solution to support rapid and flexible

development of heterogeneous, distributed processing

applications.

A major objective of the SNTB was to develop a general

purpose programming environment for distributed

and parallel applications. This environment was

designed to increase programmer productivity by

shielding application developers from machine

dependencies, and to support a laboratory atmosphere

for experimentation in distributed and parallel

applications.

The result is a loosely-coupled heterogeneous network

of computers integrated with a flexible, distributed

communications facility for asynchronous message

passing, and a central control facility for applications

development. Applications are integrated from

individual processes executing on any computer in the

network; thus, algorithms can be implemented on the

most applicable machine architecture.

Communications and control between processes is

provided across computers and across operating

systems.

HARDWARE DESCRIPTION

The hardware architecture of the SNTB is a

heterogeneous network of computers integrated into a

single environment. Major hardware subsystems are

either uniprocessors or homogeneous multiprocessors

of varying granularity as shown in Figure 1. An

APTEC high bandwidth data bus provides a means to

centrally store and share imagery and othcr large data

quantities among computers. Ethernet low-bandwidth

message-handling protocols are used to support

message passing and sharing of small data transfers.

The SNTB is designed to facilitate efficient

implementation of the individual algorithms (numeric

or symbolic) comprising an application by providing
five different machine architectures to which an

algorithm can be mapped. Multiple SUN Workstations

and a VAX provide traditional computing with one

central processor running UNIX. The SYMBOLICS Lisp

machine has hardware optimized for executing
programs in that high level language. Multiple

instruction, multiple data (MIMD) processing is

performed on the Butterfly multicomputer, while

single instruction, multiple data (SIMD) processing is

performed on the massively parallel Connection

Machine. The hardware suite is completed with a

WARP linear systolic array. The Butterfly, Connection

Machine and WARP are the primary computing
resources of the SNTB.

The Butterfly, produced by Bolt, Beranek and Newman

is a network of up to 256 identical processor nodes.

Each node is a Motorola 68020 microprocessor with a

floating point co-processor and 1 to 4 MBytes of local

memory. A proprietary "butterfly" switch network

allows local memory to be tightly coupled and shared

between processor nodes. Thus, the Butterfly achieves

its processing performance by using multiple low-cost

processors cooperatively. The SNTB currently has a 28
node Butterfly with 76 MBytes of total memory.

CH2649-2/89/0000/0295501.00 © 1988 IEEE

295



The MIMD architecture and shared memory of the
Butterfly can be used to effectively exploit control
level parallelism. Each identical processor can execute
its own set of instructions, meaning different
processors can run different programs on different
data sets. And the shared memory architecture
provides a program execution environment in which
tasks can be distributed among processor nodes
without regard for the physical location of the task
data, although some performance is lost if the data does
not reside in local memory.

The Butterfly uses the Chrysalis Operating System
which supports both heterogeneous and uniform
programming. In the heterogeneous mode, each
processor node may run a different program. Under
the uniform system, each node, or set of nodes, runs

the same program. Software development is
performed on a SUN Workstation host and downloaded
into the Butterfly for execution. Programming
languages include C, Fortran, and Scheme. Current
testbed applications include parallel methods for
Monte Carlo Simulation and R-Tree based spatial
search.

The Connection Machine is a SIMD architecture with
high processor granularity built by Thinking
Machines Corporation. Each processor is
interconnected with both a local grid (N, E, S, W)

hardware interconnect and a highly efficient global
packet switched interprocessor hypercube network.
The Connection Machine is the first architecture to
fully exploit data level parallelism.

NNECTION

ACHINE

K NODES

MAC

II

BUTTERFLY

28 NODES

The initial Connection Machine model CM-1 contains

up to 65,536 bit serial microprocessors, and 32 MB of
total physical memory. The SNTB has a 16,384 node CM-
1 for a total of 1,000 million instructions/second
(MIPS) capability. The successor to the CM-I, the CM-2,

will support parallel 32 and 64 bit floating point
arithmetic and increase the total physical memory by
a factor of 16 over the CM-I. It is capable of 3500
MFLOPS and was introduced in the fourth quarter of
1987.

The Connection Machine uses a DEC VAX 8000 series
computer, linked over a special high speed interface,
as a host for software development and control. The C*

and *LISP languages for programming the Connection
Machine are extensions of the standard languages.

Library functions logically create virtual nodes to
match the number of processors to the problem. For
example, image processing on a 512 x 512 pixel image
is easily performed on a 16K node machine by

mapping one image pixel to each of 256K virtual
processors. Existing SNTB applications include SAR
imagery detection and spatial clustering operations.

The underlying architecture of the WARP is a linear
systolic array consisting of 10 powerful computing
cells. It was developed as Carnegie Mellon University
and built by General Electric Company. Each cell is
capable of 10 MFLOPS, giving the 10 cell array a
combined maximum throughput of 100 MFLOPS. Two
independent I/O buses can pipe data through the array
at 20 MBytes per second or store data in any cell's 1 28
KBytes of memory.

WARPi Systolic Ajrray=

Interface Unit

SUN SUN
3/160 3/160

Ceils10i i

SNTBnet

Ethernet)

APTEC

SYMBOLICS

3670

SYMBOLICS] SUN VAX

3640 I 3/160 11/750
m

FIGURE 1. SENSOR NATIONAL TESTBED ARCHITECTURE.
interfaces to the Aptec bus are not currently implemented.

IBIS

DISK
1.2 GB

Lightly shaded

MICRO

VAX II
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There are three main hardware components to the
WARP: an external SUN host processor, the WARP
systolic array, and an interface unit with two cluster

processors. The SUN is used for program development
and WARP control. In operation, data is loaded into the
memory of the cluster processors. An interface unit
then converts between fixed and floating point
formats while the data is transmitted from one cluster

processor through the array and to the other cluster
processor. The cluster processors are a I s o
programmable. The APTEC data bus feeds data into or
out of the cluster memories directly without passing
through the SUN host.

The WARP can be programmed in either W2, a high-
level C like language that gives the programmer full
control over each processing cell and the data flow
through the array, or in APPLY which only supports
homogeneous programming. In this mode, each cell
executes the same program on different data. W2
allows the WARP array to be programmed for
heterogeneous processing where each cell may
execute a different program, usually on the same data
as it is passed through the array. Current tcstbed
applications of the WARP include a true systolic
algorithm for SAR imagery detection.

Two distinct communications networks are available

for passing data and messages between processors on
the tcstbed. Images and other large data items can be
transferred over the APTEC bus and stored on the IBIS
disk drive. The APTEC DPS-2400 is a synchronous,

high-speed computer bus with a transfer rate of 24
MByte/second over two 12 MByte/second, read/write,
uni-directional buses. The APTEC network includes 9

MBytes of mass memory and a high-speed 1.2 GByte
IBIS disk. The disk and mass memory arc useful for
storage of intermediate results. The APTEC host
computer is a MicroVAX II and acts as the controller
for the APTEC network file system. The Ethernct is a
slow speed bus for the transfer of messages and other
control data between computers on the SNTB.

SOFTWARE DESCRIPTION

Several layers of software have been added on top of
the operating systems of the individual computers.
This additional software provides the various layers of
abstraction shown in Figure 2 and consists of three
primary components: Communication and System
Services, an Executive Controller Agent, and Network
Vision Software. Together, this software integrates the
various hardware components of the SNTB into a
single programming environment called the Virtual
Computer.

Communication and System Services

For an application to use multiple machines in the
SNTB, processes executing on each machine must not
only share data, but they must know when to execute.
This implies the need for both message passing and
control mechanisms. Although this capability is

provided through the Ethernet bus with TCP/IP
software, it has several disadvantages. First, the
protocols are at too low of a level and do not directly
support interprocess data sharing or control. Second,
the protocol implementations and syntax vary between

machines. And third, each application must derive
and implement its own requirements. These factors
lead to longer development time and reduced software

portability.

These limitations initiated development of the SNTB

Communications and System Service (CSS). The CSS is a
distributed service used to provide flexible
asynchronous inter-Pr0cess communication among
processes executing on the SNTB. Additionally, it
provides system and network wide functional tools and
abstractions upon which the LISP+ and Data Flow
Model of the Executive Controller are implemented.
The basic services are provided by communicating
Local System Servers (LSS), one on each machine in
the testbed, while uniform interfaces to each LSS are
provided by libraries of functions that are linked with
the process' software.

Message Passing The basic inter-process
communication paradigm provided by the CSS is
asynchronous message passing between logically
named, distributed client processes called agents. One
of the main goals of the CSS is to hide details of the
actual locations of agents from other communicating
agents. This location independence is realized by
providing logical named references. Logical names
are managed by the collective LSSs and are known as
io-ids or just ids. Ids are unique within the CSS and are
dynamically created or deleted by agents.

Each id is associated with an object in the CSS. Objects
are nodes in directed acyclic graphs (DAGs) used for
message routing and storage. Each node in the graph
has a separate and unique id, while each leaf also has a
unique machine location in the SNTB, allowing CSS

messages to be queued at and removed from the leaves
of the graph. In a simple communication between two
agents, the graph would have two nodes which are also
leaves, and the message would flow along the edge of
the graph from one node to the other.

The CSS provides a powerful facility for mapping ids.
This provides the abstraction of "connecting" nodes in
the DAG where the intermediate, non-leaf nodes of the
graph are mapped ids. Each node may be mapped to
one or more other nodes which may be mapped to
other intermediate nodes before being mapped to a
leaf node. The only limitation is that a circular path
cannot be formed within the graph. The result is a
very flexible and controllable message routing
facility.

Agent message passing is accomplished through
functional constructs that take on various forms of
send and receive. An agent can send to any id in the
CSS and optionally wait for a reply. Likewise, an agent
can receive from any id previously associated with the
agent. (This association constraint is necessary to
support some receive functional abstractions provided
by the interface libraries.) Both synchronous and
asynchronous receive operations are supported. A
synchronous receive is provided by waiting for a
message to appear on a particular id; this allows
processes to sy'nchronize with each other. An
asynchronous, or conditional receive, allows a process
to poll for messages and continue execution if none
are currently available.
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FIGURE 2. SNTB FUNCTIONAL ABSTRACTION LAYERS.

Individual messages have priorities associated with

them to control the way in which they are queued•
The priority is specified when the message is sent, or
defaulted to a preset value. Messages with higher

• priority are de-queued to satisfy a receive request
before those of lower priority. This facilitates some

degree of control over message traffic that would not
otherwise be available,

Other Services Besides application agent message
passing, the CSS provides other important services
built upon the general message passing paradigm
discussed above. These include global memory
variable,d remote process execution, resource tracking
and message logging.

The CSS provides a mechanism for sharing global
memory between agents in the form of memory
variables• This abstraction is currently supported

with a special kind of io-id. The queue for memory ids
is implemented such that a send overwrites the
current message, and a receive returns a copy of the
last stored message. With this implementation,
variable assignment and access is performed using
send and receive constructs identical to those for

message passing. Except for the agent that created the
memory variable id, other agents are not aware of its

special status.

The capability to remotely spawn agents from a single
location is provided through the CSS with a special
message construct. Each LSS has the responsibility of

spawning processes through its local operating
system. When an LSS receives this message-based
command, it tries to execute the process contained in
the message's data field and returns the status in a
reply message• A similar special message construct is
used to terminate an existing process.

Resource management is an important issue in the
control of most distributed systems. The resources of
the SNTB can be thought of in terms of the io-ids and
processes that have been created through the CSS. In
order to provide access to the state of the CSS, each LSS

responds to a special status message construct. The
reply contains a snapshot of the io-id and process state
on the LSS's local machine. The message contains the
number of sends and receives for each id, the number

of stored bytes in the queue for each id, and id and
process history.

A message logging capability is provided within the
CSS to help with debugging SNTB applications• Both
local and global message logging are supported. Local

message logging causes a copy of all message traffic
through an LSS, and a log of all LSS processing errors,
to be written out to a file on the local machine. Global

298



message logging causes a copy of all messages through
an LSS to be sent to a particular id in the network, in
this way, one location can keep tract of all messages in
the CSS.

Interface Libraries With each LSS implementation,

a set of primitives was developed in the programming
language of the LSS. These primitives could he used to
interface with the LSS on each machine. However,
they do not provide the uniform, language
independent agent interfaces supported on the SNTB.
For this reason, Communication Interface Libraries

(CILs) were developed as a part of the CSS.

Built upon the primitives available to each LSS, these
libraries provide exactly the same functionality for

using the CSS to every agent in the SNTB. There are
currently two libraries, one in Common LISP (LCIL)
and one in C (CCIL), although a CIL can be easily

developed for any language available on a machine as
long as the language interface to the operating system
and LSS primitives is also available.

The CILs primary goal is to provide a uniform and
portable interface between each agent and the LSS.

The CILs however, also provide the additional
capability for hiding the details of message transfer
from the agent; multiple destinations in message send
operations; and local error and consistency checking.

In summary, the CSS provides a uniform interface to
its client processes, regardless of the machine the

client is executing on. This uniformity promotes
modular client development and portability of
software where, in many cases, software is source code
compatible across a few of the different machines in
the SNTB. Such capabilities allow greater flexibility of

experimentation in distributed and parallel
processing. The paradigm of the CSS is used for both
intra-machine and inter-machine communication

between agents since it does not limit an application to
any one data structure or communication format. The
form and content of messages are left to the
application, as is the way the messages themselves are
used.

Executive Controller

The Executive Controller (EC) provides the user with a
single interface to the entire testbed, thus treating the

SNTB as a virtual computer. The EC allows the user to
easily configure a distributed application. It is
designed to facilitate the process of controlling and
experimenting with distributed applications on the
testbed. As such, it can maintain information about

SNTB computers, application agents and the
communications within an application.

The EC is an application agent designed for a special
purpose in the SNTB. It derives all its capabilities from

self contained knowledge and the CSS, and is given no
system level privileges that are not also available to
other agents through the CSS. Its purpose is to provide
several functions commonly required in distributed
applications so that new applications can be quickly
and easily developed on the SNTB. This frees the
programmer to concentrate on details of the
application rather than on details of the SNTB.

The EC provides two different models of computation
that can be used: a graphics oriented dataflow model,
and a functional configuration language, LISP+. For
both models, the programmer must supply information
about each agent in the application. This information
includes agent input and output behavior, startup

parameters, host computer, and data dependencies.
The EC uses this information when starting up agents
and configuring the communication channels
between them.

Data Flow Model The Executive Controller provides
a set of graphical, user oriented tools for
experimenting with a distributed application from a
data flow view point. The user can easily configure an
application, activate and deactivate agents and specify
data routings with the aid of mouse sensitive icons
while the entire application agent suite is displayed on
the screen. Mouse sensitive objects on the display

allow the user to selectively view agent I/O
information, equivalencies and host processors.

The user configures an application by connecting data
paths between agents on the screen. Assuming the I/O
behavior of the agents is compatible, the EC will define

all necessary io-ids and communication channels
through the CSS. This process is transparent to the
user. Control. functions such as conditionals are

handled by special user control agents designed for

that purpose.

For example, a single detection agent may operate on
multiple resolutions of imagery, while a subsequent
clustering agent may be specific to high resolution.
Under the data flow model, the user would have to

provide a special agent that directed the data
according to the imagery resolution. This agent would

have a single input and two outputs. Its logic would be
very simple: IF (data from high resolution imagery)
THEN (send data to output A) ELSE (send data to output
B).

Once the application is configured it may be executed.
During execution, the EC will collect and display
various status information such as individual agent
execution times and processing advancement.
Additionally, inter-agent messages and intermediate
results are saved for later examination. This

information is available to the user through the mouse
sensitive icons.

The data flow model is useful for experimenting with

distributed systems because of its graphical interface,
but its limitations soon become exceeded. For example,
it requires the network configuration to be static once
execution has begun. Many distributed and parallel
applications must dynamically reconfigure their
communication channels in response to external
stimuli (data) or intermediate results. Although this
could be handled by using special control agents as
discussed above, it would rapidly become cumbersome
and awkward.

LISP+ The Executive Controller provides another
means to configure and control a distributed
application on the SNTB. This method allows the SNTB

to be programmed as a virtual computer through the
functional language LISP+. LISP+ is a powerful
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command interpreter that allows individual agents to
be treated as functions in a programming language.
Through LISP+, the EC shields the programmer from
operational knowledge such as agent host identity,
number of agent instances, message passing, and
global variables by providing the required scheduling
and routing operations.

LISP+ is designed as a language for configuring
applications on the SNTB. It is implemented by adding
functions such as defvar+, let+ and serf+ to Common
LISP. These additional functions are simply special
versions of the standard implementation that use the
global memory variables of the CSS instead of local
variables. Additionally, when LISP+ executes a
function that is really an agent, the EC first performs
the desired communications routing. As in the data
flow model, these operations arc transparent to the
programmer.

In LISP+, conditional control is handled by the

constructs of the Common LISP language. Special
control agents, as in the data flow model, are not
needed. This further allows the user to concentrate on
the application problem rather than on control.

The EC also maintains an agenda where program
fragments can be executed. Thus, an application can
have a special agent (for example, and inference
agent) that generates program fragments and places
them on the agenda for execution. This gives an
application the capability to dynamically respond to its
data environment or to multiple competing demands
placed upon it.

Network Vision

The testbed contains several Symbolics and SUN
Workstations that can be used for display of
intermediate processing results and other
information. One example might display imagery and
associated terrain data overlays, as well as the results
of image understanding operations all on a single
display. Since this processing will likely be performed
on different machines in the SNTB, Network Vision
(NV) software was developed to direct all results to a
single display of the virtual computer.

Network Vision is composed of a server and a set of
libraries that operates in much the same way as a
remote windowing system such as X-windows, but at a
much "higher" level. The purpose of the NV software
is to provide the application developer with basic
image display routines used to display information
from agents running on any computer in the SNTB.
Current capabilities include operations such as
window creation, deletion, and management, as well as
image, terrain, detection and cluster display, and some
simple graphics capabilities.

The NV server is an autonomous agent and performs
all of the window management functions for agents in
the application. Communication between an
application agent and the server takes place via
messages through the CSS. Agents do not directly
communicate with the NV server, but instead use the
NV library calls.

The NV library functions are used by the application
agents. Currently a library exists for the Common
LISP and C programming languages. The agent
callable functions are written in a flexible keyword
style to permit the use of default argument values.
Each request is checked for simple errors, reformatted
for the NV server and passed through the CSS. The NV
system may be used in a synchronous manner, where
the calling process suspends until the requested
operation has been acknowledged; or display
commands may be executed asynchronously, in which
case no reply is sent.

All actions performed by the NV server currently take
place relative to a window on the Symbolics color
screen or SUN Workstation. Multiple display windows
are managed. Initial placement of windows is

determined by other windows which are currently
active on the screen. The user can subsequently
reposition the windows with the normal move/reshape
mouse-based operations. The display windows are
identified to the user by an agent name or other
description.

SUMMARY

We have described the heterogeneous computer
network and integrated software of the DARPA Sensor
National Testbed. Network computers include several
yon Neumann architectures, a SIMD and a MIMD
machine, and a linear systolic array. Upon this
foundation, SAIC has built the distributed

asynchronous communications, control and display
software required to integrate these diverse parallel
architectures into a flexible testbed.

Application programming on the SNTB is a three stage
process. First the application agents are developed on
the individual machines in one of the standard

programming languages available. Here the
programmer is free to use any debugging tools
provided on the local operating system to help in
agent development. Second, agents are interfaced
with the CSS. In the software, this is simply a matter of

using functions for receiving and sending
information. Third, the agents are integrated into the
distributed application. The Executive Controller and

Network Vision are tools available during this stage.

Once a number of agents are developed through the
first two stages, they can be rapidly combined to form

different applications. In this way, the SNTB aids in
the rapid prototyping of new applications from
existing application agents. Thus, the SNTB supports
experimenting with and rapid prototyping of
distributed and parallel applications.

Although the testbed was initially developed for
complex image exploitation tasks, it provides a general
purpose programming environment for distributed

and parallel applications. This environment permits
the user to construct multiple application agent level
execution scenarios without requiring him to have

detailed knowledge of the system testbed layers,
thereby improving programmer productivity.
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EFFICIENT MANAGEMENT OF SENSORY DATA FOR AN
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ABSTRACT

Today's Remotely Operated Vehicles (ROVs) provide sensory
data, so that the control of the underwater vehicle can be

managed by an operator on the surface ship. To remove the

operator from the control loop, creating a fully autonomous
vehicle (untethered), requires new and improved sensor
configurations and sensor post-processing techniques. In an
autonomous vehicle, multielemental array sonar sensors are
exploited to sense the surrounding environment, so that a 3-D
obstacle surface can be reconstructed in real-time. The sensor

hardware placed strategically around the vehicle provides
forward and peripheral fields of view of the surrounding
environment, in terms of massive amounts of data. Because of
the limited space available on the submersible, obsolete sensor
information must be discarded. This paper describes a

systematic method of managing sensor information, utilizing a
bit serial systolic array, so that irrelevant data storage and
archival are rendered unnecessary.

Keywords: Systolic Arrays, Underwater Sensing, Obstacle
Avoidance, Object Identification, Sonar, Lidar, Multisensor
Fusion, Automated Sensing.

SUBMERSIBLES

Manned oceanic submersibles of the early 1960's have matured

into free-swimming and bottom-crawling Remotely Operated
Vehicles (ROVs) with significant advances in operational
efficiency in the hazardous undersea environments. The ability
to execute deep sea exploration missions will have a positive
impact on the industrial and military strength of a nation. The
cost of manned exploration has been prohibitive, similar to that
of space exploration, and large investments in this area have not
been economically justifiable, with the exception of limited

advances made for oil and natural gas explorations, at depths of
6000 feet. The parallel advances in mobile robotics, undersea

sensors and processing, and, artificial intelligence and digital
computing, have provided a technical base for the research and

development of advanced teleoperated underwater vehicles and
Autonomous Underwater Vehicles (AUVs).

The primary focus of contemporary autonomous vehicular
research has been dichotomized into sensing and control. In

terms of Draper's informator-effector model (Ref. 3), Figure 1
shows a three-tier control architecture for an AUV. The

informator in this architecture consists of a pre-informator with
apriori information for the autonomous system, and the in-situ
informator deals with current data and real-time path planning.
The effector is the physical real-time servo-controller for the

actuators and propulsion system. The requirements for control
of manned spacecraft or deep space probes are easier to predict,
primarily because space transit is resistance free, and also,
because on-board computers perform the critical function of
monitoring forces affecting the ship and its attitude control.

Contrarily, a six degree-of-freedom AUV requires a controller
that can adapt to the action-reaction nature of the fluid medium

engulfing it, and continually compensate for deviations from the

desired trajectory due to hydrodynamic forces. This generates
the need for a more frequent sensing of the surrounding obstacle
environment, to allow for sensor post-processing delays and
latencies of an autonomous controller and its servocontrollers.

This paper deals with autonomous obstacle avoidance and object
identification for AUVs, which constitutes the autonomous

"informator," that is indespensible for efficient route planning
and its plan execution.

NECESSITY FOR MULTISENSOR FUSION

Multisensor fusion is the process by which specific unified data
relating to an entity, the fusion entity, is obtained by the
integration of information from multiple sensors. The fusion
entity for the AUV is a reconstructed model of the 3-D world

geometry of the obstacles in its vicinity. The typical model
update rate is estimated to be 500 milliseconds or less for an
AUV transit velocity of 2 to 8 knots. The number of sensor

elements on the submersible could be up to 4000 elements, and
these would supply meaningful range, azimuth, and elevation
three-tuples after post-processing throughput delays. The fusion
process commences to reconstruct a 3-D world geometry model
of the obstacle surfaces that intrude the approximately 8000
cubic feet that encompass the mobile submersible. This estimate

is based on a sensor ranging maxima of 2000 feet. This occurs
after the sensor post-processors have range, azimuth, and

elevation data from each sensor element suitably ingested and
collated. This type of sensor fusion is termed as direct,

autonomous, or local fusion, and is radically different from
classic global fusion. Typically, global fusion deals with a
battlefield scenario, where the fusion entity is in the form of
intelligence reports for human perusal and analysis, and the

sensors are widely distributed over different mobile or stationary
platforms.

The real-time fusion algorithms on the Martin Marietta ASAP TM
(Advanced Systolic Array Processor) (Ref. 4) spatio-temporally

fuse 3-D range data from multiple and disparate types of
sensors (Sonar/Lidar) into a cogently compressed world

geometr_, of surfaces of avoidance; these algorithms and
ASAP Twt together, comprise the Fusion Processor. Further,

the systolic array updates this surface of avoidance geometry
incrementally, based on either sensor updates or compensations

due to ship movement. The "systolic" action of the ASAP TM

CH2649-2/89/0000/0303501.00 © 1988 IEEE
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providesa persistence to the reconstructed world geometry, as it
is viewed from a mobile submersible. The key issue m the
obstacle and terrain avoidance functionality is the ability of the

Fusion Processor to represent large amounts of range data, and
provide the AUV controller with an updated report, within 100
to 500 milliseconds, detailing obstacle surfaces that must be
avoided. Additionally, motion compensation for six degrees-of-
freedom, especially to adjust for the vehicle's crab angle (actual
path resulting from cross-currents), must be made at least every
100 milliseconds based on navigation fixes. This is also
necessary during sensor-blackout down times resulting from the
send-receive time periods of sensor operation.

The Martin Marietta fusion algorithms for the bit-serial

ASAP TM are designed to successfully handle the spatio-

temporal fusion for different densities of 3-D sparse image data
in the required short durations.

SYSTEM ARCHITECTURE

The entire electromagnetic (EM) spectrum is minimally suited for
underwater sensing, because EM waves have high attenuations

at high source powers, therefore, sensing underwater is
predominantly acoustic. Maximum ranging distances of such
sensors is small, with the exception of blue-green light of 480-

580 nanometers. Light of these wavelengths can penetrate
around a hundred meters, while high frequency (200 KHz)

active acoustic ranging devices can range up to one thousand
meters. Even though underwater laser devices suffer from
transmissivity problems in turbid waters, they have the potential
of acquiring images that are crisper that television,.for ten times

the range of camera imaging. However, these Lidar (Light
Detection And Ranging) sensors are non-operational at ranges
less that ten meters, so, cameras can be deployed for up to ten

meters. The multi-beam sonar arrays can range up to one
thousand meters with decreasing resolutions. Consequently, the
front-end to an autonomous intelligent controller requires the use

of range overlapped Lidar and Sonar devices of varying range

maximas and resolutions. The sensor post-processors and
fusion processor algorithmically extract and reconstruct a 3-D
obstacle world model from data streams of successive swaths of

multiple sensors strategically placed around the AUV. See

Figure 2, for a forward looking overlapped sensor suite and a
hardware block schematic of an autonomous sensing system.

The system architecture, shown in Figure 3, indicates how the
systolic array receives ingested and collated data from the sensor
post-processors and compresses it into a world model. This

iconoclastic method departs from the conventional approach of
incorporating large peripheral memories, such as disks, since the
subsequent archival and data management from several such
storages for several sensors results in a non-convergent
processing scenario. Such a radically new approach to
multisensor fusion, requires a single disk drive with limited

memory, for the purposes of tagging analyzed symbolic
versions of high resolution imaging processes, that are initiated

by the low resolution world model, which resides in the systolic
array. Such high resolution imaging processes are carried out in
the high resolution sensor post-processor, comprising highly
reconfigurable Datacube (Ref.2) hardware.

WORLD MODEL

Restricted space on the AUV makes it infeasible to carry mass
storage systems onboard with large amounts of data, that must
further be archived and processed on demand. Moreover,
peripheral storage data archival would scarcely lead to real-time

performance, due to latency and I/O delays. Consequently,
sensor data storage is mostly high speed random access, and is

directly accessible by the processing elements (PEs) of the
systolic array. This requirement leads to the need for a world
model that stores only relevant information to the task at hand,
and a world model that compresses its data storage to a
minimum size. To achieve this, the world model stores, at bit
level, the occupancy state of the environment surrounding the
AUV as unknown, occupied, or empty. The task at hand is to
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utilize sensor data and to reconstruct the three dimensional

spatial occupancy of the real world around the submersible. The
volume of space represented by the world model is defined in
terms of the submersible's position, so that the monitored
volume always surrounds the submersible. Therefore, the total

storage required can be fixed, and sensor data that no longer
occupies the current volume represented is deleted from the

world model. Deleted data can always be resensed, if the region
it represents is revisited.

Processing required to generate and maintain this world model is
triggered by sensor data, in the form of range, azimuth, and
elevation three-tuples, tagged with vehicle position, to represent
occupied and empty volumes around the AUV. These processes

must be accomplished in real-time, since a moving vehicle
cannot afford to continue storing outdated sensor information.

Since the processing required is massive, and is characterized by
repetitive operations applied to different data, a single instruction
multiple data (SIMD) parallel computer architecture is apt for this
application. System constraints, such as physical size
limitations, data size of the compressed world model, and
associated computational load per unit volume sensed, indicate

that the Martin Mari¢tta Advanced Systolic Array Processor

(ASAP TM) is a particularly suitable parallel processor for this

application.

SYSTOLIC ARRAY FOR A FUSION PROCESSOR

The Martin Marietta Advanced Systolic Array Processor

(ASAP TM) is a SIMD array processing unit, composed of 16
single bit processing cells. The cells are arranged in a 4 x 4
array with the processors physically connected to form a mesh.

Each processor in the mesh can communicate directly with its

north, south, east, and west neighbors, and multiple ASAP TM
chips can be configured to form larger arrays.

The ASAP TM is a micro-coded machine with programmable
micro-code control for the array of PEs and the input/output

modules. The on-chip local memory in each PE provides the
high speed random access data storage required by the
application. Each processor element can directly access
additional RAM space, as needed. Also, the micro-code word
size is ample to provide the opportunity for tow level parallelism
within a processing element itself.

ALGORITHM OVERVIEW

The data store in the Fusion Processor is distributed and stored

among the PEs. The sensor data ingest process receives sensor
data, then, with vehicle position and orientation information, it is
converted into a set of empty and occupied volumes
corresponding to the vehicle's frame of reference. The result of
this process is a sensor data store that represents three
dimensional spatial occupancy, as perceived through the sensors
from the vehicle's frame of reference.

When the vehicle's current position and orientation indicate the
need to motion compensate, the following algorithm runs on
each processor of the SIMD machine. This results in an updated
sensor data store, in which all sensor data is relative to the
vehicle's frame of reference.

for each occupancy state value per processor
old_position <-- occupancy state position in world

model

new_position <-- 3-D coordinate transformation

on old_position
if (new_position is within world model)

* then occupancy state @new_position <--

occupancy state @old_position
delete occupancy state @old_position

endif
endfor

Since the occupancy states are distributed among the PEs, step *
may require interprocessor communication. The processing
required is directly proportional to the distance between the

.processors, which is in terms of the processor mesh
interconnect. Processor array sizes ranging from (16 x 16) to
(32 x 32) accommodate the application adequately, and result in

tolerable interprocessor communication overheads. Larger array
sizes correspondingly have increasing communication overheads
rendering the application non-real-time; these overheads can be

alleviated by a hypercube interprocessor interconnect, such as
that found on the Connection Machine (Ref. 6).

INTELLIGENT SENSING

In a mobile robot, such as an AUV, the information directly
acquired by the sensing system rarely has an adequate
representation of cognitive relationships defining the contextual

structure within the environment, due to the impracticality of
storage requirements. To reconstruct an adequate representation
of the world surrounding the vehicle, both high and low
resolution sensor data need to be judiciously analyzed, so that
the related cognitive overhead is alleviated by efficient cueing
and localizing of potential obstacles. This cueing efficiency is a
function of the toggling capability between the high and low
resolution sensors, afforded by the Fusion Processor (see
section 3 & 4). Due to the incorporation of multiple sensors to
achieve such cueing efficiencies, there is a resultant
overwhelming quantity of sensor data that must be processed
before it can be made useful for maneuvering commands.

Two types of intelligent sensing applications that are currently
being investigated are Obstacle Avoidance and Object
Identification, with an attempt to eliminate the need for involved

scene analyses of all obstacles within a field of view (see Figure
4). Obstacle Avoidance is the process of scanning the
surrounding environment for any path obstruction without shape
descrimination, and determining the best route around the
obstructions to arrive at the final endpoint. Such Obstacle

Avoidance functionalities can be achieved primarily by low

resolution sonar sensors, and if necessary tertiarily by high
resolution Lidar sensors. Object Identification is the process by
which localized obstacles are analyzed for eventual
identification, with the help of data from high resolution
sensors, such as Lidars, and other apriori data constructs stored
in the sensor post-processor memory.

A decision mechanism for prioritizing between Obstacle

Avoidance or Object Identification processes is imperative for
autonomous sensing; for which Artificial Intelligence is a
suitable candidate. Even though the incorporation of cognitive

knowledge is essential to these types of decision making
processes, there are practical deficiencies in relying solely on
Artificial Intelligence concepts for a complete solution to the
obstacle avoidance and object identification problem.
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Eventually,a "context cueing" performed solely by Artificial
Intelligence techniques normally suffers from a severe lack of

real-time data that further improves context definition, or suffers
from a need to post-process large quantities of data, so that it can
be utilized for context analysis; a process that invariably abounds
for an autonomous sensing system aboard a mobile robot. For
example, in Computer Vision and Image Processing, most of the
research has been confined to the use of one type of sensor,
such as a camera, for all data input excluding apriori data, and
the responsibility for the recognition process depends entirely on

the reasoning mechanism used, and not on the efficient
management of the data being stored; this has been a serious
shortcoming for object identification. This paper explores
schemes for more accountable and efficient data management,
rather that open-ended Artificial Intelligent methods that could
accommodate numerous instances, but also need recoding for

every previously unaccountable instance that subsequently needs
to be included. Conventional database management also does
not apply, since this is an autonomous system with no human in
the loop. Consequently, radical data management methods,
such as described in Section 3, need to be investigated.

To further explore the issues concerning efficient data
management of high resolution data, it is necessary to look at
typical data rates. The sensor information is sent from the
sensor to the post-processing computer memory at a rate of

thirty frames per second. Typically, high resolution sensor data
being transmitted comprises a stream of image frames of 512 x
512 pixels each. Looking at Figure 5, storing all the high
resolution images at every point in the autonomous vehicle's
trajectory is not only unnecessary, but also impractical. The
amount of data that would be stored would overflow any

onboard computer memory. To eliminate this overflow of data,
selected regions in the surrounding environment are chosen as
candidates for high resolution sensing, by the triggering derived
from the low resolution sensing system. The sensor pointing

angles are used to designate the pan and tilt mechanisms of the

high resolution sensors, and data acquisition is triggered. From
the real-time analysis of the packets of such consecutive
of data, a condensed symbolic contextual output as a prolmblc
"object" is stored in another section of memory, with a tagged
association to the low resolution data "obstacle" source in the

Fusion Processor. Each time this data analysis occurs, the

transmitted high resolution data stored in memory is then
condensed to occupy a smaller quantity of memory in a different
area of the disk. Therefore, the disk space that was used for
data ingest and analysis can be overwritten with new data. In
the interim, most of the disk space can be continually reused
with new sensor data. This reusability of limited disk space is
imperative, in a mobile autonomous system. The usually
involved Computer Vision task is thus rendered as an

"intelligent" scratch-pad memory consuming task, and image
data archival overheads are considerably reduced.

Succinctly stated, for an autonomous system, such as an
underwater vehicle, sonar array data is considered low

resolution information that is exploited for the representation of a
model of the surrounding environment. Based on hand-offs

from low resolution information, the appropriate assignment of
pointing angles is derived, and the high resolution information
can now be acquired through camera or Lidar sensors.
Appropriate pointing angles best achieve the robustness of a

multisensor system, and achieve adequate data gathering
efficiencies for an autonomous sensing system of a mobile

robotic vehicle. An Artificial Intelligence-based decision
mechanism allocates sensors and enables triggering between the
high and low resolution sensors. Additionally, key events that
occur randomly during vehicle maneuvers contribute to sensor
prioritization, due to the decision mechanisms. Such methods
reduce the need for the construction of a global database.

CONCLUSION

Systolic arrays provide a significant advantage to multisensor
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Figure 4. Obstacle Avoidance and Object

Identification for Autonomous Vehicles

307



ONBOARD . r 1 ........... -:;:

 sioN .'""i i
PROCESSOR ,'--".... _ ..... ;"

(SYSTOLIC ARRAY) i ..,_V i /.."

P_,o_,,

AUTONOMOUS ". "..." '. .....---" "' "" _ '-'_

VEHICLE " _'-" " ""

'.. PA 2

X ......2i',,
',,

¥ .................. @ / ¢,- ................. J

PA
3

..........)..)jo '1 ,, *

[.../,::..:<-,:

v, o ..............

", :::::"i':,",
v .................. #

fusion research. Not only do the massive number of processors
of an array accomplish repetitive and similar processing for
numerous sensing elements simultaneously, but their mesh

connectedness also promotes implicit data associativity without
explicit software allocations. Eventually, autonomous vehicles
will need to be equipped with smart skins, comprising
processing-sensor arrays, that feed into a massively parallel data
fusion association center. The incorporation of multiple systolic
arrays as sensor post-processing firmware will considerably

advance the development of sensory interactive systems for
autonomous mobile robotics in the near future.
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SIMULATIONS OF CONPOSIT,
A SUPRA-CONNECTIONIST ARCHITECTURE FOR COMMONSENSE REASONING

John A. Barnden
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Box 3CRL, Las Cruces, NM 88003.

ABSTRACT

A computational architecture called "Conposit" is outlined.

Conposit manipulates very-short-term complex symbolic

data structures of types that are useful in high-level cogni-

tive tasks such as commonsense reasoning, planning, and

natural language understanding. Conposit can be straightfor-

wardly implemented as a large neural/connectionist network,

and therefore provides a way of bridging the gap between

high-level cognitive information processing and neural net-

works. Conposit's data structures are, essentially, temporary

configurations of symbol occurrences in a 2D array of regis-

ters. Each register is implementable as a neural subnetwork

whose activation pattern realizes the symbol occurrence. The

data structures are manipulated by condition-action rules that

are realizable as further neural subnetworks attached to the

array. In simulations, Conposit has performed symbolic pro-

cessing of types previously found difficult for

connectionist/neural networks. This paper concentrates on a

version of Conposit, simulated on the Massively Parallel Pro-

cessor, embodying core aspects of Johnson-Laird's mental

model theory of human syllogistic reasoning. This version

illustrates Conposit's power and flexibility, which arises from

unusual data-structure encoding techniques called "Relative-

Position Encoding" and "Pattern-Similarity Association"

Keywords: Cognitive Modeling, Commonsense Reasoning,

Connectionism, Neural Network, Knowledge l_epresentation,

Syllogism, Mental Model.

INTRODUCTION

The challenge presented to connectionism by high-level cog-
nitive processing -- which includes commonsense reason-

ing, planning, and some aspects of natural language under-
standing -- is gaining increasing recognition. The main

technical difficulties are listed in Refs. 1-4, 7, 8, and else-

where in the connectionist literature, and include the well-

known variable-binding problem and the problem of account-
ing for complex, temporary, novel data structures.

Ref. 6 reports experiments with a version of Conposit

that incorporates production rules for commonsense reason-

ing, one of which can be paraphrased as

PRECEDING PAGE BLANK NOT FILMED

IF: a person X loves a person Y who

loves a person Z (different from X)

THEN: X is jealous of Z.

This exercises Conposit's handling of variable bindings.

The version of Conposit described below engages in a

particular type of commonsense reasoning, namely syllogistic

reasoning, by embodying some core aspects of the Johnson-

Laird's "mental model" theory (Refs. 9-12). The main goal

of the work was to verify that the techniques developed for

other types of processing in Conposit (Refs. 4-7) were flexi-

ble enough to be extended in a natural way to the distinctly

different type of processing required by the mental model

theory -- and in fact no new features have had to be added.

Conposit is currently concerned only with short-term

processing: there is no adaptive learning capability at present,

and long-term memory consists entirely of the fixed set of

condition-action rules (but see the suggestions in Refs. 4,7

for a long-term memory of data structures). It is closer to the

"localist" than to the "distributed" end of the spectrum of

connectionist systems.

BRIEF SKETCH OF CONPOSIT

Conposit is currently defined as a computational architecture

whose components can be straightforwardly implemented in

connectionist terms. Details are reported in Ref. 7 (or Ref. 4

for an earlier formulation).

In Conposit, a "Relative-Position Encoding" technique

is used as the foundation for complex short-term data struc-

tures. These reside in a 32x32 array of registers. This array

is called the configuration matrix (CM). The values in

registers are usually rapidly changing. Each register can be

implemented as a small connectionist subnet that holds a

dynamically changing activity pattern implementing the

register's value, and that is connected to neighboring regis-

ters and other components.

A register's value consists of a "symbol" and a vector

of binary "highlighting flag" values. A symbol may have a

specific representational function, such as denoting a particu-

lar person or a particular type of relationship among people.

Any symbol can be placed in any register, and all registers
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have the same set of highlighting flags. Temporary struc-

ture is encoded mainly in the adjacency relationships among

values in CM registers. For instance, if a register contains

a symbol denoting the class of all possible situations in

which one person loves another, and has a certain highlight-

ing flag in the ON state, then any adjacent register that has

another specific highlighting flag ON is deemed to represent,

temporarily, a specific loving situation.

See, for example, the representation of the proposition

that John loves Mary in the upper portion of Figure 1, which

shows an 8 x 8 region of the CM.

llIUUUIIlII

Figure 1. "Bill believes that John loves Mary."

Each square stands for a register, and capitalized words and

letters stand for symbols. The word JOHN stands for a

symbol denoting a particular person John known to the sys-

tem. The LOVE symbol denotes the class of all conceivable

loving situations. The L symbol may be ignored for now.

The registers with no symbol shown contain a null symbol

that does not denote anything. The denotations of symbols

are considered to be borrowed by the registers they occur in

at any moment: a register containing a non-null symbol

denotes what that symbol denotes. Hence, in the figure there

are registers that -- temporarily -- denote John, Mary and

the love-situations class. The other signs within squares

show ON states of highlighting flags, which in this example

are all referred to by the names of colors. An 'r' indicates

that the register is red-highlighted (i.e. the red flag is

currently on); similarly 'g' for green, heart sign for white,

and spade sign for black. One important function for

highlighting is to help specify the representational relation-

ships temporarily holding between adjacent registers. For

instance, a white-highlighted register is deemed to denote a

member of the class denoted by any neighboring black-

312

highlighted register. Therefore the upper white register in

the figure denotes some love situation. Further, if a register

denotes a love situation, then any adjacent red register (here,

the one containing JOHN) denotes the "lover" and any adja-

cent green one (here, the one containing MARY) denotes the

"lovee". Note that the absolute positions of the symbols

and highlighting states are irrelevant, as are the directions of

the adjacency relationships.

Complex data structures can be split up into pieces by a

shared-symbol association technique. Shared-symbol associ-

ation relies on the stipulation that two registers containing

the same symbol are considered to represent the same entity.

The real power comes from the sharing of variable-like

"unassigned symbols". By appearing within a data struc-

ture, an unassigned symbol can be viewed as having a tem-

porary denotation dictated by the role of the symbol in the

structure. The letter 'L' in Figure 1 indicates an unassigned

symbol, which temporarily comes to name the hypothetical

loving situation by being in the white-highlighted register in

the loving-subconfiguration. The Figure shows how the pro-

position that Bill believes that John loves Mary can be

encoded by two separate register-value subconfigurations

that are linked by the sharing of the L symbol.

In this shared-symbol association technique, two or

more registers contain the same symbol, and to that extent

contain similar activity patterns at the connectionist level of

description. The notion of similarity here is simple and all-

or-none (i.e. not graded), but other versions of the technique

could be based on more sophisticated, and perhaps graded,

notions of similarity of connectionist activity patterns.

Shared-symbol association is thus a simple instance of the

class of "Pattern-Similarity Association" techniques, which

are discussed briefly in Ref. 6.

The processing of the short-term data structures in the

CM is performed by internal "circuitry" (i.e. system com-

ponents that are mapped straightforwardly into a connection-

ist implementation) mediating mainly neighbor-neighbor

interaction within the CM, and external "circuitry" outside

the CM but attached to it. The external circuitry embodies

"hardwired" condition-action processing rules. Rules can

detect particular configurations of symbols and highlighting

states in the CM by means of highly parallel detection circui-

try that involves further two-dimensional register arrays iso-

morphic to the CM (Refs. 4,7), and can in response send

complex sequences of signals to the CM. A rule can

embody conditionals testing the CM state, loops, and a sim-

ple form of non-recursive routine calling. A rule operates

on the CM in a highly SIMD, register-local, parallel fashion:

each action on the CM is performed by sending to each

register an identical "command signal" in parallel, whereu-

pon different registers change state differently, according to

their own current states and those of their immediate neigh-
bors.

A command signal can have one of a number of effects,

such as making each register that has specified highlighting

flags ON or OFF change the states of some flags, and/or

accept a new symbol value, and/or broadcast its symbol value



totheotherregisters(viaacentralrelaystation attached to

the CM and called the Parallel Distributor). It is also possi-

ble for a signal only to have an effect on a single, randomly

chosen register with specified highlighting, rather than on

each such register. A command signal may also require that,

for a register to respond, either some or all of its neighboring

registers be in a specified highlighting state. Refs. 4, 7 detail

how the signals can be used to process data structures, and,

in particular, to find free space for, and then create, new data
structures in the CM.

A tentative mapping of the model to connectionist net-

works that appear to be biologically reasonable is sketched in

Refs. 4, 7. In particular, it is suggested that the CM could be

realized as a localized group of thin cortical columns. It is

this suggestion that motivates the choice of dimension two

and size 32x32 for the CM (see Ref. 4). A non-biological

version of the approach could be based on a CM of other
dimensions and sizes.

JOHNSON-LAIRD AND SYLLOGISMS

Consider the syllogism

Some chemists are beekeepers.

All beekeepers are householders.

Therefore, some chemists are householders.

To simplify a little, Johnson-Laird maintains that we make
such a syllogistic inference by constructing a mental model

of the form illustrated in Figure 2.

C = B = H

C = B = H

(C) {B) = (H)

{C) (H)

(H)

Figure 2. A Johnson-Laird syllogistic mental model.

This mental model is an abstract data structure made up of

"tokens" (shown by the capital letters) and identity links

between tokens (shown by the equality signs). There is an

arbitrarily selected number of tokens C standing for chemists.

An arbitrarily selected proper non-empty subset are related

by identity links to beekeeper tokens B, and all beekeeper
tokens are so linked to householder tokens H. The

parentheses in the figure indicate that the enclosed tokens are

optional. The conclusion that some chemists are household-

ers arises from noticing that some chemist tokens are linked

by chains of equality tokens to householder tokens. There is
much arbitrariness in the construction of a mental model.

For instance, the number of tokens in a particular model is

arbitrarily chosen, as is the number marked as optional.

There is also leeway in how the links are placed. The mental

model serves as a sort of internalized, highly abstract "exam-

ple" situation conforming to the premises of the English

syllogism. Naturally, the "conclusion" read off from a men-

tal model might merely be an artifact of the particular exam-

ple it embodies, and therefore be invalid. In response to this,

Johnson-Laird postulates that the system attempts to con-

struct several different mental models conforming to the

premises in an attempt to falsify any particular putative con-

clusion before outputing it. The attempted-falsification pro-

cess will fail in the present case, but should succeed if in the

above syllogism contained "some beekeepers" rather than

"all beekepers".

Johnson-Laird's theory is able to explain certain syl-

logistic preferences, difficulties and errors exhibited by

human subjects. He does not specify any implementation
of mental models in neural net terms.

JOHNSON-LAIRD SYLLOGISTIC REASONING IN

CONPOSIT

Conposit straightforwardly represents mental models, and

constructs them from propositional CM subconfigurations

that encode syllogism premises. I have not yet addressed

the following aspects of Johnson-Laird's approach: (i) the

understanding or generation of natural language; (ii) a

thorough attempted-falsification process -- the current Con-

posit is given the conclusion, and merely checks its validity

with a single model randomly generated from the premises;

or (iii) negative premises and conclusions ("no X are Y"

and "some X are not Y"), which require special representa-

tional and processing features. The correction of the last two

deficiencies is not difficult, however, and will be described

elsewhere.

Figure 3 shows the CM version of a syllogistic model

derived from the premises in the Section 3 syllogism. The

CHMS, BKRS and HHS symbols denote the classes of all

conceivable chemists, beekeepers and householders respec-

tively. The X1 to X7 are distinct unassigned symbols. Each

Johnson-Laird "person token" is implemented as a pair of

adjacent CM registers, one of which (the black one) tem-

porarily represents a class of person, and the other of which

(the white one, containing an Xi symbol) represents a partic-

ular though indefinite member of the class. (Recall the use

of white/black adjacent highlighting in the love-situation

representation in Figure 1). Each Xi symbol is thereby con-

sidered to denote a person for the time being. The Figure

shows the person tokens positioned in a regimented way, but

in the actual simulation they are randomly positioned in the

CM, and the white-highlighted register in each pair is a

random neighbor of the black register. The function of

Johnson-Laird's identity links is taken over by symbol-

sharing, which is therefore being used for its standard func-

tion of making different CM registers represent the same

thing. In the figure an's' indicates special highlighting sig-

nifying that the token is optional.
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Figure 3. CM version of a syllogistic mental model.

The mental model in Figure 3 is constructed from

representations, analogous to the one for John loving Mary in

Figure 1, of the two premises of the syllogism. These prem-

ise representations are shown at the bottom left and bottom

middle of Figure 4. Conposit is also given a propositional

representation for the syllogism's conclusion (bottom right of

Figure 4) and checks that the mental model is consistent with

this given conclusion. The OLAP and SUBC symbols denote

the classes of all conceivable class-overlap situations and

subclass situations respectively. The 1ST, 2ND and 3RD

symbols are arbitrary, distinct, unassigned symbols. None of

these five symbols is dedicated to syllogistic reasoning. The

registers containing 1ST denote the situation of chemists

overlapping with beekeepers (i.e. of some chemists being

beekeepers). The registers containing 2ND and 3RD are

analogously interpreted.

The construction of the mental model has two main

phases. A hardwired rule called Rule Some detects the

subconfiguration for the first premise (Figure 4, botttom left),

and constructs, in a another part of the CM, the chemist and

beekeeper tokens in Figure 3. (It creates randomly many

chemist tokens, six on average, then constructs beekeeper

tokens using the same unassigned symbols as in a random

subset of the chemist tokens, and, finally, randomly con-

structs three extra beekeeper tokens on average.) Another,

similar, rule called Rule_All detects the subconfiguration for

the second premise and constructs some householder tokens

with the same unassigned symbols as in the beekeeper

tokens, and then constructs some extra householder tokens.

Finally, Rule Some comes into play again by detecting the

subconfigurat]-on for the conclusion (bottom right of illustra-

tion) and checking that there is at least one chemist token

and householder token sharing a symbol. In cases where the

conclusion is invalid (such as in the amended Section 3
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Figure 4. The statement of the syllogism displayed in the text.

example), Conposit sometimes does and sometimes does not

construct a mental model consistent with the conclusion,

because of the randomness. It would be trivial to get Con-

posit to repeat the whole process in an attempt to randomly

alight on a falsifying model.

Rule_Some and Rule_All work with any classes in syllo-

gisms, not just the chemist, beekeeper and householder

classes. There is no replication of rule circuitry for the dif-

ferent classes. Achievement of this effect in a more standard

type of connectionist system would cause considerable

difficulty.

Ref. 4 describes versions of Rule Some and Rule All in

complete detail. That paper also describes the rule

NoteNext that fires three times, once in response to each of

the propositional CM subconfigurations at the top of Figure

4. These state the order in which the premise

subconfigurations are to be considered. (The THEN symbol

denotes the class of all conceivable succession situations.)

Note Next moves highlighting of two special sorts around in

the CM with the result that Rule_Some and Rule_All are trig-

gered in the right order.

Rule_Some checks the conclusion in our example as fol-

lows. It marks all the white registers in chemist and house-

holder tokens with special highlighting flags

"member_of_classl" and "member of class2" respec-

tively. Part of this marking process is to spread such

highlighting to all registers with the same symbol. All that is

left to do is to detect the presence of some register marked
with both "member of classl" and "member of class2".

We have here a traditional marker passing process, but work-

ing over highly temporary data structures.

314



Simulation Results

Elapsed simulated time depends on values for signal-travel

distances, signal-travel speeds, and combinatorial-logic

delays (e.g. within CM registers) that are based on broad

assumptions about how Conposit could be realized as a bio-

logically reasonable neural net (Ref. 4), rather than just as an

abstract connectionist net. The main parameter values are as
follows:

distance between rule circuitry and the CM: 50mm

long distance transmission speed: 10mm/ms

basic time for register's response to a signal: 10ms

overhead of random register selection: 5ms

The values of the last two parameters listed appeal to fast

non-spike inter-neural communication in local circuits (see

Ref. 4 for a discussion). Notice the long distance of 5 cen-

timeters between CM and rule circuitry. The 10mm/ms

value appears to be about the maximum speed for

transmisison of neural impulses over long distances in cortex.

The following average timings were observed over one

set of twelve experiments conducted (one syllogism per

experiment).

processing of a whole syllogism 2526ms

detection phase of a rule 98ms
a Note Next execution 76ms

a Rule_Some�All execution on first premise 905ms

a Rule_Some�All execution on second premise 602ms
a Rule Some�All execution on conclusion 180ms

CONCLUSION

The average syllogism-processing time of about 2.5 seconds

seems small enough to be psychologically realistic. It is hard

to discern timings for human syllogistic reasoning in

Johnson-Laird's experimental reports, partly because of the

need for a natural language understanding phase. The experi-

ments all appear to have allowed a time much longer than

two and a half seconds. E.g. in the experiments of Ref. 11

subjects were given either ten seconds or as long as they

liked. According to figures of Bara (personal communica-

tion), the faster human subjects work a simple syllogism in a

time comparable to the two and a half seconds needed by

Conposit.)

It is probably not biologically plausible for rules like

Rule_Some and Rule_All to be hardwired as in the current

Conposit version, partly because of the difficulty of seeing

how the rule circuitry could be developed on the basis of

experience. However, the basic processing techniques

developed will be central also in more realistic systems in

which a high-level production rule such as RuleSome would

itself be a data structure in one of a possibly large set of

CMs (Refs. 4,7). In such systems, which are under investiga-

tion, individual rule execution could be faster because of

faster subconfiguration creation, and because there would be

the possibility of massive parallelism among rules in dif-
ferent CMs.

The power and flexibility of Conposit arises from its

Relative-Position Encoding and Pattern-Similarity

Association techniques for encoding data structures. The_

techniques are unusual for connectionism, although the are

loosely related to methods found elsewhere (see Ref. 6).
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One-Dimensional Bin Packing Problem
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ABSTRACT

This paper presents a parallel bin packing algorithm

for packing N _ n 2 pieces in a massively parallel com-
puting environment of n 2 processors operating in
SIMD mode. A new heuristic approach is developed

that improves packing efficiency by a careful structur-

ing of the input. Results are compared with parallel
versions of the traditional Next Fit and First Fit pack-

ing algorithms.

time (Ref. 4). It is therefore important to choose an ap-

propriate representation for both the pieces and the

bins. The algorithm should distribute the pieces to the
processors in such a manner that both the movement of

pieces between processors and the packing time for the

bins is minimized. The grid topology that we use in-
creases the packing efficiency while decreasing the
amount of internode communication that is neces-

sary.

Keywords: Bin packing, SIMD Algorithms, Parallel

Processing, Analysis of Algorithms

INTRODUCTION

Bin packing is an optimization problem that plays an
important role in many combinatorial problems exist-

ing in the areas of computer science and operations re-
search (Ref. 3). In this problem, a set of n objects hav-

ing weights between 0 and 1 is placed in a set of unit
bins so as to minimize the number of bins used. The

optimal solution for this problem is known to be NP-
Hard but a number of heuristics have been developed

that find solutions with provable and acceptable bounds
(Ref. 2).

This paper presents a parallel algorithm for packing

N z n 2 pieces in a massively parallel computing envi-
ronment of n 2 processors operating in SIMD mode.

The new heuristic approach that is developed utilizes a

grid topology that structures the input to increase pack-
ing efficiency without sorting the data set. The results

of implementing this algorithm on a Connection Ma-
chine 2 System are compared with the results obtained

from parallel versions of two traditional bin packing

algorithms.

A parallel algorithm must yield an acceptable solution
while maximizing the utilization of the processors and

minimizing the total interprocessor communication

THE GRID PACK _RITHM

The algorithm begins by dividing the pieces into two
classes. Pieces that are between 0.5 and 1.0 in size are

labeled "bin starter" pieces. The remaining pieces,
that is, those with size between 0.0 and 0.5, are "bin

filler" pieces. The goal of the algorithm is to pack piec-
es in the bin starter class of size Pi into a bin with ca-

pacity as near as possible to (1-pi). Note that the pieces
do not have to be presorted. The division can be done as

part of the data input step.

The bin starter pieces are packed first. Observe that
since pieces of size greater than 0.5 cannot be com-
bined, each one must be packed in a separate bin.

Thus, at this point, the packing is optimal. This pack-
ing is done in parallel and the resulting bins are

maintained in each processor's local memory. Then
the algorithm packs the remaining pieces by matching

pairs of bin starter and bin filler pieces whose com-
bined size fills a bin as completely as possible. We

want to minimize the amount of empty space remain-
ing in the bin after a packing cycle has been per-

formed. It has been shown that processing the pieces in
order of decreasing size will increase the packing effi-

ciency (Ref. 2). Our structuring of the input allows us
to do this without actually sorting the input data.

Packing continues in this fashion until all bin filler

pieces have been processed. A piece that cannot be

packed in any bin in the set of bins resulting from the
bin starter packing is labeled as "well-traveled." The

CH2649-2/8910000/0317501.00 © 1988 IEEE
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well-traveled pieces will be combined using a next fit
packing in the final phase of the algorithm. The pack-

ing algorithm is presented in Figure 1.

Algorithm Parallel-Pack

begin

in parallel

send piecesto processors

pack bin starterpieces

Pack-Loop

begin

find allbins that can pack bin-fillerpiece
then

pack piecein the smallestcap.bin
else

mark pieceas well-traveled

untilallpieceshave traveled
end

ifpiece iswell-traveled
then

Next-Fit pack piece
end

Figure L Grid Pack Algmithm

IMPLEMENTATION

The Grid Pack Algorithm was implemented on a Con-

nection Machine 2 in *Lisp. The input data, consisting
of a list of pieces, was divided as described above and

placed in a two-dimensional array on the host ma-
chine. Each row of the array received the pieces that
had sizes within a specified interval. These intervals

are determined by an analysis of the piece size distri-
bution.

The packing loop isperformed in parallelby allactive

processors.The sizeofeach bin fillerpieceisbroadcast

in turn to allprocessorscontainingbin starterpieces.

From the set ofallprocessorsthat can pack the piece,

the processor with the maximum self-addressis se-

lectedtopack it.When allbin fillerpieceshave been

processed,the well-traveledpieces are combined into

new bins using an iterativenextfitpacking procedure.

Figure 2 isan example ofthe pieceinput fora setofone

hundred input pieces.In our sample data the piecesiz-

es were randomly generated and are evenly distribut-
ed between 0 and 1.

Initially,the 50 bin starterpieceswere packed into50

bins.Forty-seven ofthe bin fillerpieceswere added to

these bins and one new bin was required to pack the

three well-traveledpiecesfora totalof51 bins.The op-

timal packing ofthispiecesetrequired 49 bins.

04 04 02 02 08 08 04 01 02 08

12 18 15 18 16 I0 I0 13 14 18

21 23 21 26 26 28 21 21 22 24

31 31 30 31 30 37 32 32 37 37

41 42 42 40 42 40 41 44 41 43

58 58 53 55 58 54 56 55 56 54
60 62 60 63 64 64 65 61 60 61

77 77 7_ 77 70 70 70 75 74 75

80 81 80 87 86 81 86 88 84 86

96 92 92 95 92 98 93 93 92 93

Figure S.Input _

RESULTS

The algorithm was testedwith sets ofdata of size100

and I000.The resultspresentedinTable i are the aver-

age of5 runs fora data setofsize1000. Itcompares the

resultsobtainedby the Grid Pack algorithm tothoseob-

tained by using parallelversions of the traditional

Next Fit and FirstFitbin packing heuristics.The Par-

allelNext Fit and ParallelFirst Fit algorithms that

were used forcomparison are adaptationsofthose pre-

sented inReference 1.When the input was unsorted,or

sortedinto nondecreasing sequence, the Grid Pack al-

gorithms resulted in a packing that was much better

than the packing obtained with eitherParallelNext Fit

or ParallelFirstFit.In the case where the piecesare

sorted into nonincreasing order, the packing from
Grid Pack was stillmuch betterthan the ParallelNext

Fit packing and was comparable to the ParallelFirst

Fit packing.
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Algorithm # bins used IIEFERENCES

Grid Pack 501

Next Fit 676
unsorted

First Fit 535
unsorted

Next Fit 639

increasing
First Fit 627

increasing
Next Fit 640

decreasing
First Fit 497

decreasing

Table L Packing Results

1. Berkey, J.O., and Wang, P.W. "An Initial Study of
Some Parallel Bin Packing Algorithms," to be pub-

lished, 1989.

2. Coffman, E.G., Jr., Garey, M.R., and Johnson,

D.S., "Approximation Algorithms for Bin-Packing--
An Updated Survey," in Algorithm Design for Com-

puter System Design, G. Ausiello, M. Lucertini, P.
Serafini, eds., Springer, New York, 1984.

3. Horowitz, Ellis, and Sahni, Sartaj, Fundamentals

of Computer Algorithms, Computer Science Press,
Inc., Rockville, MD, 1978.

4. Quinn, Michael J., Designing Efficient Algorithms

for Parallel Computers, McGraw-Hill Book Company,
New York, 1987.

CONCLUSIONS

Bin packing algorithms can be efficiently implement-

ed in a SIMD processing environment. The use of data
partitioning to initialize the packing appears to be a
practical method of allocating the packing workload to

a set of parallel processors while maintaining the in-
tegrity of the packing algorithm.

This study supports our contention that parallelism of-

fers opportunity for improvement in the efficiency of

packing algorithms and that the SIMD model of com-
putation with its data parallel programming approach
is appropriate for bin packing problems.
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SURFACE MODELING ALGORITHM FOR PYRAMID ARCHITECTURES

D. Britton
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ABSTRACT

To accurately model a surface, such as a landscape, a high density of

three dimensional locations must be found. This data is not always

available or easily extracted from a surface. Given a few critical locations

on the surface, level of detail (surface density), and a roughness factor

the random midpoint displacement algorithm produces a realistic

looking approximation of the surface. A parallel version of this

algorithm has been developed to take advantage of the similarities

between the structure of the algorithm and massively parallel machines

with pyramid (quadtree) architectures.

Keywords: Pyramid Architecture, Massively Parallel, Surface

Modeling, Random Midpoint Displacement.

INTRODUCTION

The proposed random fractal surface algorithm, associated with

Fournier, Fussell, and Carpenter (Ref. 1), is designed to be used with

massively parallel (greater than 1000 processing elements) pyramid

architectures in a three dimensional environment. In following sections

the general algorithm is explained, followed by an explanation and

- comparison of the sequential and parallel algorithms.

The General Algorithm

Given four three dimensional locations forming a convex (in the

horizontal plane) polygon, the midpoints along each of the lines forming
the polygon and the center of the polygon are found. The center is

randomly displaced in the vertical direction with a Gaussian distribution

of mean-square variance proportional to the scale, determined by the

size of the region and depth of recursion, and factors which characterize

of the surface (Ref. 2). Each of the quadrants, formed by the subdivision

of the four locations, are subdivided in the same way. This subdivision

continues until the specified depth of recursion has been reached. The

area subdivision and midpoint displacement are illustrated in Figure 1.

The characteristics of the surface can be specified using the 'H'

(roughness) factor and the 'DEPTH' (the depth of recursionJamount of
detail). The 'H' factor determines how much each location can be

randomly displaced in a vertical direction from its center location

between the surrounding points. The 'H' factor, therefore, determines

how randomly high or low the surface may rise or dip. Equation 1 defines

the vertical displacement at the depth of recursion 'depth' with

roughness factor 'H', and 'RND' a gaussian variable with mean = 0 and
variance = 1.

Q .......................... Quadrants

M .......................... Boundary Midpoints

C ........................... Center Midpoint
P ........................... Points on Surface

Figure 1. Area Subdivision and Midpoint Displacement.

Single Processor Algorithm

To implement this algorithm on a machine with a single processor, much

overhead is involved in the recursion (four calls to itself). In addition,

the single processor solution is inefficient for this type of algorithm since

it has to perform each calculation for each area subdivision and

displacement sequentially. This inefficiency becomes exponentially

worse as the depth of recursion increases. The number of iterations of

the algorithm on a machine with a single processor grows exponentially

with depth.

n-1
# iterations = 2 4 t_

k-0

= (4 depth- 1)/3 (2)

where 'depth' is the maximum depth of recursion and 'k' is the curent
level.

displacement = 100 * RND * e(2 "I[ * In(l/(2'depth))) (1)
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The Relationship of the Pyramid Architecture to the Algorithm

The pyramid structure has a direct relationship to the structure of the

algorithm. Each processing element has a parent processor (except the

one at the apex) and four children processors (except the ones at the

base). Since the algorithm callsitself four times within itself, each of the

four calls (branches) can be handled simultaneously by the children

processors. This match between the pyramid structure and the structure

of the algorithm greatly improves the performance.

The Parallel Algorithm for Pyramid Architectures

A patch (defined by four three dimensional locations on the surface) is

entered into the processor at the apex of the pyramid and processed

downward towards the base of the structure. During this processing,

each processor calculates the midpoints and the center (as described by

the general algorithm) of the patch passed from the parent processor on

the level above and vertically displaces the midpoint randomly with a

mean square variance proportional to the roughness factor and inversely

proportional to the current level of detail, thus subdividing its patch into

four smaller patches. The processor passes each of the smaller patches

to the corresponding child processor on the level below. This process
continues until the desired level of detail is reached. The randomness

among the processors on a particular level is achieved by performing a

random number algorithm simultaneously on a plane of seeds residing

in the processors at that level. The number of iterations of this algorithm
is

# iterations = depth (3)

where 'depth' is the depth of recursion (level of detail).

However, if the depth of recursion is greater than the number of levels

of the pyramid structure, then the equation defining the number of

iterations gets complicated. Each time the base of the pyramid structure

is reached, the surface at the base must be divided into quadrants, and

each quadrant fed back to one level above the base. Using this technique

# iterations =

n-I

LP + (depth-LP)* '_ 4k/4 (LP'I)
k=LP

= LP + (depth-LP)*(4 (depth'Lp +1)-1)/3 (4)

Comparison Between the Sequential and Parallel Algorithms

Since the processors at each level of the pyramid architecture perform

the same calculations concurrently on individual patches, a level of detail

can be added to the entire surface during each iteration of the parallel

algorithm. A sequential machine requires 2nx2 n iterations at each level

of detail for a total of (4 n-1)/3 iterations for a surface of'n' levels of detail.

If the depth of recursion is less than or equal to the number of levels in

the pyramid structure, then the number of iterations using this parallel

algorithm grows directly with depth. If the massively parallel pyramid

machine uses a bit serial processing element, it operates on one bit of

the numbers at a time. Most single processor machines can work on at

least eight bits at a time. However, in comparison to an eight bit machine,

the pyramid architecture outperforms it at a depth of recursion of three

(which is not very deep) and greater. After this point, the number of

iterations increases linearly with a slope of eight, whereas the single

processor machine increases exponentially.

However, if the depth is greater than the number of levels, the

performance depends upon the difference between the maximum depth
of recursioo and the number of levels in the structure. The number of

iterations using the algorithm on a pyramid architecture grows

exponentially with the truncated ratio of the depth to the number of

levels. Therefore, as the ratio of the number of levels in the structure to

the depth of recursion increases, the efficiency increases. If this ratio is

greater than or equal to one, maximum efficiency is achieved. Also, if

the number of levels in the structure were only one, the performance of

this algorithm would be equal to that of the sequential algorithm,

independent of the depth of recursion. Therefore, the depth of

recursion must be greater than two and the number of levels must be at

least as great as the depth of recursion to take advantage of the parallel

algorithm on a massively parallel machine with a pyramid architecture.
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where 'n' is [ depth/LP 1, 'k' is the current level, and 'LP' is the number

of levels in the pyramid structure.
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ABSTRAC-'I"

A computational model for 2-d spatial inference on
massively parallel SIMD architectures is described. In the
model, spatial information is represented by three basic types of
parallel variables or pvars: label maps which assign unique
numbers to sets of related processors (e.g., the largest cube
address of the set of processors representing a connected

region), feature maps which contain the property values of
related sets of processors, and hypothesis maps which indicate

the probability, membership, belief, etc. that a processor set
belongs to a particular class. Spatial inference involves the

application of parallel operators to pvars, e.g., labeling operators
to assign unique labels to related groups of processors that
belong to the same class, spatial operators to compute features of
connected regions, and inference operators to assign classes to
regions based on their properties. The application of the model
to a geographic information retrieval problem is described.

1. INTRODUCTION

In geographic information systems, image understanding
systems, and other systems that reason about spatial data, a
variety of representations are used. Many employ some form of
iconic representation (label maps, spatial occupancy arrays, quad
trees, etc.) to explicitly delimit the spatial extent of regions in the

image space. Iconic representations are usually complemented
by some type of non-spatial or symbolic representation such as
an attributed graph where the nodes in the graph correspond to
regions in the image.The symbolic representation describes

properties of and between regions, and provides a place to store
hypotheses, and other summary information about the regions.
Traditionally, spatial reasoning has been viewed as a process
that involves the repeated u'ansfer of information between spatial
and symbolic representations. An alternate computational model
is described here that is based on a uniform representation for all

spatial information (iconic and symbolic) using parallel variables

organized in a 2-d grid.

The organization of the paper is as follows. Section 2
summarizes the salient features of the Connection Machine and

the *Lisp programming language. Section 3 presents a data-
parallel model for spatial reasoning. Section 4 describes some of

the operators that have been implemented to date. Application of
the model to a geographic information retrieval problem is
presented in Section 5.

2. THE CONNECTION MACHINE AND *LISP

The Connection Machine (CM) is a data-parallel

computing system containing up to 64K physical processors
which can act like millions of virtual processors. The CM,
originally conceived by Hillis (Ref. 1), is built by Thinking
Machines Corporation (TMC). A description of the CM system
can be found in Ref, 2. The CM-2 contains 64K bits per

physical processor and can perform 32 bit arithmetic at a rate of
2500 MIPs for a 64K system. The current system configuration
at TASC is a 8096 processor CM-2 system with a Symbolics
front-end processor and a frame buffer that allows the contents
of the CM to be viewed at rates up to a gigabit per second.

*Lisp, a parallel dialect of Common Lisp, and PARIS,
the assembly language of the CM are provided within the
Symbolics software environment. *Lisp (Ref. 3) is based on
objects known as parallel variables or pvars which we shall
denote in uppercase Greek letters, e.g., A. Elements of pvars are

processors that may be accessed by their cube address (i.e.,
relative to the hypercube) or their grid address, 0t(x,y).
Elements of pvars may be signed and unsigned integers, variable
precision floating point numbers, and booleans. The operation
(!! _ ) returns a pvar in which the value of tx has been broadcast
to all processors in the currently selected set. Macros such as
*when, *cond, and *if select subsets of processors. For

example the form (*if (=!! A B) (!! 1) (t! 0)) returns a pvar that
contains ones in those elements in which A and B are equal and
zeros elsewhere. Functions and macros that operate on all
selected processors in parallel are identified by !! suffixes, e.g.,
(+!! A B). Reducing operations are denoted by a * prefix and
return a value from the currently selected set, e.g., (*min A).
Relative addressing in the grid is also provided. The form
(pref-grid-relative!! A (!! -1) ([! 0)) returns a pvar that is equal

to A shifted one position to the left. The reader is referred to
Ref. 3 for additional information on *Lisp.

3. DATA-PARALLEL MODEL FOR SPATIAL REASONING

Fig. 1 is the proposed computational model for spatial
reasoning in 2-d domains that contain objects that may belong to
K possible classes. Such a model is appropriate for many image
understanding and geographic information processing
applications. It involves 1), representing spatial data (label

maps, features, and hypotheses) by 2-d pvars and 2), viewing
the processes of labeling, segmentation, feature extraction, and

spatial inference as data-parallel transformations between pvars.
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LABELING
OPERATORS

Hypotheses Label maps

SEGMENTATION
OPERATORS

' 'r

IOk I_ " II r'
INFERENCE Features FEATURE
OPERATORS EXTRACTION

OPERATORS

Fig. 1 Computational model

The organization and representation of spatial data using
pvars is shown in Fig. 2. Label maps A are pvars that are used
to explicitly delimit the spatial extent of regions (or edges) that

may or may not be sp.atially connected. Labeling operators,
L(il) _ A assign umque numbers to sets of related processors
(e.g., the largest cube address of the set of processors
representing a connected region). Features • are pvars that are
used in conjunction with label maps to store properties of
regions (e.g., area, distance from) or simply by themselves to

regmn
i

-,
i
!
I

¢ /

_ _ HypothesesY /
Fig. 2 Organization and representation of spatial
data using parallel variables

store properties derived from other properties (e._:, the local

mean of an image). In pvars that describe region propehies, the

value for each region is replicated in all the processors that
belong to the region. Feature extraction operators F(A, 0') -_ •
compute features from label maps and/9 r other features.
Conversely, segmentation operators F-l(O) _ A can be viewed
as inverse operations that compute label maps from features.
Hypotheses il describe the degree to which regions belong to
various classes. Inference operators Id(_) _ il compute
hypothesis maps from features.

Labeling and segmentation operators assign unique
numbers in the range from one to the number of processors to
each region in the image. All of the pixels in a region with label
_. can then be easily accessed in unit time within forms such as

(*when (=I! A (!! 2,)) &body).

Feature exlraction and inference operators access regions by the
label map. For example, the area ¢ of a region with label _. can
be computed as

(*when (=!! A (!! _.)) (*set • (!! (*sum (!! 1))))

where the result is broadcast to each processor in the currently
selected set. Inference operators can then compute hypotheses in
parallel, e.g.,

(*set il (+!! il (abs!! (4! (q_ (!1 t_0)))

in an amount of time proportional to the number of features.

To see how the above model applies to spatial reasoning
consider the following examples. In a black-and-white image
interpretation application, the input q_ is segmented into

homogeneous connected regions by some type of region
grower, F'I(o) ---) A. Various features related to the average

brightness, texture, size, and shape of the regions and the spatial
relationships between regions are computed from the label map
and image, Fm(A , O) --_ Om. These features are then evaluated
against a set of constraints in order to accumulate evidence for
candidate object categories such as buildings, roads, etc.,
Idk(Om) _ ilk.

In a geographic information system application, the input
might be a database that provides certain kinds of information
(surface material type, soil drainage characteristics, slope, etc.).

The objective is to infer other kinds of spatial information, e.g.,
likely locations for a nuclear waste site based on constraints such

as soil drainage characteristics, distance from populated areas or
bodies of water, etc. The inputs, represented by a set of spatial
occupancy arrays {ilk} are labeled L(ilk) _ A k and are used to
compute properties such as the area, compactness, containment,

and distance between regions, Fm(Ak) _ Omk. ,A measure of
the suitability of various areas Wk,(Omk ) ---) I k can be used
to determine the best places (if any) to put the nuclear waste site.
This second type of application is pursued further in Section 5.

4. DATA-PARALIN_ OPERATORS

This section discusses some basic operators that have
been implemented to date for the purpose of developing the ideas
introduced in this paper. Additional operators are currently under
development and improved algorithms, e.g., based on scanning
(Refs. 4 and 5), will be added in the future.

CH2649-2/89/0000/0324501.00 © 1988 IEEE
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A connected components labeler based on the "brush
ftr_" algorithm was implemented. Initially, each processor in the
output pvar A is assigned its cube address, i.e.. a number
between one and the number of processors, N 2. Then, for all
processors whose input pvar fl = {ogx,y)} is non-zero, if
c0(x,y) = ¢0(x+u,y+v) where (x+u, y+v) are the addresses of the
4- or 8-nearest neighbors of (x, y), the output is u .pdated as
_.(x,y) = max { _,(x,y), _.(x+u,y+v) }. The process ts repeated
until A t+l = A t. The run time is proportional to the size of the
largest connected region, which for small connected regions or
large highly irregular regions is comparable to the more complex
scan-based algorithms described in Refs. 4 and 5. For large
regularly shaped regions, significant improvement can be
obtained using scanning to propagate the maximum label up,
down, left, right, and along diagonal connected segments.

Spatial operators include those that compute properties of
individual regions (unary operators) and those that compute
information about relationships between two or more regions
(n-ary operators). Unary operators that compute geometrical
properties such as the area, perimeter, and centroid of connected
regions have been implemented using a counting approach. As
an example, the area is computed by stepping through each
unique label and adding up the number of processors in the
currently selected set as described earlier.The complexity is thus
of the order of the number of regions. Relational operations such
as the minimum distance between two sets of connected regions
are performed by computing the distance from any point in one
set to all image pixels. The method involves propagating the
label with the minimum distance and either the minimum
distance or the address of the nearest processor. The minimum
distance to each connected region in the other set is obtained by
stepping through all labels and executing a *min over the
minimum distances within the currently selected set. The
complexity is of the order of the number of regions and the size
of the largest region.

The set of feature pvars can be viewed as an image of
feature vectors. This motivates an inference strategy based on a
decision theoretic pattern classification approach. The inference
operator implemented computes a similarity measure between a
feature value or constraint and a feature pvar, and accumulates
the similarity measure across all features. Constraints have the
form (_ ¢ 00 w) where • is a feature pvar, ¢ is a parallel
version of the standard Common Lisp predicates, 00 is a
number, and w is a weighting factor. A constraint returns a pvar
that contains zeros in those processors that satisfy the predicate
and w I¢_(x,y) - ¢_01in the others. The resultant pvar can be
adde_to the results from other constraints to produce a score for
the km class fl k. This is accomplished in an amount of time that
is proportional to the number of features or constraints. For K

classes, the process is repeated for each set of feature prototypes
or constraints. The {fl k} can then be used as the basis for
assigning the "best" class, in some sense, to each region.

5. CASE STUDY: GEOGRAPHIC INFORMATION SYSTEM

An example illustrating the application of our model to
geographic information processing is shown in Fig. 3. The
objective is to find regions that satisfy certain terrain constraints.
The area of interest (a) is 512x512 pixels in size and contains the
following categories: water, wetlands, coniferous and deciduous
trees, bare soil, grass, agriculture, main, and secondary roads.
The CM is configured as a 512x512 grid with a virtual/physical
processor ratio of 32:1 thus providing up to 2048 bits per
processor. First, coniferous and deciduous tree categories are
merged and intersected with regions that are not main roads (b)

and a label map computed. Information about tree regions such
as the area, compactness, and distance between groups of trees
can then be computed (c). Information about trees relative to
other categories (e.g., distance from, containment, intersection,
adjacency, etc.) is determined by marking those categories in
working memory (d), computing a label map to uniquely
identify each connected region, and applying the appropriate
spatial operator, e.g., (e) is the minimum distance to main roads.

The result in (f) shows the five best forested areas given
the constraints:

(area > 10000 0.5)
(compactness > 0.05 0.25)

(distance-from-water-or-wetlands > 5 0.75)
(distance-from-main-roads < 1 1.0)

(distance-from-secondary-roads < 1 0.5)

The result in (f) was obtained by ranking scores and selecting
the top five areas (i.e., the five "closest" areas with respect to the
decision region defined by the constraints).

6. SUMMARY

Massively parallel architectures motivate new approaches
to old problems. While parallel processing solutions are almost
always faster (they'd better be), in some cases they may even be
simpler than those originally developed on serial machines. A
homogeneous data-parallel model for 2-d spatial inference has
been described that represents spatial information in a uniform
manner by parallel variables organized in a 2-d grid. The model
is simpler since it relies on a single representation as opposed to
the heterogeneous (iconic and symbolic) representations used in
more conventional systems. An initial application of the model to
a geographic information processing problem was presented.

Future efforts will address other spatial reasoning tasks
such as image interpretation and will involve developing
additional data-parallel operators. We also plan to investigate the
problem of handling images whose size exceeds the maximum
number of virtual processors available in a given system.

(1)

(2)

(3)

(4)

(5)

REFERENCES

W.D.Hillis, The Connection Machine, MIT Press,
Cambridge, MA, 1985.

L.W.Tucker and G.G.Robertson, "Architecture and
applications of the Connection Machine," .C.l/Inp.ll_,
Vol. 21, No. 8, August, 1988.

*Lisp Reference Manual (Version 4.0), Thinking
Machines Corporation, Cambridge MA, 1987.

J.Little, G.E.Blelloch, and T.Cass, "Parallel Algorithms
for computer vision on the Connection Machine,"
International Conference on Computer Vision. pp 587-
591, 1987

G.E.Blelloch, "Scans as primitive parallel operations,"
Proc. International Conference on Parallel Processing.
pp 355-362, August, 1986

325



Fig. 3a Thematic map showing trees, water and wetlands,
roads, and open areas (bare soil, grass, and agriculture)

Fig. 3c Halftone rendition of the area of forested regions

Fig. 3b Forested regions partitioned by main roads

(
Fig. 3d Main roads

Fig. 3e Halftone rendition of the distance from main roads Fig. 3f Five best forested regions for given constraints
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SCAN LINE GRAPHICS GENERATION

ON THE MASSIVELY PARALLEL PROCESSOR

John E. Dorband

NASA/Goddard Space Flight Center/635
Greenbelt, MD 20771

ABSTRACT

This paper descaribes how we have implemented a scan line
graphics generation algorithm on the Massively Parallel Proces-
sor (MPP). Pixels are compute in parallel and their results are

applied to the Z buffer in large groups. To perform pixel value
calculations, facilitate load balancing across the processors and
apply the results to the Z buffer efficiently in parallel requires
special virtual muting (sort computafion_ techniques devel-
oped by the author especially for use on single-instruction

multiple-data (SIMD) architectures.

Keywords: Graphics, scanline, Z-buffer, sorting, sort computa-
tion, SIMD, massively parallel, MPP, load balancing.

_TRODUCTION

A scan line graphics generation algorithm basically determines
the brightness of pixels in a simulated 3-D scene a scan line at a
time. The brightness value of a pixel is based on the surface

brightness of simulated polygon which would be seen through
the pixel. Triangles are the polygons used here. Only the triangle

nearest the pixel on the simulated viewing screen will be seen
through the pixel. Therefore a Z buffer is setup to accumulate the
values of the closest polygons to the viewing screen. It is actually
not necessary to only process one scan line at a time. On the MPP,
a subset of triangles at a time are processed for all scan lines that

these triangles cover. This is done by projecting each triangle
onto the viewing screen and determining which scan lines it
covers. Then the pixels of each scan line that the triangle covers
is determined. This results in pixels of different values and
distances from the viewing screen which are loaded into the Z
buffer. When all triangles are processed the Z buffer can be

displayed as an image.

To efficiently compute pixel values in parallel an efficient load
balancing method was developed so as many processors as

possible could be kept busy. This is of importance when greater
parallelism can be realize by duplicating data into more proces-
sors. This is made complex when it is determined that data in
certain processors is of no more computational use, randomly

leaving processors without work to do. Therefore the data must
be moved in such a way that it is known that when the data is slid

to new processors it will not be written over useful data. This

movement or compression is done by sorting. Although effi-
ciency of processor usage is of primary interest here, efficiency
of data movement is also of importance. Therefore the ineffi-

ciencies in the use of sorting are also considered. This has
prompted the modification of the sorts used. This involves a

preprocessing (scout) step which determines how much of the

sort is necessary to provide sufficient contiguous space to dupli-
cate the data. Once this has been determined a sort is used to

compress the data which can be terminated early based on the
information derived by the scout step, This then allows one the

ability to reasonably efficiently keep as many processors as
possible busy.

PROJECTION CALCULATION

The projection calculation converts the three coordinates of the
three corners of a triangle in a 3 dimensional viewing space into

two coordinates on the viewing screen and a range from the view
point. Given the coordinates of the triangle ( X 1,Y,, Z_,X 2,Ya,

7_.2,X 3,Y3,Z_), the coordinates of the view point (X v, Yv, Z0, and
the projected coordinates ( X'_, Y'_, R_, X'2,Y'v P%,X'3, Y'3,
) the following equations do the conversion from 3-Dcoordinates
to 2-D projected coordinates. The fn'st set of equations rotates the
triangles in space so that the viewing axis lines up with the Z axis.
Thus the view point will lie along the Z axis.

X"_=X_*x + Z_*z, Y"_=Y_,

Z",=X,* g - _*x,

X"v---O, Y v-Yv, and Z v=V Yv+Lv,

where x, y,, and z are normalized values of X,,, Yv, and 7__,.

X"' i = X" t, Y'"_ = Y", * y" + Z"i * z",

z'", = Y"_* z" - z", * y",

where y", and z" are normalized values of Y"v, and Z"v.

U.S. Government Work. Not protected by
U.S. copyright.
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Thus the rotated coordinates of a triangle is X'"_, Y"'_, Z'" v X'" v
Y"'_, Z'"v X"'3, Y"'r and Z"',. The rotated triangles are
projected on to the screen which is the distance R from the view
point. The following equations give the values for X', Y', and R'
for each comer of a triangle.

Rv=_/. 2 . 2 _2 ,.RsXv+Yv+L v , X'=X ]_-_, Y'=Y'"_-L,

and R' =3/-(X'"-Xv)2+(Y TM -Yv)2+(Z ''' -Zv) 2 .

A brightness value (B) is also calculated for each triangle. The
actual means of calculating it is not important, only that it exists
and must be included with the rest of the information for each

triangle.

SCAN LINE DETERMINATION

Once the projection calculations have been performed each
triangle will be described by an X and Y coordinate and a range
for each comer and a brightness for the entire triangle. This
information will make up a triangle description record. These

records will be duplicated so that there exists one copy of a
triangle's description record for each scan line that intersects the
triangle's projection onto the screen.

Assume that scan lines are parallel to the X axis. Then the corners

of a triangle with the largest and smallest Y values define the
range of scan lines that the triangle intersects. By recursively
dividing this range in half and making records corresponding to
the two halves, we will eventually have arecord for each scan line

in the range. The difficulty arises when this has to be done in
parallel, especially when it is done on a large array of processors,

like the MPP. The number of scan lines that a triangle overlaps
is not the same for all triangles. This means that the rate of
creation of new records is uneven across the processors and some

sort of load balancing must be performed if one is to efficiently
utilize large arrays of processors.

LOADBALANCING

Load balancing consists of redistributing records across the
processors when some processors contain more than one record.
This is caused by creating more records in one area of the array
of processors than in others. One can do this by moving all the
records to one end of the array of processors, only one record per
processor. Any left over records, if all processors have at least

one record, can be saved in a stack. There several means by
which the records can be moved(compressed) to one end of the
array,but we have found that parallel bitonic sort is very efficient
at doing this on the MPP. So the use of sort to load balance is what
will be discussed here.

Actually the records are sorted to one end of the array so that there

are two records per processor. Therefore if only half of the
processors have any record in them, then half must have none.

The final step of the load balancing is to move one record from

each processor that has two to aprocessor that has none by sliding
them halfway across the array. This means that a complete sort
has to be done and the data moved halfway across the array.
Though the sort is efficient, there is no sense in doing a complete
one if one doesn't have to.

Therefore, a scouting step was developed to determine how
much of the sort needs to be performed so that records can be
simply moved to empty processors. Simply implies moving one
record form each processor that has two to a processor that has

none by moving them all the same number of processors away
form their original processor.

For an incomplete sort to be useful at least the following condi-
tion must be true. That for every group of processors, at least half

of the processors must be empty. These groups must contain the
same number of processors and all records within each group
must be compressed to the same side of the array of processors
of the group. The scout routine determines the shortest sort

necessary to meet these conditions by performing a sort on a set
of flags that represent where the records exist within the array.

The difference from the sort being that after every merge step it
checks to see if the required conditions have been meet.

Scan line determination is merely duplication of records, modi-

fication so that they represent different ranges of scan lines, and
redistribution of records (load balancing). This is repeated until
each record represents only on scan line.

PIXEL DETERMINATION

At this point each record represents a triangle and one scan line
that it intersects. The range along the scan line which represents

the part of the scan line that is covered by the triangle is
determined. Then in the same way that scan lines ranges were
reduced to individual scan lines, so pixel ranges are reduced to
individual pixels. Analogous to scan line determination, pixel
determination involves duplication of records, modification so

that they represent different ranges of pixels, and redistribution
of records (load balancing). Thus, each record will represent a
triangle and a pixel that it covers. From each of these records a
pixel record is created that contains the pixels location on the
screen, the bright of the triangle, and the distance to the triangle
as seen through the pixel.

Z BUFFERING

Many of the pixel records will represent the same pixel, but with

different range and brightness and range values. The Z buffer is
merely a collection of the records for which duplicate pixel
records are eliminated. They are eliminated based on there range
value. Only the pixel record with the smallest range is kept for
each pixel. This is done using a sort computation function, sort
minimum, which will flag the minimum range record for each

pixel during the sort. All unflagged records can be mark as
deleted.
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IMAGEASSEMBLY

The records in the Z buffer are then used to form a final image.
Techniques for assembling data points into an image were
developed previously in the process of developing algorithms of
point plotting and raytracing on the MPP a.

Since there may not be a Z buffer record for every pixel in the

image, a template image must be created. This consists of a group
ofpixel records that contain a record for every pixel in the image.
Image assembly is a two step operation, pixel value distribution
and image organization. Both of these operation can be done
with sort computation functions. Pixel value distribution is done

with sort distribution. Z buffer records are flagged as containing
valid data and image template records are not. Sort distribution
copies data from Z buffer records to image template records. This

however leaves Z buffer records interspersed with image tem-
plate records. Thus the image can not be displayed in this form
as is. Since image records are flagged as belonging to the image
template and Z buffer records are not, the records can be sort with
the image flag as the major key. This will separate the Z buffer

records from the template records. At the same time the pixel
location can be used as the minor key, which will order the pixels
so that they can be displayed as a raster scan image.

CONCLUSION

This technique is in use on the MPP, which is a 2-D grid of 128

by 128 processors. We are generating 3-D renderings of eleva-
tion data. The data consists of a 512 by 512 grid of points which

is converted into 524,288 triangles (see Color Plate II, p. 694).

These triangles take from 45 seconds to 75 seconds to render,
which is from 6 to 12 thousand triangles a second. Currently we

are working on more efficient means of data movement and or-
ganization to increase its speed.
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FINGERPRINT IDENTIFICATION ON A MASSIVELY PARALLEL ARCHITECTURE

George Mason University

Gowrishankar T. R.

ABSTRACT

A feature-based recognition scheme for fingerprint identifica-

tion oll a massively parallel system is presented. The algo-

rithm provides an orientation-independent recognition sys-

tem that utilizes the features offered by massively parallel

architectures. Implementation of this algorithm on the G AM

I pyramid to extract the different features is discussed. The

use of adder pyramid that is incorporated in GAM I architec-

ture in deterlnining the Euler count that is used to recognize

the, I,.)ps in the pattern is also highlighted. The results of

iderltification of simulated patterns on GAM I pyramid is

presented.

Keyw.rds: GAbl I pyramid, Feature vector, Euler count,

adder pyramid, isolated point, loop, merge point, termina-

tiq,tLexpand mask.

INTRODUCTION

The increasing volume of fingerprints collected and the need

fi)r faster identification of patterns have generated a great

deal c,f interest in improving the existing automatic finger-

print identification systems.

In (Ref. 1-2), a set of fingerprint impressions were partitioned

int,, sampling squares which were preprocessed for feature

extraction. A class of context-free languages described the

fingerprint patterns and the recognition was accomplished

using a sequential parsing technique. The same set of features

were, used to further classify the fingerprint patterns using a

class of stochastic context-free languages. This approach was

filrther improved in (Ref. 2) by the use of tree grammars t()

identify the features. This system has only provided a first

step in automation of fingerprint identification.

The advent of massively parallel architectures (architectures

with l ,()00 or more processors) has provided a whole new per-

spectiw, f[)r image processing. Such highly parallel machines

pr(_vide an excellent infrastructure fi)r the analysis of highly

complex fingerprint patterns. This paper demonstrates the

use -f massively parallel architectures for the extraction of

f(,atures that uniquely identify each fingerprint impressi(m.

FINGERPRINT PATTERN [

DIGITIZED IMAGE [

I I

I FEATURE EXTRACTION

Figure 1. Automatic Fingerprint Identification System

These characteristics or features, referred to as minutiae, are

essentially interruptions to the normal flow of ridges (Ref.

2), such as abrupt ridge ending (terminations), dots (isolated

p.ints), segments, hranebes or mergers and loops (i.e., holes).

These minutiae (over 100 in each fingerprint) and their rel-

ative locations are considered sufficient to identify a given

pattern.

The 1)r-l),,sed fingerprint recognition system (Figure. 1) uti-

lizes the salient features of GAM I pyramid architecture (Ref.

3), which hehmgs to the domain of massively parallel systems.

The recognition scheme also utilizes the unique adder pyra-

mid which is incorporated on the GAM pyramid to determine

such usefld parameters as the Euler count of the pattern.

The slider component and Sum OR circuitry of GAM I pyra-

mid architecture provides an added advantage in processing

the single-bit wide binary image representing a fingerprint

pattern. The SIMD mode of operation of massively paral-

M architectures facilitate simultaneous identification of all

minutiae ,,f a particular type spread throughout the pattern.
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This SIMD operation can be restrictedto a subset of process-

ing elements by employing the 'masking' feature available on

the GAM I pyramid, as on other massively parallel systems.

This provides a way to inhibit a selected set of processing

elements from executing an instruction.

THE RECOGNITION SYSTEM

The recognition system requires that the fngerprint image be

preprocessed and input to the GAM I pyramid as a digitized

single-pixelwide image. Proper representation of the image

is necessary for correct extraction of features and accurate

identification.

Pattern preprocessing

The video camera interface of the GAM I pyramid enables

the fingerprintpattern to be input directlyto the base levelof

the pyramid. The pattern is then digitized to obtain a binary

representation of the image. This image is subjected to pre-

processing to get a single-bitwide image. The algorithm was

tested on the GAM I pyramid using simulated patterns input

directly as single-bitwide binary images using the keyboard.

Feature vector description:

The identificationsystem isbuilton a feature-based approach.

The numerous ridge linesthat run from one end of the pat-

tern to the other do not form the characteristic features of

a fingerprint. Only the interruptions to the flow of these

ridge lines are considered fitfor identificationof fingerprint

patterns.

This automatic fingerprint identificationsystem considers five

features as primary elements of a feature vector that uniquely

identify a given fingerprint pattern. These five features are

isolated points, terminating points, merge/branch points, seg-

ments and loops. These fingerprint primitives, shown in Fig-

ure. 2, referred to as minutiae have two characteristics,they

form a finiteset and theirdistribution throughout a pattern

is so unique that no two patterns are alike (Ref. 2). Each

fingerprint has fiftyto hundred such minutiae (Ref. 4).

Isolated points: These are dots in the original fingerprint pat-

terns. These points appear in the digitized image as pixels in

state '1' having eight '0' state neighbors.

Terminating points: These are the points where the ridge

lines that run from the fingerprint periphery end abruptly

within the pattern. These points appear as pixels with only

one neighbor in state 'I' in the digitized image.

Merye/branch points: These are the points where two ridge

lines merge into a single ridge line or the points where a single

ridge line branches into two. These can be identified as the

pixels with neighbors that form one of the junction patterns.

Segments: These are ridge lines that start and end within the

pattern without touching the periphery of the pattern unlike

the terminating ridges that have one of their endpoints at the

edge of the pattern.

Isolated Points

Segments

Terminating Points

Merging/branching Points

Loops )

Fig.re 2. Fingerl_'int Primitives

Loops: As the name indicates, these minutiae are ridge lines

that form loops within the pattern with the tangential pixel

having three neighboring pixels in state 'I '.

The bifurcation and termination minutiae are considered to

carry high information associated with the identification of a

fingerprint (Ref. 4).

Feature extraction:

As mentioned earlier, the aim of this fingerprint identifica-

tion system is to form a unique feature vector of minutiae

extracted from the fingerprint pattern. In this section, ex-

traction of each of the five features is described.

Isolated points: This feature can be identified as those pixels

that appear with neighboring elements in all eight directions

in '0' state. The N, S, E and W slider commctions provided

,m the GAM I pyramid help achieve this with relative ease.

This is achieved by ANDing each pixel of the input image

with the inverse image of OR of all neighbors. Since the

minutiae are required to be present within the periphery of

the pattern, the border elements of the image are inhibited

from the operation by 'masking' the border processing ele-

ments.

Merging�branching points: Since, the algorithm treats the in-

put image as direction-independent, the merging and branch-

ing minutiae are considered as a single feature element. The

merging points are identified as those pixels at the junction

.f three ridge lines. These are recognized by extracting those

pixels with two neighbors separated from each other by at

least one pixel in '0' state. The algorithm accounts for all

possible combinations of such occurrences. The algorithm

also confirms that the merging pixel does have three neigh-

bors in state ' 1' indicating the merging or branching of three

ridge lines.

"l_rminating points: As previously menti.ned, these are the

endpoints of ridge lines that terminate abruptly within the
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agefortheendpointpatterns.Theendpointsareessentially
pixelswithonlyoneneighhoringelementinstate'1'. The
determinationofmergepoints,too,requirethattheborder
pixelsbetransparenttotheoperation.

Segments: Segments are identified as the ridge lines connect-

ing two terminating points within the periphery of the image.

Thus, the algorithm initiates the segment search procedure

with the end point image. The endpoint image is developed

along the ridges containing the endpoints. The endpoint im-

age is expanded successively and the seed pixel is excluded

from the expanded image. This image is added to the pro-

cessed image of the previous stage to get a new intermediate

image. Alongside, the expanded image is also ANDed with

the input image to obtain the seed pixels for further expan-

sion. The procedure is repeated till the intermediate image

formed in two successive stages are identical. Number of dis-

connected regions in the segment image thus formed gives the

number of segments in the pattern.

Loops: Extraction of this feature utilizes the Euler character-

istic number. The Euler number characterizes any polygon

and is a function of the number of vertices V, edges E and

faces F (Ref. 5). The Euler number C given by

C=V-E+F

represents the number of objects in the image (such as dots,

merge points, segments, etc.) less the number of holes or

loops.

The Euler Characteristic equation is applied for this blob

counting on GAM I pyramid by defining the different vari-

ables as (Ref. 5):

Vertex - Each object pixel

Edge - A pair of adjacent horizontal or vertical object pixels,

as well as the object pixels diagonally adjacent without

any horizontal or vertical connections.

Face - Any 2x2 object pixel square. V, E and F are cal-

culated by searching the input image for the specified

patterns (Ref. 6).

V is calculated by counting the total number of object pixels

while E is obtained by calculating the total number of occur-

fences of the various edge patterns. This can be represented

as f,dlows (Ref. 3):

1 1 0 0 l

E = 11 + + +
1 0 1 I 0

where each pattern represents the number of occurrences of

that particular pattern and "+" stands for addition. F is

,)brained by counting the number of patterns of tile form:

I I
I I

The calculation of Euler count can be further simplified as

given below:

C _

i0 11 Ol 10 xl

O0 10 IO O0 10

where "x" stands for don't care state.

/'he number of objects in the image is determined by the

sum of all the object pixel patterns discussed tiros far, viz.,

isolated p.ints, merge points, segments, endpoints, border

segments (segments that run along the periphery which are

not included in the feature vector set), etc. Hence, the Eu-

ler characteristic number of the image with the said features

masked gives the number of h)ops in the input image. The

adder pyramid on GAM I proves distinctly efficient in the ap-

plication ()f Euler c_)unting algorithm to determine the num-

ber ,)f h)t,ps in the image.

Tile number of minutiae of each of the five types extracted

fr()m an image form the elements of a feature vector associ-

ated with the image. This feature vector serves to identify

the fingerprint that corresponds to the digitized image.

I

--II[l--

• • •
I •

_l-ll[II-

II--- -ZZ

Figure3. DigitizedInputImage

SIMULATION ON GAM I PYRAMID

The algorithm for feature-extraction in fingerprint patterns

just described was tested on GAM I pyramid using simulated

images. The programs for implementation of the algorithm

were written in Function IV, a structured interpreted func-

tional programming language (Ref. 7). Simulated images (as

in Figure. 3) containing all or few of the features discussed

thus far were input as binary images using the keyboard input

_,pti(m.

The exclusion of the border feature elements from the feature

vector determination was achieved by utilizing the 'maskin 9'

operation. Direct masking of border elements before sub-

jeering the image to the extraction algorithm will introduce

addili,,nal endl)oints and thus will affect tile determination
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of _)ther feature vectors that are dependent on the number of

endpoints in the image. Thus the different procedures for ex-

tracti_n _f cacti of the five features were implemented twice.

once on the border masked image and once on the unmaskeo

image. The difference between the two values thus obtained

determined tile particular feature element.

The Sum-OR operation was widely used to detect the pres-

ence of image pixel(s) at various intermeditate stages of iden-

tification. Other salient features of GAM I pyramid such as

the slider and other components are used for eight-directional

expansion of the image and for shifting the image one pixel

position in any of the eight directions. The nearest neighbor

c_mmunication provides a distinct advantage m processing

the image in parallel.

All the features of the simulated images were correctly iden-

tified. The different images were so constructed to include

_arious combinations of features and their locations that are

realizable in actual fingerprint patterns. The implementa-

ti.n c_f the algorithm also generates various feature images

that cc,ntain (rely the corresponding feature elements present

in the input pattern. This will prove useful in analyzing the

different features individually as opposed to the pattern in

its entirety

CONCLUSIONS

A feature-based system for automatic fingerprint identifica-

ti,_n ¢m massively parallel architectures is presented. The

features selected associate every fingerprint pattern with a

unique feature vector. The algorithm to extract these fea-

tures fidly utilize the parallel operations offered on the GAM

I pyramid. Spatially parallel architectures, such as the GAM

I pyramid, with their largely SIMD mode of operation are

highly suitable for processing binary images representing fin-

gerprmt patterns.

Vari_)us simulated images (16x16) containing all or few of the

features mentioned were used to test the identification sys-

tem. The present dimensions of base level of GAM I pyramid

16x 16 limit the algorithm to only simulated images. The suc-

cesshll identification of the features in all simulated images

pr_)vide a strong motivation for implementing the algorithm

on ac|ual fingerprint patterns.

Use of massively parallel systems of dimensions commensu-

rate with the normal size of fingerprints will aid in extracting

the spatial parallelism to the fullest extent. A normal fin-

gerprint pattern requires a dimension of 256 x 256 pixels for

fine grain representation. Secondary features such as the dis-

tance between the center of loops, segment lengths, etc. can

be used to improve the performance of the system. Existing

serial algorithms use other features like whorls, archs, etc., in

addition to the primary features mentioned for more efficient

recognition.

The other main advantage of using massively parallel archi-

tectures is the parallel input/output capabilities that result

in significant increase in the efficiency of I/O handling. This

feature is of particular importance for this application due to

the high order of input data.
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GRAY SCALE ADJUSTMENT ALGORITHMS
ON SIMD ARCHITECTURES

ChristopherLee Kuszmaul

MRJ, Inc.

ABSTRACT

A largenumber of methods of gray scaleadjust-

ment are invoked in image processing.Substantial

gains in time performance of such algorithmscan

be garneredby implementing them on highlyparal-

lelsingleinstructionmultipledata (SIMD) archi-

tectures.There are some gray scaleadjustmental-

gorithms that appear to be inherentlyserial,and
thus seem unable to benefitfrom a SIMD architec-

ture.But forone such algorithm(grayscaleadjust-

ment by histogram equalization)that fallsin this
category,an efficientparallelimplementationisde-

scribedthat uses three fundamental operations:

Sort,Send, and Scan. In thispaper,severalgray

scale adjustment algorithms'SIMD implementa-

tionsand order of growth performances are dis-
cussed.

Linear Gray Scale Adjustment

As inallthe algorithmsdescribedinthispaper,the

imagery is representedwith one pixelper proces-

sor.To perform lineargray scaleadjustment is

then veryeasy.Simply findthe maximum and min-

imum gray scalelevelsusing the globalreduction

operators*MAX and *MIN, broadcastthesevalues

toevery processor,along with the desiredfinaldy-

namic range,and compute a new value:

NEW =(DYNMAX-DYNMIN)(OLD-MIN)/(MAX-MIN)

where MIN isthe minimum gray scalevalueofthe

originalimage, MAX is the correspondingmaxi-

mum value,OLD isthe originalgray scalevalue of

the pixelin question,DYNMAX isthe top ofthe de-

sireddynamic range,and DYNMIN isthebottom of

thatrange.NEW isthen the new valueforthe pixel

inquestion.

The globalreduction,and broadcastfunctionstake

O(logn)time,where n isthe number ofprocessors.

The recomputationformula takes O(k) time since

every processorcan compute independentlyof the

others.The entirecomputation takes O(logn)time

on n processorsforan image with n gray scaleval-
ues.

Tabular Gray Scale Adjustment

This problem istrivialifthe dynamic range ofthe

inputimage iscomparable tothe number ofpixels,

in which casea singleglobalcommunication (send)

can perform the necessarycomputation.However,

itistypicalforthe number ofpixelsto be roughly
the squareofthe dynamic range.In general,there-

lationshipbetween dynamic range and number of

processorscannot be known, and thus there are

severalpossiblealgorithms,each optimalunder the

properconditions.

The most obvious choicebesides performing the
aforementionedsend isto storethe entiretablein

each processorwith each pixelvalue,and execute

an indirectlocalmemory accessintothe tablein

each processorsimultaneously.This willtake order

constanttime,but requireordernm memory overn

processors,where n isthe number ofpixelsin the

image and m isthe dynamic range.

A choicethatisinteresting,but failstogainany ad-
vantage, involvesan "interleavedscan" in which

the number ofeach kind ofpixelcan be countedin

a singlescanning operationby settingthe krth bit

of the memory locationto be scanned, where r is

the input gray scalevalue and k isthe log of the

CH2649-2/89/0000/0335501.00 © 1988 IEEE
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maximum number of instancesof a given value.

Unfortunately,k istoolargetobe ofany use in al-

most any practicalapplication.

Finally,one can perform the standardmany-to-one

sending operationthat sortsthe input data into

some locationA, compares each element ofA with

itsrightneighbor,storinga 1intomemory location

B ifthe comparison returns an inequality,and 0

otherwise,subselectprocessorsinwhich B is1,ina

sendingoperationretrievethe tabularlookupvalue
foreach subselectedpixel/processorintoC, perform

a segmented copy scan on C, with segmentation

memory location= B, and unsortC intothe output
memory location.This takes O[(/ogn)2] time on n

processors,with n pixels,and constantmemory per

processor.

Linear Local Neighborhood Gray
Scale Adjustment

This algorithmperforms preciselythe same as the

normal lineargray scaleadjustment,exceptdiffer-
ent valuesforMAX and MIN are computed foreach

pixel.This algorithmtakes differenttime,because
it finds the MAX and MIN for neighborhoods

around each processor,which can be found in order

m time,where rnisthe linearsizeofthe neighbor-

hood. To find MAX, each processorexamines the

processorinitsown column, m rows up, then m-l,

then m-2, etc.,to find the maximum value along

thatline.Then each processordoesthe same thing,

with rows and columns switched,upon the maxi-

mum valuessofarfound.Now eachprocessorsends

thisresultto the processorm/2 right,and rn/2up.

Now each processorholds its appropriateMAX.

MIN can be computed similarly.

Median Filtering

This algorithm could be simple with indirectad-

dressing.Each processorperformsthe standardme-

dian takingalgorithmas done in serial.This takes

orderq time,where q isthe number ofelements in

the immediate neighborhood.Indeed,forsmall im-

mediate neighborhoods,that is the proper algo-

rithm touse,but forlargerneighborhoods,thereis

an algorithmthattakesO[(logq)2]time.First,seg-

ment the image intoblocksofq pixels.Sorteach of

theseblocksintomemory locationA. Now itisim-

mediatelypossibleto get the median of every qth

pixel.In fact,inO(logq)stepswe can findthe medi-

an ofeveryq/2nd pixelby combining adjacentsort-

ed listsofpixels.This can be done recursivelyso

that in O(logq) stepsevery pixelhas the median

of itsneighborhood. Thus, this algorithm takes

O[(logq )2] time.

Histogram Equalization

The objectiveinthisalgorithmisto causethe inte-

gralofthe histogram of the outputimage tobe as

nearlylinearas possible,while followingthe con-

straintthat any two pixels,ifequal in shading in

the inputimage,have the same shadingin the out-

put image.

A very simple sequence of paralleloperationsac-

complishesthis.First,sortthe pixelsinterms ofin-

tensity,and storethe resultintomemory location
A. Preserve the unsort informationfor lateruse.

Have each processorlooktoitsrightneighbor(ina
lineararray),and ifthe value isdifferentfrom its

own, inA, then storea 1 intoB, otherwisestorea 0
intoB.

Perform a rain-scanon the processorindex(selfad-

dress),segmented by B,storingthe resultintoC.

Unsort C using the preservedunsortinginforma-
tionsaved from above.That isall.The unsortedC

now containsthe new valuesforthe output image.

At leastone pixelofa givengray scalevalue in the

outputimage has the same gray scalevalue as pro-

cessorindex.Any givenpairofpixelswith the same

valueon inputhas the same valueon output.

The image can now be scaledlinearlytomatch the

dynamic range desired. This algorithm takes

O[(/ogq)2]time,due tothe sort.

One can alsoperform a localneighborhood histo-

gram equalizationin much the same way thatthe

median filterworks.In thiscase,everyqth pixel(q

isused the same way hereas above),determinesits

rank in itsneighborhood by having itsneighbor-
hood sorted.This rank servesas an unscalednew

value.Now every q/2nd pixelcan determine its

rank in O(logq)stepsusing the two sortedlistsof
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numbersthat alreadyhave been generated by its

neighborsofindexa multipleofq.This can be done

recursively,sothatthe totaltime isO[(logq)2].

Conclusion

A number ofgray scaleadjustment algorithms'de-

scriptionsand order ofgrowth performanceshave
been discussed.There issubstantialreason to be-

lievethat since every algorithm attempted ran

quickly(orderpolynomial in log of the sizeofthe

problem at worst),gray scale adjustment algo-

rithms'performance, and their cousins in statistics,
graphics, and image processing, will benefit from
SIMD architectures.
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A PARALLEL PARTICLE-IN-CELL MODEL FOR THE MASSIVELY PARALLEL PROCESSOR

C. S. Lin A.L. Thring J. Koga

Southwest Research Institute

San Antonio, TX 78284

ABSTRACT

The Particle-in-cell (PIC) model, which has been used extensively on

supercomputers to simulate fusion and space plasma phenomena, is dif-

ficult to develop for the Massively Parallel Processor (MPP) because

the model requires indirect indexing in computing electric fields. To
overcome the difficulties, a parallel PIC algorithm is developed for MPP

by mapping particles in a cell randomly to a row of processors. Because

of this mapping, the algorithm needs only the nearest neighbor com-

munication to sort particles and to collect charge density for each cell.

From the cell charge density, this algorithm then calculates electric

fields at the cell by Fast Fourier Transform. The developed PIC code

has a speed comparable to that of the vectorized PIC code on CRAY

X-MP. The results from simulating the plasma instabilities of a cold

electron beam in a hot electron background are presented.

Keywords: particle-in-cell model, plasma simulation, beam plasma in-
stability

INTRODUCTION

This paper reports a parallel particle-in-cell (PIC) algorithm developed

for the Massively Parallel Processor (MPP) at Goddard Space Flight

Center. With the nearest-neighbor communication, the MPP consists

of 16,384 processors configured in a 128 × 128 array. Based on the

developed algorithm, the MPP PIC code called MPPPIC simulates the

electrostatic interactions among 524,000 charged particles in a two di-
mensional plane with 128 by 128 cells. Although the MPP has a slow

clock and 1/O speeds, MPPPIC is as fast as the corresponding PIC
code on CRAY X-MP.

The particle-in-cell model, which has been used extensively for study-

ing wave-particle interactions in fusion and space plasmas, is difficult to

develop on parallel computers because the model needs indirect index-"

ing to compute charge density at the cell from particles' positions and

electric forces on the particles from the cell charge density. Recently
some success has been obtained with a one dimensional electrostatic

PIC simulation developed for the Hypercube parallel computer with 32

processors where the simulation box has been divided into sub-domains

containing an equal number of particles (Ref. 1). Two studies have at-

tempted to develop two-dimensional plasma simulation codes on the

MPP (Ref. 2 3). In one study, the model maps the simulation domain

directly to the processor array and sorts particles according to their

cells every time step (Ref. 2). The algorithm turns out to be ineffi-

cient oil the MPP because it needs to extensively use I/O between the

array unit and the staging memory. Furthermore, the processors do

not evenly share the computation load because fluctuations in electric

forces cause particles to distribute nonuniformly over the processors. In

the other study, we developed a gridless model, which maps particles

randomly to processors (Ref. 3). Avoiding the charge collection, the

gridless model computes electric forces directly using discrete Fourier

Transform. Although the algorithm is fully parallelized and particles

are uniformly distribued over the processors, the gridless code is still

CH2649-2/89/0000/0339501.00 © 1988 IEEE
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seven times slower than the PIC code on the CRAY X-MP because

the gridless model has much more computation than the PIC model

(Ref. 4).

Learning from the previous two studies, we developed a parallel PIC

algorithm that maps particles in a cell to a row of processors. This

parallel algorithm can efficiently sort particles and easily collect charge

density for each cell. The next section presents the key ingredient of

this algorithm, particle mapping and sorting. Section 3 describes the

numerical method, the flow chart and the timing of the MPPPIC code.

Section 4 shows some results from simulating a plasma instability of a

cold electron beam in a hot plasma. Finally, section 5 summarises the
results.

PARTICLE MAPPING AND SORTING

Figure 1 illustrates the scheme that maps particles in a cell to a row

of processors. For example, in a two dimensional x - y plane, all the

processors in a nth plane have the z coordinate within the nth column

z, < x < z, + Az, where z, is the x coordinate of the column and

&x is the column width. This mapping scheme implies that a phme of

array processors has particles with the same z cell coordinate, that is,

in the same column of celh. In each particle plane, particles in jth row

of processors have the y position as y_ < y < Yi + Ay, where Y1 i8 the

coordinate of the jth cell in the y direction.

For each particle plane, we use six array planes to specify the two

spatial coordinates x and y, the three components of velocities Vr, Vv

and G, and the species index k. For a simulation domain with 128

by 128 cells, the model ideally would have 128 particle planes to store

particle coordinates. However, because the MPP's 64 Mbyte staging

memory can store 64 but not 128 particle planes, we pack 2 columns of

cells in a particle plane to simulate a simulation domain of 128 by 128

cells. Therefore, in the MPPPIC code, a row of processors actually con-

tains particles in two cells. Moreover, MPPPIC partially fills the row of

processors with particles and lets the sequence of particles in a row of

processors be random (Figure 1, lower panel). As explained below, the

vacant processors and the random sequence simplify the communication

among the processors, resulting in a more efficient sorting procedure.

At every time step, MPPPIC sorts particles according to their cells

as electric forces move some particles to the neighboring cells. The

sorting procedure involves shuffling particles to the neighboring rows

and merging particles into the neighboring particle planes. For particles

moving to the adjacent cells in the y direction, we rotate particles to

the neighboring rows in the north-south direction. For particles moving

to the neighboring cells in the z direction, we merge them into their

new particle planes. When particles are shuffled or merged to the oc-

cupied processors, we rotate the processors in the east-west direetion

until vacant processors are found. Searching of vacant processors in a

row is possible because of the random sequence of particles in a row. If

the row of processors has sufficient vacancy, the shuffling and merging

of particles will not overfill the processors, thus greatly simplifying the
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PAKrlCLE LOADING SCHEME

(x e < x < X n + AX)
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PARTICLE INDEX

Figure 1. Schematic of mapping particles to the processors

sorting algorithm. However, too many vacant processors decreases the

algorithm efficiency. We thus typically load 50% of the processors with

particles by choosing the average number of particles per particle plane
to be 64.

NUMERICAL METHOD AND FLOW CHART

The particle-in-cell simulation code usually represents the plasma as

a large number of finite-size particles moving according to classical me-

chanics in the self-consistent electromagnetic fields. The two-dimen-

sional spatial system is then divided into fixed spatial cells or grids on

which charge densities, potentials, and fields are defined. For the pur-

poses of illustration, we will discuss only the electrostatic model which

has no electric current density. Details of the PIC model are given in

the textbooks of plasma simulations (Ref. 5-6_

A charged particle is assumed to have a rectangular shape with a

width A comparable to the cell width. The charge density of each

cell p(xg, yg) is calculated by accumulating each particle's contribution

according to its occupied area in the cell, where x a and y_ are the co-

ordinates of the cell. The charge density defines the electric potential

according to Poisson's equation

V2¢(z_, vg) = -4_p(zg, v_) (1)

We use Fast Fourier "l_ansform to solve the electric field at the center

_f the cell E(x a, yf) from Poisson's equation and the definition

E(_9,v_): -_ (2)

From the electric fields at the nearest grid points E(zo, Ye), the code

then interpolates the electric forces on the particles. Finally, we use a

hap-frog scheme to solve the equations of motion in a uniform magnetic
field B

dg/dt = (q/m)(g+ v- × #) (3)
e

dF/dt = 6" (4)

where m and q are the particle mass and charge, and Fis the particle's
radius vector.

Figure 2 gives the flow chart of the MPPPIC code. The first pro-

cedure INITPARTICLE initializes particles' positions at the zero time

step and velocities at - 1/2 time step according to the mapping scheme

described in Section 2. Procedure PUSH then obtains particles' new

positions and velocities r '_ and v '*-U2 using Equations 3 and 4. The

next procedure SORT contains two procedures SHUFFLE-Y to shuflte

particles in the y direction and MERGE_X to merge particle planes in
the z direction as described in Section 2. Procedure CHARGE collects

the cell charge density p, which is the input to the procedure FIELD.

MPP PIC FLOW CHART

START

I INIT PARTICLESro, V-VZ

PUSHrn, vn-1/2

i s°'TT
CHARGE

p (xo, y_)

FIELD 1E {xg, yo)

TIME _ J

STEP[ "_YES [EXIT

STORE

RETRIEVE

RESTORE

Figure 2. Flow Chart of the MPPPIC code.

r-,,,

STAGING

MEMORY
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Solving Equations 1 and 2 for the electric field at the cell E(xg,yg),
the FIELD procedure uses the two-dimensional Fast Fourier Transform

developed for the MPP by Ref. 7. Finally, the INTERPOLATION pro-

cedure interpolates the electric fields E(r _) at the particles' position

from E(xa, Ya) before returning to PUSH for the next time step.

Since the I/O between the staging memory and the array processors

is slow, the MPPPIC code minimizes the number of I/O by retrieving

each particle plane once during PUSH and restoring the particle plane

in the staging memory after CHARGE. Furthermore, the code outputs

diagnostic quantities such as particles' positions and velocities, charge
density, and electric fields after FIELD.

Because MPPPIC loads particles randomly on half of the processors

for 64 particle planes, the code can simulate up to 524,288 particles.

For simulations with 524,288 particles, MPPPIC runs about 4.7 sec-

onds per time step, which is six times faster than the vectorized PIC

code on our CONVEX C-1 computer. On the CRAY X-MP at San

Diego Supercomputer Center, we used to run the PIC code for 32,768

particles on a 32 x 32 grids for 0.25 seconds per time step. Since we

no longer have access to CRAY X-MP, we cannot compare the perfor-
mance of MPPPIC with the corresponding PIC code on CRAY X-ME

However, from our previous jobs, we estimate that MPPPIC is slightly
slower than the vectorized PIC code on CRAY X-MP.

Table 1 lists the percentage of timings for each procedure during a time

step, indicating that PUSH and FIELD procedures use very little time,

7% and 3% of the total time, respectively. MPPPIC spends about 22%

of the time on transferring 64 particle planes between the array unit

and the staging memory. On other parallel computers with large array

memory, this code would increase its speed by simply eliminating the

I/O for transferring particle arrays. Sorting particles according to their
cells also takes a significant 41% percentage of the MPPPIC time. The

sorting algorithm essentially plays the role of communications among

the MPP processors, which have only nearest-neighbor communication.

It is unclear how much improvement MPPPIC would make on other

massively parallel computers with sophisticated communication.

TABLE 1. Percentage of Timings for MPPPIC Procedures

Procedure Timing Percentage (%)
PUSH

SORT

CHARGE

FIELD

INTERP

Uo

7

41

15

3

12

22

Total 100

SIMULATION RESULTS

To study beam plasma interactions in the earth's magnetosphere, we

use MPPPIC to simulate the electrostatic interactions between a cold

electron beam and a hot electron background. At altitudes of 2-3 earth

radii in the auroral zone, the electron background is usually a mixture
of cold electrons with a temperature of less than 1 eV and hot elec-

trons with a temperature of about 1 keV. During auroral activities,

keV electrons precipitate into the upper atmosphere to produce au-

roras because of electric fields along the geometric field lines. In the

region where parallel electric fields accelerate precipitating electrons to
form a cold beam, parallel electric fields also deplete the cold electron

background. Assuming a neutralizing ion background, we can therefore

simulate high frequency wave instabilities by using only the two com-

ponent plasma, a cold electron beam and a hot electron background.

In a separate paper, we reported the results of simulations of such a

beam plasma instability in one dimension on the CONVEX C1 com-

puter to explain broadband electrostatic waves observed by satellites

in the earth's auroral zone (Ref. 8). The two dimensional simulation

results from the MPP agree with those obtained from the CONVEX

computer. Below we briefly describe the simulation model and present
the MPP results.

We initially loaded the beam and background electrons uniformly in

the simulation system with a uniform magnetic field in the y direc-

tion. The background electrons had Maxwellian velocity distributions

with the thermal velocity ah, whereas the beam electrons had a shifted

Maxwellian distribution with the beam velocity v_ and the thermal ve-

locity a6. The simulation had the same number of particles for the back-

ground electrons and the cold beam. We chose ah ---- O. 1 C, ab = 0.001 c,

and vb = 0.15c, where c is the speed of light, a unit of the simulation.

The grid size, A was half of the Debye length of the hot electrons de-

fined as Aa = ah/ww, where wv, is the hot electron plasma frequency.

The electron gyrofrequency wc_ in the simulation was 4.0wp¢, which is

typical at high altitude auroral zone. For the time increment per step,

the simulations used At = 0.05_'e 1.

Figure 3 shows the phase space vu - y of the beam electrons (left pan-

els) and the hot electrons (right panels), which are a small sample of
the total population. The top two panels show the initial distribution

for the beam component (Panel la) and the hot electrons (Panel Ib).

Panel la indicates that the electron beam initially has a beam velocity

vb = 1.5vh in the y direction. At N = 200 step, the cold electron beam

began to oscillate in the phase space (Panel 2a). The phase space plot
at N = 600 time steps shows that the electron beam forms the vortex

pattern in the phase space, suggesting electron trapping by large am-

plitude electrostatic waves (Panel 3a). Although the vortex pattern is

less clear, hot electrons also oscillate in phase space (Panel 3b). About
this time step, the electrostatic wave grows from very small fluctuation

level to a maximum amplitudes. At the end of simulation (N = 1200)

the electron trapping motion is been destroyed (not shown).

The two dimensional contour plots of electric potential at N = 600

show horizontal wave structures (Figure 4), which is better illustrated

in color plate III, p. 695 (Figure 6). The horizontal wave structures in

potential suggest an electric field in the vertical direction or along the

magnetic field. From Figure 4, we deduce the dominant wave mode to

to have a wavelength of about 40A, or about 47rvb/Wpe in the physical
unit. The frequency spectrum of potential reported in Ref. 8 shows a

broad power law spectrum up to 2wp,. The wave instability produced

by a cold electron beam in a hot electron background therefore can

produce broadband electrostatic waves above the electron plasma fre-

quency. In contrast, the well known Buneman instability due to the

interactions of a cold beanl with a cold plasma occurs at. frequencies

less than the electron plasma frequency.

SUMMARY

The objective of this paper is to demonstrate that a parallel particle-

in-cell (PIC) algorithm is feasible for the Massively Parallel Processor.

Currently, our parallel PIC code MPPPIC performs as fast as CRAY

X-MP, a very good performance since the MPP has a slow arithmetic

operational speed. In principle, the proposed algorithm also works for

other single-instruction-multiple-data (SIMD) computers like the DAP

and the Connection Machine. With faster I/O or more array memory,

the parallel PIC algorithm has potential to simulate large-scale research

problems in plasma physics and astrophysics, which have used the PIC

model extensively. The efficiency of this algorithm mainly depends on

the percentage of the occupied processors. In our example, electrostatic

waves cause the localized distribution of particles in space, resulting in

inefficient use of processors. Future studies will need to improve the

algorithms in order to use the processors more efficiently.
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ABSTRACT

A parallel algorithm is described to determine motion vectors of

ice floes using time sequences of images of the Arctic ocean

obtained from the Synthetic Aperture Radar (SAR) instrument

flown on-board the Seasat spacecraft. Time intervals between

two successive images of a given region can be as much as three

days. During this period, large translations and rotations of ice

floes can occur. Therefore, conventional local correlation tech-

niques which perform searches in a small neighborhood to detect

translated features have a very small chance of success. To

account for large, translations and rotations, it is necessary to

perform large area searches in a three dimensional space (two

translational and one rotational). This makes conventional corre-

lation techniques computationally intensive even on a high-

speed parallel computer such as the Massively Parallel Processor

(MPP). In this papea" we describe a parallel algorithm which is

implemented on the MPP for locating corresponding objects

based on their translationally and rotationally invariant features.

The algorithm first approximates the edges in the images by

polygons or sets of connected straight-line segments. Each such

"edge structure" is then reduced to a "seed point". Associated

with each seed point are the descriptions (lengths, orientations

and sequence numbers) of the lines constituting the correspond-

ing edge structure. A parallel matching algorithm is used to

match packed arrays of such descriptions to identify correspond-

ing seed points in the two images. The matching algorithm is

designed such that fragmentation and merging of ice floes are

taken into account by accepting partial matches. The technique

has been demonstrated to work on synthetic test patterns and real

image pairs from Seasat in times ranging from .5 to 0,7 seconds

for 128 x 128 images.

INTRODUCTION

Sequential images of ice floes in the Arctic ocean were

obtained from the Synthetic Aperture Radar (SAR) flown on-

board the Seasat spacecraft in 1978. Using time sequences of

these images, it has been shown in the literature that it is possible

to map ice motion. The approach taken is to match recognizable

features in the ice field which are imaged from two successive

orbits. The matching procedures have been traditionally manual

and time consuming. In order to perform this task routinely on

a large number of images, it is necessary to develop automated

analysis techniques. Recently, several automated techniques of

estimating ice motion using cross correlations have been pro-

posed (for example, [1-3]). Collins [31 posed the problem of

finding a field of displacements between two successive images

as an estimation problem. The typical time interval between two

images of a given region is of the order of three days. During this

period, large differential translations and rotations of ice floes

can occur. Therefore, conventional local correlation techniques

which perform searches in small local neighborhoods for dis-

placed features have a very small chance of success. To account

for large translations and rotations, it is necessary to perform

large area searches in a three dimensional space (one rotational

and two translational dimensions). These factors make correla-

tion techniques computationally intensive even on a high-speed

parallel computer such as the Massively Parallel Processor

(MPP). Additional problems specific to ice floe images are

fragmentation and merging during the time interval between the

images. This requires approximate matches of ice floes from one

image to the parts of larger ice floes from the other images. This

problem is referred to as segment matching in the literature [4].

The work reported in this paper is an effort to automate ice

floe matching in computationally feasible times (a few seconds

for a pair of 512 x 512 images) using the MPP. In our approach

the images are abstracted as line models of the boundaries of

dominant objects (ice floes) in the image, and these models are

matched using parallel matching techniques. The boundaries of

the dominant objects are extracted by edge detection algorithms

and the edges are segmented into set of lines by fitting polygons

or connected sets of straight lines to the edge data. Such polygons

or connected sets of straight lines will be referred to as edge

structures. Now the problem is to match corresponding edge

structures in the two images. Edge structure models have been

used in the literature for matching cloud images [5] and terrain

scenes [6]. Both these techniques are essentially sequential and

are not considered segment matching. Davis [4[ uses a relaxation

technique for segment matching of edge structures. Initially,

figures of merit are assigned to the matches between pairs of

angles on two edge structures. Relaxation methods are then used

U.S. Government Work. Not protected by

U.S. copyright.
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to find acceptable combinations of these matches. This method
is also sequential and is not a practical solution for images
containing thousands of edge structures.

THE ALGORITHM

The algorithm presented in this paper consists of the follow-
ing steps, each of which is implemented in parallel. The edges
of ice floe images arc obtained by a suitable edge detection

algorithm. The edges obtained are further subjected to some
preprocessing such as thinning and eliminating isolated edge
points. A connected component labeling algorithm [7] is applied

to the edge map to obtain a label array, LBL This algorithm
locates a seed point in each connected set of edge points in the
edge map and assigns the address of the seed point to all edge
points in the connected set. Next, each edge is decomposed into
a set of straight line segments. This is accomplished by detecting

the corner points in the edge map. The corner point detection
algorithm examines a local window (typically 7 x 7) and fits a
su'aight line passing through its center. The fitting error, equal to
the sum of the perpendicular distances from the edge points of the
window to the fitted line is computed. The locations at which this

error function has local maxima are identified as corner points.
By assigning O's to all corner points in the edge map the
connected sets of edge points are separated into straight line
segments to obtain a segmented edge map. Now, the length of

each straight line segment is computed by shrinking the seg-
mented edge map and counting the number of shrink operations

each segment undergoes. The lengths so computed arc stored in
an arrayLEN, with the mid-points of each line segment contain-
ing its length and all other points containing 0. The orientation
of each line segment is computed by applying the Hough trans-
form to local windows (typically 5 x 5) surrounding its mid-
point. This information is stored in an array, DIR, at addresses
corresponding to the mid-points of the line segments. Next,

sequence numbers arc assigned to all line segments within each
connected component indicating the order in which they arc

connected. This algorithm processes the edge map and LBL
arrays to produce sequence numbers. This information is stored

in an array, SEQ. Now, the quadruple (LBL,SEQ,DIR, LEN)
provides a complete description of the edge structures in the
image. These quadruples arc sorted with LBL and SEQ as the
primary and secondary keys, respectively, using abitonic sorting

algorithm [ 12]. This brings all data values of the arrays together
into adjacent processing elements. Note that the arrays of sorted
attributes is significantly smaller than the original images. This
can make the matching more efficient, especially for images
significantly larger than the n x n processing array if attribute

records arc packed by processing n x n segments of the images.
These sorted arrays obtained from two images are then matched
using a combination of global and local correlations. In the
following sections we describe each of these steps in more detail.

Preprocessing:

The preprocessing step consists of obtaining the boundary of
the dominant objects of the ice floe images and applying thinning
and eliminating isolated edge points. In the present work,

various edge detection techniques such as Marr-Hildreth's zero
crossing detection [8], Canny's algorithm [9], and Spatially
Constrained Clustering (SCC) [Triton, 10] were applied to the ice

floe images. Both Marr-Hildreth's and Canny's algorithms gave
unacceptable results. The zero crossings obtained by convolving
the Laplacian of Guassian with the image combined the bounda-
ries of the dominant objects with several other details and so it

was difficult to delineate the boundaries from the zero crossings.
Larger filter sizes could solve this problem to some extent but the
edge location accuracy becomes poor. The Canny's algorithm

also has the same problem for the ice floe images. The smaller
filter gives unnecessary edges (due to noise and fine texture) and

large filter sizes affect the shape of the boundary. Tilton's SCC
algorithm [10], which grows regions based on a "best pair
merging" criterion, performed better than the other two in

delineating boundaries of dominant objects. The edge focussing
algorithm by Bergholm [11] performed best for these images.
This edge focussing algorithm is as follows.

1. Initialize a mask (of the size of the image) to l's.

2. Detect major edges using Canny's algorithm with large size
Guassian filters (e.g., o = 7.0) and an appropriate threshold
(e.g., 0.1) for the image. Accept edges only at locations where
mask has values 1 as true edge.

3. Dilate the edges obtained in step 2 by one pixel in each
direction and generate a mask which is 1 at all the dilated
edge locations.

4. Now decrease sigma of the filter by 0.5. (It is shown
analytically in [ 11] that change of sigma by 0.5 can displace
an edge location by at most one pixel on either side of its
previous location). Repeat steps 2 and 3 until the fiher size
is 0.5.

In order to speed up convolution the filter size also can be
reduced in steps of two for every iteration starting with a size of
15 x 15.

This algorithm takes about 200 ms for 128 x 128 images on
the MPP to perform 7 iterations with window sizes ranging from
15 x 15 to 5 x 5. The results of the edge detection algorithm are

shown in Fig. 2(a - b) for both the images of the given pair
Fig. 1(a-b).

The edges obtained using the above algorithm are one pixel
wide, but they are 4-connected for inclined (other than horizontal
and vertical) lines. The subsequent processes involved require
inclined edges to be 8-connected. A thinning algorithm is used

to reduce such inclined 4-connected edges to 8-connected edges.
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Thethinningalgorithm examines a 3 x 3 neighborhood and

replaces the central pixel by 0 under the following conditions:

001 xlx 00x
011 011 011
001 xlx xlx

In the above configurations 0 denotes the absence of an edge
point, 1, the presence and x, a don't care condition. The other

configuration of masks can be obtained by rotating the above
masks by 90 degrees. The elimination of isolated edge points is
straightforward.

Connected Component Labeling:

The connectedcomponentlabelingalgorithmlabelseachof

theconnectededgeswithalabelthatisequaltothearrayaddress

of the seed point. The algorithm is discussed in detailin [7]. This
algorithm is based on parallel shrinking and expansion of binary
patterns and requires about 30 ms of MPP time for labeling the

edges. The time required is data dependent and is proportional
to the length of the within-component-path of the longest com-
ponent. The connected component labelling reduces all con-
nected patterns, both open and closed, to single points called seed
points. The connected component labels obtained from the edge

maps are shown in Fig. 3(a-h). The value of the label at a pixel
is coded as its grey level so that all pixels belonging to a given

connected component are displayed with the same grey level
value.

Edge Decomposition:

Each connected component identified above is decomposed
into a set of straight line segments by first identifying the corner
points. The edge points between a pair of corner points are
assumed to form a straight line. Corner points are edge points

where the line direction changes significantly. The algorithm fits
a swaight line at every edge point to the connected set of edge
points in a local neighborhood of size w x w (w = 7, typically).
The fitting error (which is sum of perpendiculars from the edge

points onto the fitted line) is co_puted. The local peaks in the
fitting error function correspond _ the corner pixels. The fitting
error function is derived as follows.

r,_ :tl

Let ax + [3= 0 be the equation of the straight line passing through
the origin of a local coordinate system to be fitted to the

fonnected set of edge points in a w x w local neighborhoocL

The error term, e, is sum of perpendiculars from all connected
edges of the local window which is given by

i

The value of a resulting in minimum e is obtained by differen-

flaring error, _ with respect to ¢xandequating it to zero.

a = -_ xiYi / xi: (2)
i

The minimum error for the best fit, Em can be obtained by
substituting a from equation 2 in equation 1.

Em = _yi 2 - (_x, yl)2/_ Xi2 (3)
i i i

High values of the error term _ indicate corners because a single
line cannot be fitted to the given set of edge points. Therefore,

local peaks of _ correspond to the corner points. The corner

points detected in both images are shown in Fig. 4(a - b)
superimposed over the corresponding edge images.

Length Computation :

The line segment lengths are computed by applying an 8-
connected shrinki.ng algorithm [7] repeatedly on the edge map
wherein corner points are replaced with O's. The number of
shrinking operations required to reduce each line segment to a

single point corresponds to the length of the line segment. Thus
the lengths of the line segments are stored at their mid- points
(called line-seeds). These points are the locations where all
information needed for matching (such as label, direction, and

length) about the line segments is stored. The length of the
different edge segments are shown in Fig. 5(a-b) for two images.

For displaying length as gray level image its value is propagated
throughout the edge segment. The algorithm however, does not

require this propagation.

Direction Computation :

The direction of each line segment is computed at the line-
seeds using a localized version of the Hough transform. At every
line-seed in the edge map a local neighborhood of size w x w is
examined, For every point in the neighborhood with the same

label as the line-seed, the angle subtended by the line joining it
and the line-seed is computed. A 32-bin histogram of these
angles over the w x w window is computed. This corresponds to
an angular resolution of less than 6 degrees. The slope corre-

sponding to the peak of the histogram is the direction of the edge
segment. The direction of different edge segments are shown in
Fig. 6(a-h) for two images.

Sequence Computation :

An ordered set of direction and length measurements corre-

sponding to a sequence of connected line segments constituting
an edge structure describes the edge structure
completely. The order of occurrence of line segments is essential
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for this description to be unique. Thus attaching sequence
numbers to all line segments of the edge structures is an impor-
tam step of the algorithm. The sequence numbers are attached to
all edge points constituting the edge structure and the numbers at
the location of line-seeds are retained as line attributes. The

sequence numbers are attached to all points of the polygon
boundary starting from seed points for closed polygons. The
process is slightly different for open edge structures and will be
discussedlater. Initially a sequence number of 1 is attached to all

seed points (starting points) of the polygons. Now a 5 x 5
neighborhood centered at one of the immediate neighbors of

starting point is considered. This point is given the next sequence
number provided none of the other seven neighbors of the
starting point has already been given this number. Then the
position of the starting point is shifted to the current pixel where
sequence number is assigned. This is repeated until no more
assignments are possible. This algorithm is sequential along

perimeter of a given polygon, but operates in parallel on all
polygons.

For open edge structures the seed points are the mid-points

(rather than end points), so they are not suitable as starting points
for sequence generation. One of the two end points should be

considered as a starting point. To locate the starting point for all
open edge structures in parallel, we proceed as follows. The line
ends are detected by examining 3x3 windows and counting

number of edge pixels surrounding the central edge pixel. If this
number is equal to 1 then the central pixel is an end point. This
is valid for thin edges where inclined edges are 8-connected (but
not 4-connected). Then the sequencing algorithm is applied
from the seed points as in the case of closed polygons. The

sequencing algorithm terminates at one of the end points. Now,
it is not difficult to locate unique end points in parallel. The
points where the sequence array has avalue greater than 1and the
line-end array has a value of 1are the starting points for open edge
StrUCtureS.

Thus the sequence computation algorithm treats closed and
open edge structures separately. The open edge structures can
easily be separated from closed edge structures (polygons) by
applying an 8-connected shrinking algorithm. The open edge
structures shrink to isolated points and closed ones are not

affected. By eliminating isolated points after shrinking, the array
will have only closed polygons. To obtain only open edge
structures, the array containing closed polygons is subtracted
from the array of all edge structures. The sequence numbers

obtained by this algorithm have been ceded as gray values and
shown in Fig. 7 (a-b). The sequence information, label, length,
and direction are retained only at the line-seed locations for
further processing.

Matching of edge structures:

The four edge structure attributes, namely, label of each edge

structure, sequence numbers of line segments, direction value of
each line segment, and length of each line segment, are stored in

arrays LBL, SEQ, DIR, LEN. In these arrays, all locations except
the line-seed points (defined above) contain 0's. Since this data

is quite sparse the matching can be significantly improved by
packing the measurements in the adjacent Processor Elements

(PE) of the MPP. This is accomplished by sorting the edge
structure attribute quadruplets using LBL, and SEQ as primary
and secondary keys, respectively. A parallel bitonic son algo-

rithm [12] is used for this purpose. The sorting brings each edge
structure attributes into the adjacent PE locations. The quadru-
plet (LBL, SEQ, DIR, LEN) completely characterizes the edge
structures. Since DIR, LEN are sorted using LBL and SEQ as
primary and secondary keys, respectively, the order in which

they occur in adjacent PE's is a complete description of the edge
structures. The matching algorithm essentially looks for similar

list of attributes, DIR and LEN. The array, DIR contains the
directions of line segments. The angle between the adjacent sides
is used for matching. This can be obtained by a single absolute
difference operation of DIR values contained in adjacent PE's. If

DIR alone is used, the polygon matching is not affected by
rotation as well as scale changes. It is necessary to use both DIR
and LEN to ensure that significantly different scales of similar
objects are not considered identical.

The sorted arrays (LBL, SEQ,DIR,LEN) for each of the

two images are treated as one dimensional vectors for subsequent

matching. (The snake-shift feature on the MPP is extensively
used for this purpose). To permit matching of open edge
structures in one of the images with closed polygons in the other
without being sensitive to the (arbitrary) starting segments in the
polygons and to avoid sensitivity to reversal of the sequencing of

segments in the edge structures, the quadruplets for each edge
structure are duplicated in the forward and reverse direction

respectively, for the fwst and second images. Thus for example,
the directional attributes for an n-sided edge structure in the In'st
image are stored as D 1, D2 .... Dn, D 1, D2 ..... Dn and for an m-

sided edge structure in the second image as d1, d2 ..... din, din,

din-1 ..... dl. The parallel matching of polygons proceeds as
follows.

1,

2.

Normalize DIR and LEN features of each polygon

Perform global correlation of DIR features and LEN fea-

tures separately for both images. That is compute Ca =
DIRI®DIR2 and C1= LENI®LEN2, where ® denotes
correlation. This is done efficiently using Fast Fourier
Transform.

3.

4.

l.x)cate local peaks in Ca and Cv

Shift DIR2 by an amount equal to the peak coordinate and
subtract from DIR1. Find sum of absolute differences

within a local window of size 5 around each point.

5. Where the sum of absolute differences is less than a

predetermined threshold, load the corresponding labels in
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6.

7.

the output array.

Set DIR1 and DIR2 at locations of matched labels to 0.

Repeat steps 2 to 6 until no more matches are possible or
DIRI or DIR2 contains all O's.

RESULTS AND DISCUSSIONS

Using the matching technique described in this paper we
are able to match ice floes which have undergone significant
translations and rotations during the time interval between two

images (Fig. 8). The edge extraction significantly affects the
results of the algorithm. We have demonstrated using test

patterns that our algorithm is able to match polygons accurately
which have undergone significant translations, rotations, frag-
mentation, and merging. These synthetic images are shown in
Fig. 9(a-b). The corresponding edge structures are shown in Fig.

10. The algorithm has been tested with subimages of ice floe
images and found to yield satisfactory results.

In the present work, we have established correspondence

among objects contained in the images by matching the sides
having same subtended angles and lengths. Using the informa-
tion so derived, it is possible to establish correspondence among

the pixels and thus compute optical flow.

The computation times are data dependent. For the 128
x 128 test image, where the edge detection step was not needed

the algorithm took approximately 500 msec on the MPP. For ice
floe images, 700 msec of the MPP time was required including
the time needed for the edge focussing algorithm. However, it is
to be noted that for larger images than 128 x 128, one would

process all 128 x 128 segments to obtain the edge structures and
pack the attribute quadruples and then perform the matching.
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ABSTRACT

Symbolic solutions of linear algebraic equations are im-

portant in many applications. Usually, special languages

for symbolic manipulations (e.g. MACSYMA) are used

for handling problems like these. However, pure symbolic

computations become very time- and memory-consuming

when the number of simultaneous equations increases. In

this paper we describe a new approach to the symbolic

solution of simultane_bus linear algebraic equations via nu-

merical computing. This approach has the following at-

tractive features: (i) computations are inherently paral-

lel and can be implemented on parallel processors with a

fine-graln architecture, (ii) calculations are reduced to two

well-studied problems: numerical solution of simultaneous

linear equations and the fast Fourier transform (FFT).

I. INTRODUCTION

This paper describes a new method for the symbolic so-

lution of simultaneous linear algebraic equations via par-

allel numerical computing. Symbolic solutions of linear

algebraic equations are important in many applications.

One particular application, which we shall constantly keep

in mind, is the computation of analytical expressions for

transfer functions of multivariable control systems. Usu-

ally, special languages for symbolic manipulations (e.g.

MACSYMA [1]) are used for handling problems like these.

However, pure symbolic computations become very time

and memory-consuming when the number of simultane-

ous equations increases. In this paper we describe a new

approach to the symbolic solution of simultaneous linear

algebraic equations via numerical computing. This ap-

proach has the following attractive features: (i) compu-

tations are inherently parallel and can be implemented

on parallel processors with a fine-graln architecture, (ii)

calculations are reduced to two well-studied problems: nu-

merical solution of simultaneous linear equations and the

fast Fourier transform (FFT).

The paper is organized as follows. The description and

mathematical substantiation of the method are given in

section II. Section III provides some numerical examples

illustrating the potential of the method.

II. DESCRIPTION OF THE METHOD

Consider the following simultaneous algebraic equations

A(_, A)J?(,, A) = _}(_, A)0(s, A), (Z)

where /i(s,A) and /}(s,A) axe matrices whose entries

are polynomials with respect to s and A.

We are concerned with the computation of the matrix

2fi(s, A) such that:

.,?(_,A)= _(,, A)Y(s,A). (2)

The matrix T is known in control theory as a transfer

function matrix. We restrict our discussion to the case of

two variables s and A only for the sake of notational

simplicity. The technique itself is directly applicable to

any number of variables. The condition that matrix en-

tries are polynomials is not very restrictive either. By

introducing new variables, we can always satisfy this con-

dition.

It is easy to see that matrix entries of _"(s, A) can be

represented as follows:

kv k v

Tn,n(s ' A) _ d,,_(s, A) = E. Ek d,,,_s A
zx(s, _) E E ok.s" _" ' (31

v k

where A(s, A) is the determinant of ft.(s, A). Thus, the

problem of computing symbolic expressions for Trim(s, A)

is tantamount to the problem of numerical computing of
kv

polynomial coefficients d,,_ and ckv.

To solve the last problem, we shall use the following change
of variables:

s = exp(iO), A = exp(i¢), (4)

0<0<2_, 0<¢<2r, i=JS-f. (5)

Then the expression (3) can be represented as follows:

_, _k dnme ed.,.,(O,¢) _ k. ,ks ,.,
T,,_(O,¢) = A(O,¢--------_= EEck,eikOei"_" (6)
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Thus, dnm(O , _) and _(0, _) can be construed as finite
two-dlmensional Fourier series and the unknown coe_-

dents d_ and c,_ can be interpreted as Fourier coef-
ficients. Consequently, the values of these coefficients can

be found through FFT if we somehow generate the values

of d.m(s , A) and A(s, A) in discrete mesh points:

&_ = exp(iS.r) , ('y = 1, 2,... r), (7)
A,., ----exp(i_,..,), (,., ----1, 2,... f/),

where

0, = 2_r_, _,, = 2'_'_. (8)

The last problem can be attacked as follows [2]:

Consider the basis

_i)= ,_) = ,...,_M)= (9)

in the linear vector space R M of input values. Substi-

tuting these basisvectors into (I),we obtain:

_i(_,_)_(_(_,_)= B(_,_)_-_, (lO)

where J_(m)(8, _) is a solution of (10) corresponding to

_=),m = 1,2 .... M. We will solve linear simultaneous

equations (10) for each mesh point (s.r, A_) :

.4(s.r,A_,)._(')(%, A_) --B('-r,A_) _m)" (11)

According to (9), we have:

B(s_, A_)u-'(m) = _m)(8.t,A,_), (12)

where b-'(m)(s_,Aw) isthe vector which coincideswith the

m-th column of matrix I_ computed at (s_,A,_).

Using (12), simultaneous equations (10) can be repre-
sented in the form:

i(,_,A_)_(=)(_,,A_)= b_-_(_,A_). (13)

If triangularization is used for the solution

of (13),then both the determinants A(,.r,A_,) and the

solution X(m)(s.r,Aw) can be found for each mesh-point

(av,Aw). Knowing these, the mesh-point values of

d,,,(s._,A_) are determined as follows:

d.=(_,, _) = X(j'(_,, _)A(_,, _.). (14)

This formula can be substantiated as follows.

According to (2),we have

Z(m)(_,_)= ¢(,,A)_). (15)

Taking into account the structure of the basis vectors
u"(=) , we find

x(,')(s,A)= r,_O,_)= d,m(_,_)
a(s,A). (_6)

Consequently,

O.=(,, A)= XLm>(_,A)A(,,A). (17)

Now, the validity of (14) follows from (17).

By using the mesh-point values of A(_._,A_,) and

d,m(s._,Aw) found as described before, the polynomial

coefHcients d,_m and ct, are computed by employing
the two dimensional discreteFourier transform:

(18)

t,, 1
d.m= --r--6_d"m(s"_)_-''e-'_"" (19)

Thus, the numerical algorithm can be stm_ma.,i_ed as fob
lows.

On the firststep, the linearsimultaneous equations (13)

are solved for each mesh point. Employing triangulariza-

tions of matrices A, the determinants A and the so-

lutions j_(m) are found. Using them and formula (14),

d.,. are determined. It is worthwhile noting that it is de-

sirable to solve the linear equations (13) _imult_neou, lv for

all different right-hand-side vectors _(m), m = 1, 2,..., M

at each mesh point. By this way, the triangularization of

matrix A (which isthe most time-consuming part of the

solution of linearequations (13)) need only be performed

once.

Itisapparent from the given descriptionthat the method

is conceptually simple and very general in nature. The

most computationally laboriouspart of the method isthe

solution of the linearsimultaneous equations (13) at the

mesh points. But these computations can be performed

in paralleland hardly any communication is required be-

tween differentprocessors (or differentgroups of proces-

sors)assigned for the solutionof linearsimultaneous equa-

tions (13) at differentmesh points. For this reason, the

numerical implementation of the method on parallelcom-

puters with a fine-grainarchitecture (such as MPPs) is

very attractive.However, the above method can also be

competitive with other methods in the case of implemen-

tationon sequentialcomputers. This is particularlytrue

for problems with large degrees of polynomial entries of

matrices A and B and relatively lower orders of these

matrices. For such problems, the numerical realization

of the above method on sequential computers will require

sequential solutions of simultaneous equations (13) of rel-
atively low order in many mesh points.
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III. NUMERICAL EXAMPLES

Even when implemented on a serial computer, the method

presented above proved to be very fast. As an exam-

ple, the transfer fimctions for an n-output, 2-input system

were computed using a SUN3/260 computer. The results
of these computations are the 2n transfer functions be-

tween the 2 inputs and the n outputs. The computation

was performed via two methods: MACSYMA sad the new

FFT method presented in this paper. The time in seconds

per transfer function is shown in Figure I for values of n

ranging from 3 to 6. Above n -- 6 MACSYMA would

not operate due to stack limitations. It is noted that the

computation time for MACSYMA increased fast, while
the time for the new FFT method was very small and did

not increase appreciably.
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Figure I. Time per transfer function.

To illustrate the accuracy of the new method, one of the

transfer functions computed above is detailed below and

compared with the exact results from MACSYMA. The
matrices A and /_ had entries made of second order

polynomials in s with random integer coefficients in the

range [0,99]. Integer coefficients were chosen because

MACSYMA operates faster with integers. Two entries

of .4 had _ added to them, these were in row 1 col-
umn 2 and in row 2 column 3. The size of the matrix _i

was 6 x 6 while the size of the /_ matrix was 6 x2.

For brevity, only the numerator of the first of the twelve

transfer functions is described below, first using MAC-

SYLVIA and then using the new method:

0.21932E + 11

0.41358E + 09

0.23546E + 10

0.54334E + 06

0.51435E + 07

0.14490E + 08

0.21693E + 08

0.10345E + 08

Using MACSYMA:

21932609902s 12 + 131917336967s n

+ (413599055_ + 215922330025)s 1°

+ (2354561915)_ + 356798599743)s _

+ (542728_ 2 + 2802355102_ + 144001382381)s s

+ (5134725_ _ + 3520281393_ + 23626820611)s 7

+ (14494201_ 2 + 1288205855_ - 726612572275)86

+ (21713039_ 2 + 1577795555_ - 657405288782)85

+ (10367073_ 2 - 4613069249)_ - 408739454002)s 4

+ (118576,_ 2 - 3978678622_ - 98433602039)8 s

+ (-29024444,_ 2 - 5576569512_ + 473611280028)82

+ (-3377269A 2 - 1691134813_ + 126088102484)8

- 22221022,_ 2 + 1564822806_ + 20522603760).

And using the new FFT method (five significant figures

shown, only the coefficients are printed, in the same posi-

tions as they appear above):

0.13192E + 12

0.21592E + 12

0.35680E + 12

0.28024E + 10 0.14400E + 12

0.35203E + 10 0.23628E + 11

0.12882E + 10 - 0.72661E + 12

0.15778E + 10 - 0.65741E + 12

- 0.46130E + 10 - 0.40874E + 12

0.97177E + 05 - 0.39787E + 10 - 0.98434E + 11

- 0.29018E + 08 - 0.55766E + 10 0.47361E + 12

- 0.33440E + 07 - 0.16912E + 10 0.12609E + 12

- 0.22188E + 08 0.15648E + 10 0.20523E + 11.

The new FFT method was tested for larger systems (MAC-

SYMA could not be used for n > 6 due to stack size

limitations). The results are shown in Figure 2 for n up

to 15. The irregularity of this curve is due to the fact

that the mesh points used were a power of two, while the
order of the transfer functions was not exactly equal to a

power of two, thus for some sizes, more mesh points were
used than the minimum number (in order to simplify the

FFT algorithm). It is also noted in Figure 2 that the rise
in time to about 2 seconds per transfer function is mostly

due to the use of a serial computer. Had the computation

been done on a parallel computer, due to the highly paral-

lel nature of the algorithm, the time per transfer function
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Figure 2. Timing for the new FFT method.

would not have risen as much as seen in Figure 2 which
was derived using a serial computer.

To further explain the significance of the times shown in

Figure 2, it is noted that when n = 15, there are 30

transfer functions, each of them a multinomial in 8 and A

with powers of s up to 30 and powers of A up to 2. Each

of these multinomials took less than 2 seconds to compute

using a serial computer (SUN 3/260). The coei_cients of

the nemerator of the first transfer function arc shown in

Table I. The _i matrix was of size 15 × 15 with entries

l_blynomials in s of second order whose coefficients were

random real numbers over [0, 1.Sj. The ]_ matrix was

similar but of size 15 x 2. The A matrix had k added

to two of its entries (row 1 column 2 and row 2 column

3).

IV. REFERENCES

[1] MACSYMA, a language for symbolic manipulation
developed at Project MAC at MIT. MACSYMA is
a trademark of Symbolies, Inc., a Delaware corpo-

ration.

[2] I.D. Mayergoyz, F.P. Emad, International Journal

of Control, vol. 46, No. 6, pp. 1935-1945, 1987.

TABLE I. The numerator of the first of 30 transfer

functions using the new FFT method detailed in the pa-

per. Entries for the coei_cients of s and A in the A and

B matrices were in the interval [0, 1.5]. (Note that each

_ne in the Table correspondsto a term (a2kA 2 -JcalkA +

a0k)_ k, k=0, 1 .... , 30).

|_ae_ato= of f£rst tern:

0.17142e+02 (k=30 term)

-O.4B880e÷02 (k=29 term)

0.5863Be+02 -0.14387e+02 (k=28 term, etc...)

0.36528e+03 0.42288e+02

-0.46595e+03 -0.58699e÷02 0.81924e+01

-0.217B6e+04 -0.43130e+03 -0.14208e+02

-0.96628e+03 0.48333e+03 0.13680.÷02

0.29870e_04 0.18400e÷04 0.13935e_03

0._0037e+04 0.10554e+04 -0.17604e+03

O.SOO59e÷04 -0.17465e÷04 -0.36679e+03

O.SOSO2e÷04 -0.600_8e÷04 -0.54296e÷03

-0.31939e_04 -0.40111e+04 0.80154e÷03

-0.41172e÷04 O.1251TQ÷04 0.166030÷04

0.13213e+04 0.95373e÷04 0.13955e+04

-0.43065e+03 0.32556t+03 -0._1903e+04

0.25146e405 0.44178e+03 -0.32236e÷04

0.18089e+06 O.tS231e+04 -0.23648e+04

-0.36137e+04 -0.26542e÷04 O.34667e+03

-0.30316e+08 -0.TSOO1e403 0.24B71e+04

-O.31543e+O5 -0.21666e+04 0.30368e+04

-0.13684e+05 0.11334e+05 0.18189e÷04

-0.77809e+04 0.11057e+05 -0.433470403

-0.10435e+04 0.40239e+04 -O.43849e+04

0.38144e÷04 -0.19818e+04 -0.31910e÷04

0.44378e÷04 -0.27993e÷04 -0.71390e+03

0.51358e_04 0.11420e+04 0.10551e+04

0.60292e_03 0.10322e+04 0.77673e+03

-0._1991e_04 -0.60690e+03 -O.1180Se+03

-0.4417_e+03 -0.74645e+02 -0.658Sle+02

0.95487e+02 0.83314e+02 0.18320e+02

0.84301e+02 0.23279e+02 0.62786e+01
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CLASS OF SIGNAL PROCESSING ALGORITHMS
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ABSTRACT

The Burg filter is a signal processing algorithm

which is widely used in such areas as geophysical

data analysis, speech processing and spectral

analysis. The structure of this algorithm is

typical of a class of important signal processing

algorithms. The Burg algorithm has been

investigated with the objective of determining its

suitability for implementation on parallel

processing architectures. The algorithm has been

implemented on three different machines,

representing a variety of parallel architectures:

the Denelcor HEP, the Intel IPSC/2 hypercube and

the NASA/Goodyear MPP. It is concluded that the

algorithm is especially suited for implementation

on massively parallel architectures, such as the

MPP.

INTRODUCTION

This paper discusses an investigation of parallel

processing implementations of an important type of

signal processing algorithm. The Burg algorithm

is commonly used in such areas as seismic data

processing, spectral estimation and speech signal

analysis. It has a structure which is similar to

several other signal processing algorithms, and

the results of this study should be relevant to

these algorithms as well.

During the course of this study the Burg algorithm

has been implemented on three different parallel

processing architectures: the Denelcor HEP, a

tightly coupled MIMD machine; the Intel iPSC/2

hypercube, a loosely coupled MIMD machine; and the

NASA/Goodyear MPP, a massively parallel SIMD

machine. It was found that the algorithm is

especially well suited to the massive parallelism

of the MPP. This was somewhat surprising since

the MPP, with its mesh architecture, was designed

(in part) to process two-dlmensional images; and

the Burg filter is a one-dlmensional signal

processing algorithm.

The next section of this paper will introduce the

Burg algorithm. This will be followed by a

description of the parallel implementation of the

algorithm, with special emphasis on the MPP, and a

comparison of the performances of the three

machines. Finally, there will be a discussion of

the results.

ALGORITHM DEYELOPMENT

The Burg filter is a method for' fitting an

autoregressive time series model. An

autoregresslve model of order m is given by:

AR FROCESS Xn÷a_Xn_1 + m m...+amXn_m=en (I)

m
where Xn is the autoregresslve process, a_ thru am

m is white noise.are the process parameters, and en
This model can be implemented by the digital

filter shown in Figure I. This figure illustrates

the direct form II implementation [I].

Figure I. Direct Form II Implementation

of Eq. (I).

Another way of realizing this process is by means

of a lattice structure, as shown in Figure 2.

en - _-- X

n-1

Figure 2. Lattice Implementation of Eq. (_)

eX n

In most applications the order of the process (m

in Eq, (I)) is not known a priori. Therefore the

analysis begins with a first order model, and the

order is increased one step at a time. It can be

shown [2] that the autoregresslve coefficients

(ai's of Figure I) are related to the reflection

coefficients (ci's of Figure 2) by the following

equation:

m i=I .... m (2)a_ *1 : a T + Cm+ 1 am-l+1

m+l
am+ I = Cm+ I

CH2649-2/89/0000/0353501.00 © 1988 IEEE
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The objective of the Burg algorithm is to estimate

the reflection coefficients, and in turn the

autoregresslve coefficients, so as to best fit the

data sequence {Xl,X2, ..., Xn}.

To derive the Burg algorithm, first consider the

forward prediction error of the m+1 th order

autoregressive model:

om+1 = xn aT ÷I
m+1

"'n + Xn-1 ÷ "'" + am+1 Xn-m-1 (3)

If equation (2) is used to obtain the

coefficients, (3) can be written:

m+1 = xn + (a_ ÷ m)xn_ I +e n Om+la m ...

+ (a_ + Cm+lalm)Xn_m + Cm+iXn_m_ I (4)

Now consider the forward prediction error of the

m TM order model:

m m + men = xn + a Xn_ I + ... amXn_ m (5)

There is an equivalent backward prediction model:

m + alm + + m (6)bn-m- I Xn-m- I Xn- m ... amXn_ I

It can be shown that the statlstios of this model

are equivalent to those of the forward prediction

model.

By comparing equation (4) with equations (5) and

(6), we can see that:

m+1 m + m (7)
en : Cm+ ibn_m_ I en

Likewise we could show:

m+1 m m (8)
bn_m_ 1 = bn_m_ 1 + Cm+le n

The Burg algorithm chooses Cm+ I so as to minimize

the sum of squares of the forward and backward

prediction errors:

M

j = _ (enm÷l )2 + (bm+1 )2 (9)n-m-1
n=m÷2

It can be shown [3] that the optimal choice of

reflection coefficient is:

M

-2 _ emb m
n n-m-I

n=m+2 (10)
Cm+ I = M

(enm)2+. b m )2n-m-I
n=m÷2

To summarize, the Burg algorithm consists of two

steps : 1 ) update the forward and backward

prediction errors using (7) and (8); 2) calculate

the reflection coefficient using (10) and then

repeat step 1). If the autoregress [ve

coefficients (a_ m+1 ) . .. a £m+I") )' ' m+1 are desired

they are calculated using equation (2).

the individual computations, or tasks, are

labeled: Tln(1), Tn(1) , Tln(2) , Tnn(2) , Tln(3).

I. INITIALIZATION

FOR I-1 TO M DO

eCi) ,x(i) I
bEll" x(i) I

2. THE MAIN LOOP

FOR n-I TO MAX DO

sl • 0.0, s2"O.O
FOR i,n+l TO M DO

C(.) • -2.II/s2

IF n>l THEN 00
i

FOR i'l TOn-I DO

[=lli). uIil+c(nl.oIn-i) I

FOR I -I TOn-I DO

IQ(i) • o_(i)I
o(n) • c(n)

FOR I- n+I TO M DO

femp, I(i)-t-c(n)_b(I-n) I
b(i-n) -b (i-n)÷ c(n)*e(i) I

o(I) • limp I

T.(I)
in

T Ill
ft

T(2}
In

T (2}
Iin

T (3)
In

Figure 3. Sequential Implementation of

the Burg Algorithm

To implement the Burg algorithm using parallel

techniques we need to determine which tasks can be

performed in parallel. Figure 4 illustrates the

relationship between the various tasks for the

case where there are 5 data points (M:5) and 3

coefficients to be calculated (MAX=3). Any tasks

I_LEMENTATION ON THE MPP

A standard sequential implementation of the Burg

algorithm is shown in Figure 3. In this figure

Figure 4. Maximally Parallel Graph for

M=5 and MAX=3
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which are on the same level can be performed at

the same time. As illustrated by the maximally

parallel graph we would need to have M processes

(where M is the number of data values) to take

full advantage of the parallel nature of the

algorithm. This is clearly infeasible on machines

like the Denelcor HEP or the Intel iPSC/2

hypercube computer but feasible on the

NASA/Goodyear MPP due to its massive number of

processors (16834). In practice it is unlikely to

get a time series made of more than this number of

observations.

The MPP is a two-dimenslonal mesh type

architecture with nearest neighbor communication

between the processing elements in the array unit

(ARU). This type of architecture is most suitable

for the processing of two-dimensional images; the

Burg filter is a one-dimensional signal processing

algorithm. The implementation problem reduces to

finding a way to map the one-dimensional structure

inherent in the Burg filter onto the two-

dimensional architecture of the MPP. A miniature

(16 elements) ARU is shown in Figure 5 with arrows

representing the required connections or

communication channels needed to view the mesh

architecture as a linear array of processors,

which would be most suitable for the

implementation of the Burg filter.

C

1 2 3 4 P

213,' , Iiiiiiiiiii1,E I
Figure 5. Mapping a Linear Array on a Mesh

Figure 6 illustrates the data movement for the

Burg filter in a linear array of eight processing

elements. In stage 0 the linear array is loaded

with both the forward and backward prediction

errors, actually the observed time series. To

calculate the first reflection coefficient the

forward prediction errors are shifted to the left

by one as shown in stage I. Now the reflection

coefficients can be determined by forming the two

sums: the first is the sum of the products of the

two elements in each processing element, the

second is the sum of the squares of the two

elements in each processing element. Equation

(10) can then be used to calculate the reflection

coefficient that will be broadcast to all the

processing elements, where it will be used to

update the forward and backward prediction

errors. To calculate the second reflection

coefficient the updated forward prediction errors

are shifted to the left by one, as shown in stage

2. The above sequence of operations will be

repeated until all reflection coefficients are

computed.

E(2) E(3) jE(4) E(5) E(6) E(7) E(8)

STAGE 0

JE(2) E(3)'jE(4)JE(5)]E(S)JE(7)IE(8)I0 J

STAGE 1

STAGE 2

Figure 6. Data Hovement For the Burg Filter

in a Linear Array

The MPP Pascal code used to implement the

described sequences is:

for n:=1 to max do begin

e: = snake-shift(e);

where (col index = 127) do

where (Vow index = 128-n) do

b: = 0.5;
sl : = e'b;

s2: = sqr(e)+sqr(b);

sum1: = sum(st,1,2);

sum2: = sum(s2,1,2);

c[n]: = -2.0*suml/sum2;

temp: = c[n]*b+e;

b: = c[n]*e+b;

e: = temp;

end;

The procedure snake-shift is used to simulate the

effect of shifting the forward prediction errors

to the left by one in the linear array mapped onto

the MPP. The MPP Pascal code for the main part of

snake-shift is:

r2: = shift(x,O,1);

r1: = rotate(x,1,1);

where (col index=127) do

where (Vow index<127) do

r2 : = rT;

snake-shift: = r2;

Figure 7 illustrates the procedure.

The parallel Burg algorithm was implemented on the

MPP as described above. The number of data points

was 16384 and the number of reflection

coefficients to be calculated was varied from one

to 100. The results are shown in Table I. Notice

the linear relationship illustrated here.
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Figure 7. Procedure Snake-shift (x)

MAX TIME(msec)

I 5.5392

2 11.0590

5 27.6197

10 55.2215

40 220.8270

80 441.6460

100 552.0589

Table I. Summary of Parallel Burg Algorithm

The Burg filter was also implemented on the

Denelcor HEP (a tightly coupled MIMD machine) and

the Intel IPSC/2 hypercube (a loosely coupled MIMD

or SPMD machine). The mapping techniques used for

those machines is discussed in [4], [5] and [6].

A comparison of the performances of those machines

wlth the MPP is given in Table 2, which compares

the execution times to compute 10 reflection

coefficients for 16,384 data points. Clearly the

Burg algorithm takes full advantage of the massive

parallelism of the MPP.

Machine Execution

Tlme

Denelcor HEP 1.679 see

Intel iPSC/2 0.6121 sec

MPP 0.05522 sec

Table 2 Comparison of Burg Execution Tlme

(16384 Data Points, 10 Reflection Coefficients)

SUMMARY AND CONCLUSIONS

The Burg filter was implemented on three different

computers: the Denelcor HEP (a tightly coupled

MIMD machine), the Intel IPSC/2 hypercube (a

loosely coupled MIMD or SPMD machine); and the

NASA/ Goodyear MPP (an SIMD machine). The choice

of these three architectures provides a variety of

mapping possibilities for the algorithm.

This study showed that the Burg algorithm has a

hlgh degree of parallelism, which can be fully

exploited only if the number of processors is

equivalent to the number of data points. Thls is

only feasible if a massively parallel machine llke

the MPP is used.

It should be emphasized that the Burg filter was

used in thls study because its structure is

typical of a class of important one-dlmensional

signal processing algorithms. The results

obtained here should be relevant to these other

algorithms as well.
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ABSTRACT

Image sepentation can be a key step in data

compression and image analysis. However, the

segmentation results produced by most previous

approaches to region growing are suspect because

they depend on the order in which portions of the

Image are processed. An Iteratlve parallel

segmentation algorithm avoids thls problem by

performing the globally best merges first. After a

background section, thls paper describes such a

segmentation approach, and two implementations of

the approach on NASA's Massively Parallel Processor

(MPP). Application of the segmentation approach to

data compression and image analysis is then

described, and results of such application are

given for a Landsat Thematic Mapper image.

Keywords: Image segmentation, Image Analysis, Data

compression, Data parallel analysis.

BACKflRGtMD

Segmentation is the process of partitioning images

into constituent parts called regions using image

attributes such as plxel intensity, spectra/

values, and textural properties. Image

segmentation produces an image representation in

terms edges and regions of various shapes and

interrelationships.

Image segmentation Is a key step in many approaches

to data compression and image analysis. An optimal

coding of an image segmentation, such as through a

region label map and region feature file, can be

used to effect data compression (see Ref. 3).

Image analysis can be performed on an image

segmentation by using the shape, texture, spectrum,

etc. of the regions found by the image segmentation

and interrelationships between the regions. Thls

region based analysis of imagery is potentially

more effective than pixel based analysis, because

region based analysis exploits spatial information

whereas pixel based analysis does not.

Most image segmentation approaches can be placed In

one of three classes: (I) characteristic feature

thresholding or clustering, (li) boundary

detection, and (III) region extraction.

Characteristic feature thresholdlng or clustering

is often ineffective because it does not exploit

spatial information. Boundary detection does

exploit spatial information through examining local

edges found throughout the image. For simple

nolse-free images, detection of edges results in

straightforward boundary delineation. However,

edge detection on noisy, complex images often

produces missing edges and extra edges which cause

the detected boundaries to not necessarily form a

set of closed connected curves that surround

connected regions. One way to overcome this

problem is to combine region extraction and

boundary detection. Ref. 2, reports on some

experiments in combining boundary detection

approaches wlth the iteratlve parallel region

growing approach discuss here.

Early approaches to region extraction (usually by

region growing) had the disadvantage that the

regions produced depended on the order in which

portions of the image are processed. But

Schachter, et ii (Ref. 1) suggest that implementing

region growing as "an iterative parallel process"

would overcome the order dependent problem. Thls

Is the approach taken by the iterative parallel

image segmentation algorithm presented here.

ITRRATIVE PARALLBL RBGION GROWING

The basic concept behind our iteratlve parallel

segmentation approach is to perform the globally

best merges first. Wlth thls approach, the whole

image is processed In parallel, eliminating the

order dependence problem that troubled earlier

approaches to region extraction by region growing.

The globally best merge is defined as follows. A

similarity criterion is calculated for all pairs of

spatially adjacent regions In the image. The

globally best merge is the merge of the pair of

spatially adjacent regions with the best similarity

criterion value over the entire image (i. e., the

most similar palr of regions). (NOTE: For

convenience, we assume from thls point that the

best similarity criterion value Is the misimi#

similarity criterion value.)

Since only spatially adjacent regions can group

together in this approach, we call our approach the

Spatially Constrained Clustering (SCC) algorithm.

The basic SCC algorithm is as follows:

U.S. Government Work. Not protected by

U.S. copyright.
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i. Initialize the segmentation process by

labeling each plxel as a separate region.

ii. Calculate a similarity criterion between each

pair of spatially adjacent regions.

Ill.Find the minimum similarity criterion measure

value for the entire image.

iv. Check for convergence by projecting if the

proposed merge would produce an error larger

than the error threshold. If converged, stop.

Otherwise continue on to step v.

v. Merge pairs of regions with the minimum

similarity criterion measure value.

Iv. If the number of regions remaining in the

image is less than the preset minimum, stop.

Otherwise return to step ii.

Two different versions of the SCC algorithm have

been implemented (see next section) that differ

only in how step v is handled. The serial merge

version is:

v_ Merge a single palr of regions with the

minimum similarity criterion measure value

(break ties arbitrarily).

The parallel merge version of the SCC algorithm

implements step v as:

vP Merge all pairs of regions with similarity

criterion equal to or less than 1 + _ times

the minimum similarity criterion.

When _ = O, the parallel merge version Is still an

exact implementation of the basic SCC algorithm.

It ls only different from the serial merge

implementation in that ties are not broken when

more than one pair of regions have the minimum

similarity criterion value. All such regions are

merged (in parallel). For 6 > O, the parallel

merge version becomes an approximation of the basic

SCC algorithm. Using _ > 0 speeds convergence with

the cost of finding a less optimal segmentation.

For either the serial or parallel merge version,

the algorithm is considered to have converged when

either a desired number of regions remain, or when

no pair of adjacent regions is similar enough to be

merged according to a predefined bound on the

similarity criterion.

A key aspect of any region growing approach is the

similarity criterion employed. The optimum

similarity criterion depends upon the application.

To fully explore the utility of the general SCC

approach, we will need to devise and test several

different similarity criteria for different types

of image data and for various analysis procedures

performed on each type of image data. In the

experiments reported here, the similarity criterion

used is based on minimizing variance normalized

mean squared error.

The Mean Square Error (MSE) of band "I" of a

multiband image is defined as

N

MSEi = E[(Di-D_) _] _ I Z (DiP-D_P)2 (1)

p,!

where Di and D_ are the data values of the Ith band

of the original and reconstructed images,

respectively; Dip and D_p are the values of the

pth plxel of the Ith band of the original and

reconstructed images, respectively; E denotes the

expected value; and N Is the total number of pixels

in the image.

The variance normalized mean squared error for band

"i" (NHSEi) is defined as

VARi

where VARi is the variance of band "i". The

similarity criterion used in our tests is the

V_X(ANMSEi) for each pair of spatially adjacent
I

regions, where the maximum is taken over all bands

(l_i_m). (Optionally, the similarity criterion can

be taken as _ (ANHSEi).) For a particular pair of
i,!

spatially adjacent regions, ANHSEi is the change in

NMSEi when the pair of regions ls merged and the

reconstructed image Is formed by substituting the

mean vector of each region for the multispectral

radiance values of each pixel in the region.

The change in NMSEi, or ANMSEi, is calculated as

follows:

_NNSEi MSE_ - MSE i
VARi (3)

where MSE_ is the mean squared error when regions j

and k are merged, while MSEi is the mean squared

error before regions J and k are merged. Using the

definitions of HSEi and the region mean, It is easy

to derive a more fundamental version of equation

(3), viz

nj(Dij-Dijk) 2 ÷ nk(Dik-Sijk) 2
ANMSEi = (4)

(N-1)VARi

where nj and nk are the number of points in regions

J and k, respectively, before combining, and N is

the number of points In the image. Dij and Dik are

the mean values of band i for regions J and k,

respectively, before combining, and Dijk is the

mean value of band i for the region that would

result from combining regions j and k.

IMPLEMENTATION ON TllR MPP

We have implemented the serial and parallel merge

versions of the SCC algorithm on the Massively

Parallel Processor (MPP) at the NASA Ooddard Space

Flight Center. For a description of the MPP see

Ref. 4. Both implementations use the staging

memory extensively to allow the processing of

multispectral images of up to 512-by-512 pixels and

up to 12 bands. Without the staging memory, either

implementation would be restricted to a 128-by-128

4-band image, or a 128-by-25B 2-band image or a

128-by-384 single band image because of the local
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array memory limitations of the MPP. While the use

of the staging memory makes possible the processing

of reasonably large multispectral images, this use

does extract a penalty in the terms of processing

time for the data transfers between the staging

memory and array memory. We estimate that for a

7-band, 256-by-256 plxel image, the parallel merge

version of the SCC algorithm would execute 10 times

faster on an NPP with sufficient local array memory

to eliminate the need for extensive stager-array

data movements.

The implementation of the serial merge version of

the SCC algorithm (using step vm) on the bL°P is

extremely straightforward. The initialization is

trivial, and local neighborhood data movements are

used in step ii to calculate in parallel the

similarity criterion for spatially adjacent

regions. (For images larger than 128-by-126

plxels, a virtual NPP of up to 512-by-512

processors is emulated by data rotates across the

edges of the 126-by-128 array and masked

assignments.) In step v e, a single pair of regions

is identified for merging. (When more than one

pair of regions has similarity function value equal

to the minimum, the pair of regions with a minimum

region label value is chosen.) The feature values

(number of pixels and mean vector) for this pair of

regions is extracted from the array, and new

feature values are calculated in scalar mode for

the new region. The merged region is given a new

region label equal to the minimum of the two region

labels, and the feature values are assigned to the

merged region using a masked assignment.

The implementation of the parallel merge version of

the SCC algorithm (using step vP) on the MPP is

more complicated than the serial version. In order

to merge more than one pair of regions in parallel

in step vP, we need to resort to more than Just

local neighborhood data movements and masked

assignments. The method we chose is as follows.

First perform all the merging on the region label

level. This is done through parallel region label

propagation keyed on the similarity criterion

function values. Once the new region label map is

established, the new region feature values (number

of plxels and mean vector) need to be calculated.

In order to do this in parallel we grow a tree from

a single pixel (seed plxel) in each region until it

covers every region completely. (A unique seed

pixel can be identified in region by comparing the

current region label map wlth the inltial region

label map.) Then the number of pixels and sum of

the data values at each pixel in each region are

accumulated by tracing back up each tree. All

region means are then calculated at each seed

pixel, and the feature values for each region are

broadcast out to each plxel in each region by

traveling back down each tree, and depositing the

feature values at each node of each tree.

APPLICATION TO DATA COMPRESSION AND IMAGE ANALYSIS

An image segmentation can be a key step in a 1ossy

data compression process. This type of data

compression is a variant upon an image data

compression process often referred to as vector

quantlzation. In this form of data compression,

each region in an image segmentation is given a

unique label, and a list is generated of feature

values corresponding to each region. This region

label map and feature list is then encoded by a

lossless compression scheme. For a more detailed

discussion of this process, see Ref. 3.

The amount of information lost by this lossy data

compression process is determined by how well the

segmented image represents the original image. If

the key region feature is taken to be the

multlspectral mean vector for each region, the

effect of this data compression an image can

measured by calculating the Root Normalized Mean

Squared Error (RNNSE), which we define as follows:

m

i=l

(s)

The Normalized Mean Squared Error of band "i",

NNSEi, was defined in equation (2). The RNNSE

carries the following intuitive interpretation:

The RNNSE is the band average of the single-band

RNMSE, which can be regarded as the mean deviation

of a reconstructed image pixel value from the

corresponding original image plxel value per

standard deviation of the band.

An image segmentation can also be used as a first

step in an image analysis scheme. As mentioned

before, image analysis can be performed on an image

segmentation by using the shape, texture, spectrum,

etc. of the regions found by the image

segmentation, and by the Interrelationships between

the regions. Whereas the more complicated shape,

texture and interrelationship analysis have the

greatest analysis potential, we will demonstrate

here how even a simple analysis approach using

spectral information alone - the Maximum Likelihood

Classifier - can be improved by proceeding it with

an image segmentation step.

EXPERIMENTAL RESULTS

A 256-by-256, 7-band subset of a Landsat Thematic

Mapper (TN) image over Ridgely, Maryland was used

as a test data set for this study. For this test,

we processed the TM image with the parallel merge

SCC algorithm. We first used a value 0.5 for _ and

stopped the segmentation process when the total

remaining number of regions was __ 2.5_ of the

number of pixels in the original image (1486

reglons). Then we restarted the algorithm and

processed from that point with a 6 value of 0.1

until the number of regions was < 2.0_ of the

number of pixels in the original image (1299

regions). {This produced better results than

processing all the way down to 2.O_ with a _ of

0.S.)

Figure 1 (color plate VII, p. 699) shows the origi-

nal and segmented images, along with the difference

image (plus a bias) between the original and seg-

mented images (bands 2, 4 and 5 of the 7-band image

are displayed). A subjective evaluation of the seg-

mented image reveals that areas in the original im-

age that are relatively homogeneous, but not neces-
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sarily uniform, become completely uniform in the

segmented image. Low contrast spatial features are

often lost in the segmented image, but higher con-

trast spatial features, such as edges of regions,

are retained very precisely. Even very small spatial

features are retained if they have sufficient con-

trast relative to the surrounding area.

The RNMSE image quality measure for segmented image

In figure 1 is 0.33. That Is, the mean deviation

of an image pixel value In the segmented image from

the corresponding original image pixel value per

standard deviation of each band is 0.33.

The segmented image was encoded into region label

map and a region feature files, and the region

label map was losslessly compressed using

run-length encoding. This segmentation/run-length

encoding combination produced a data compression

ratio of 13.1 to 1. (A optimal lossleee

compression technique may produce an even higher

compression ratio). Optimal loseless encoding of

the original TM image data typically produces a

compression ratio of 3 to I or less (see Ref. S).

We tested an image analysis approach where the

segmented image was classified by a simple Maximum

Likelihood Classifier. This analysis result was

compared with the result obtained by using the same

classifier on the original image. (For a more

detailed description of the test setup see Ref. 3.)

The classification results for the original and seg-

mented image are given in figure 2 (color plate VII,

_. 699) and Table I. The classification accuracies

are consistently better for the segmented image than

they were for the original data! We hypothesize that

the segmentations produced by the SCC algorithm en-

code information from the surrounding regions of the

image in each pixel. The MLC classification results

are improved because each pixel has knowledge of its

spatial surroundings in the segmented image.

Table I. Accuracy comparison (_ correct

classification) between classifications of the

original and segmented TM images.

class
Classification

_2_Y,,L_/L__=I_ Segmented Imafe

Water/Marsh 73.7_ 79.3_

Forest 74.8_ 75.6_

Residential 54.4_ 64.9_

Ag./Dom. Grass 81.9_ 83.4_

OVERALL 79.2_ 80.9_

The first ten iterations of the parallel merge

version took 11S seconds to perform 8192 merges.

The serial merge version would need 6192 iterations

to perform 8192 merges. In an actual test, the

serial merge version took 2913 seconds to perform

8200 merges. This means that the parallel merge

version performed the first 6192 merges nearly 25

times faster than the serial merge version. The

last ten Iterations of the parallel merge version

took 2174 seconds to perform 184 merges. We

estimate that the serial merge version would take

roughly 250 seconds to perform those 164 merges.

Thus, the serial merge version would have performed

those last 184 merges better than 6 times faster

than the parallel merge version did them. For this

data set, it would have been most efficient to use

step vP for 138 iterations (resulting in 80,037

merges), and switch to step vs for the remainder of

the processing (to do the last 4,013 merges at one

merge per iteration).

The parallel merge version took 4.8 hours to

produce the segmentation shown in Figure 1. The

serial merge version would have taken an estimated

8.4 hours to do the same number of merges. An

optimal parallel merge/serial merge combination

would have taken an estimated 2.4 hours. Further,

such a combined implementation on an MPP-llke

machine with sufficient local array memory for all

data and variables would take roughly 15 minutes

(assuming the estimated 10 times speed-up mentioned

earlier.) Clearly, the best way to implement this

iterative parallel region growing approach is a

parallel merge/serial merge combination on an

MPP-like machine with significantly more local

array memory. Within the coming year, we hope to

have made such an implementation on AMT's DAP 610.

An ultimate segmentation goal would be to find the

globally best image segmentation for a given

similarity criterion and number of regions. Our

iteratlve parallel region growing approach can only

approximate this desired result. Fortunately, for

many applications an approximate result may be

sufficient. Nevertheless, we are seeking

improvements to our SCC algorithm. One such

improvement would be to allow plxels split out of

regions when appropriate. We eventually plan to

explore neural network optimization as an approach

that could actually produce the globally best image

segmentation.
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ABSTRACT

This paper will present an overview of the DARPA In-

tegrated Image Understanding Benchmark and of the Im-

age Understanding Architecture. It will then discuss the

performance of the architecture on various portions of the

benchmark. The article will conclude with a discussion of

lessons that have been learned as a result of the experience,

both in terms of the design of the architecture and of the

benchmark.

THE DARPA INTEGRATED IMAGE

UNDERSTANDING BENCHMARK

The need for a computer vision benchmark for parallel

architectures has become apparent as researchers from the

fields of computer vision and computer architecture have

had increasing contact over the last several years. Motion

sequences at moderate resolution (512 × 512) and typical

frame rate (30 frames/see) in color (3 bytes) involves about

23.5 Mbytes of data per second. The amount of compu-

tation required for dynamic scene interpretation including

the labeling of objects, surface/volume reconstruction and

motion analysis is difficult to estimate; however, for many

applications computational power in the range of 100 bil-

lion instructions per second, plus or minus two orders of

magnitude, is probably required. Thus, vision has become

a subject of major interest to computer architects.

Unfortunately, the evaluation of progress in vision ar-

chitectures has been difficult IDuff, 1986]. There are now

quite a few interesting machines, both existing and pro-

posed, that may be effective for at least part of the vi-

sion problem. However, computer vision transcends a wide

range of representations and forms of processing. In ad-

dition, despite exciting advances in many of the subtopics

of computer vision, there is currently no consensus in the

research community on a unified approach to vision. There

are many competing approaches and a great deal of debate

has persisted. Nonetheless, it is clear that there is a need

to address some of the vision/architecture issues in a form

that will allow scientific insight and progress in hardware

development.

Recent attempts at defining a vision benchmark include

the Abingdon Cross problem [Preston, 1986], defined at

the 1982 Multicomputer Workshop in Abingdon England,

and the Tanque Verde benchmark suite [Uhr,19861 defined

at the 1984 Multieomputer Workshop in Tucson Arizona.

]'he most recent attempt at constructing a benchmark for

vision emerged from the DARPA Image Understanding

community, where a set of ten vision tasks were defined.

These were: Gaussian convolution, zero crossing detection

and output of border lists, connected components labeling,

Hough transform, convex hull, Voronoi diagram, minimal

spanning tree, visibility of vertices in a 3-D model, min-

imum cost path, and subgraph isomorphism. A meeting

was held in November, 1986, in Washington to compare the

results of programming, simulating, or estimating the per-

formance of a number of machines on the individual bench-

mark tasks. The results IRosenfe]d, 19871 were both inter-

esting and thoroughly confusing. The data sets were only

loosely specified, leading some to groups to report average

performance while others reported worst case performance;

different groups used different algorithms; some used 32-

bit floating point arithmetic while others used 16-bit inte-

ger arithmetic, etc. These results must be interpreted with

extreme care.

The DARPA Integrated hnage Understanding Bench-

mark Exercise is an outgrowth of the first DARPA Image

Understanding Benchmark Workshop. The new benchmark

has been designcd by the University of Massachusetts and

the University of Maryland to address the need for an in-

tegrated vision benchmark that transcends several differ-

ent representations and forms of processing that are typ-

ical of complex vision applications. The specification for

the benchmark is now being widely distributed [Weems,

1988al, and the results from participating groups are to be

gathered at a workshop in October of 1988.

This benchmark task suite involves model-based object

recognition given images from intensity and range sensors.

It is our intention that the test images be designed so that

neither, by itself, is sufficient to form a complete match.

The object to be recognized is a collection of rectangles

of various sizes, brightnesses, two-dimensional orientations

and depths. It can be thought of as a semi-rigid mobile con-

sisting of suspended rectangles floating in space with fixed

CH2649-2/89/0000/0361501.00 © 1988 IEEE
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spatialrelationships.Tosimplifythetask,each rectangle

is oriented normal to the Z axis (the viewing axis) and the

image is constructed under orthographic projection. A set

of models is provided, from which the best matching model

must be selected. The models are approximate in the sense

that the sizes, orientations, and depths of the rectangles as

well as their spatial relationships may vary and are con-

strained to within some tolerances.

The rectangles that make up the object are interspersed

with additional extraneous rectangles in the scene from

which the two images are taken. These additional rectan-

gles may occlude portions of the mobile object, and some of

the adjacent rectangles in the scene may have very similar

brightnesses. The image from the range sensor is further

degraded by the addition of Gaussian noise.

The low-level operations on the intensity image consist

of identifying connected components and finding the cor-

ners of each connected component based on a K-curvature

operation. The initial processing of the intensity image also

includes an intermediate level grouping operation that con-

sists of creating good hypotheses for rectangles from the

lists of corners around connected components in the image.

The result of the initial intensity image processing is thus a

set of connected component tokens. The only feature that

is extracted from each connected component as a whole is

its intensity. However, each component region has associ-

ated with it a list of the corners that were extracted from

its boundary.

The low-level operations on the depth image consist of

smoothing via median filtering, computing the magnitude

of the gradient, and thresholding the gradient magnitude.

The result of the initial depth image processing is an image

array that represents points in the depth data that have

large gradient magnitudes. The smoothed depth image is

also used in later stages of processing.

Intermediate level processing starts with bottom-up

grouping of right-angle corners, in component tokens, in

order to generate rectangle hypotheses. The resulting can-

didate rectangles form the basis of the initial model graph

matching operation. The intermediate level operation on

the depth image is a top-down directed search for expected

rectangles, incorporating a spatially local Hough transform

with model-constrained ranges on the parameters for each

rectangle. The high level operations are first, constrained

subgraph-to-subgraph matching to choose and orient the

models to be matched; and second, top-down control of

probes into the depth and intensity images to find and fix

the parameters of the rectangles that are required to fill

out the chosen models. As a concluding step, an image is

produced that represents the single best model match as an

overlay with the original intensity image.

The goal of the first graph match step is to attempt

to establish the most likely positions and orientations of

the modeled objects in the image and possibly to eliminate

some of the models from further consideration for match-

ing. Since only some of the model rectangles will have been

extracted from the intensity image, portions of each model

will have no match. The unmatched portions of a graph

model are used to focus attention in the depth image so

that additional localized features can be extracted and tile

model can be extended through the use of context. This

match extension step is further divided into three parts that

are repeated for each model rectangle: model directed rect-

angle detection, rectangle depth and intensity verification,

and model update.

The scientific gain that should result from this exer-

cise is a better understanding of vision architecture re-

quirements, and the performance bottlenecks in different

classes of machines, so that the needs of vision processing

can be better addressed in the next generation of architec-

tures. We also expect to learn even more about the design

of benchmarks for computer vision.

THE IMAGE UNDERSTANDING

ARCHITECTURE

The Image Understanding Architecture (IUA) is a

massively parallel, multi-level system for supporting real-

time image understanding applications and research in

knowledge-based computer vision. The design of the IUA is

motivated by the architectural requirements for integrated

real-time vision in terms of the type of processing element,

control of processing, and communication between process-

ing elements. (Figure 1)

The IUA integrates parallel processors operating simul-

taneously at three levels of computational granularity in a

tightly-coupled architecture. It consists of three different,

tightly coupled parallel processors. These are the Content

Addressable Array Parallel Processor (CAAPP) 1 at tile low

level, the Intermediate Communications Associative Pro-

cessor (ICAP) at the intermediate level, and the Symbolic

Processing Array (SPA) at the high level (Figure 2). The

CAAPP and ICAP levels are controlled by a dedicated Ar-

ray Control Unit (ACU) that takes its directions from the

SPA level. Each level of the IUA is a parallel processor that

is distinctly different from the other two levels, in order to

best meet the processing needs at each of the corresponding

levels of abstraction in the interpretation process. Commu-

nication between levels takes place via parallel data and

control paths. The processing elements within each level

can also communicate with each other in parallel, via a dif-

ferent mechanism at each level that is designed to meet the

specific communication needs of each level of abstraction.

An associative processing paradigm has been utilized

as the principle control mechanism at the low and inter-

mediate levels. It provides a simple yet general means of

tThe term "content-addressable" is a synonym for "associative" and
is all alternate term that now is not as widely used as it was when some

of our work began IFoster, 1976, Weems_ 1984a.]
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managing massive parallelism, through rapid responses to

queries involving partial matches of processor memory to

broadcast values. This has been enhanced with hardware

operations that provide for global broadcast, local com-

pare, Some/None response, responder count, and single re-

sponder select. A 1/64th scale proof-of-concept prototype
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Figure 2: IUA Overview

is currently under construction by the University of Mas-

sachusetts and Hughes Research Laboratories. The proto-

type will contain 4096 1-bit SIMD processors at the low

level, 64 16-bit microprocessors at the intermediate level,

and a single symbolic processor at the high level. It is

scheduled for completion late in 1988. (Weems, 1988b I pro-

vides a more extensive discussion of the architecture.

IUA BENCHMARK PERFORMANCE

As of this writing, only part of the benchmark has been

programmed on the IUA simulators. The deadline for com-

pletion of the benchmark, for all participating groups, is

October of 1988. Preliminary results for the IUA are listed

in Table 1. For comparison purposes, the table also shows

the results for a Sun-3/160 workstation running the bench-

mark sequentially.

Task

Overhead

Connected Components

Find Rectangles

Median Filter

Gradient Magnitude 0.0026000

Initial Match 0.0076055

Complete Match 0.0488545

Output Result

Total Time 0107275i3

depends on execution of

IUA

0.0000500

0.0070163

0.0005625

Sun 3/160

6.28

28.26

6.28

247.90

136.68

24.40

326.04

24.80

800.64

entire benchmark

Table 1:

Integrated IU Benchmark Results

(All times in seconds)
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LESSONS LEARNED

With regard to the IUA itself, these preliminary re-

sults indicate outstanding performance on the lower-level

tasks, especially with the 8-bit intensity data. Floating

point performance, while good, could be improved with ad-

ditional hardware support in the processing elements of the

CAAPP. Of greater interest will be the performance of the

IUA on the intermediate level processing and top-down con-

trol aspects of the benchmark (which are currently being

programmed), as these portions of the architecture have

not been as extensively exercised as the low-level processor.

Our development to date of the graph matching portion of

the task indicates that it greatly underutilizs the ICAP.

We estimate that the size of the model-base could be in-

creased by a factor of 400 without signficantly increasing

the execution time. This is quite a reasonable result, since

a real vision task is likely to have a much larger and more

complicated set of models to work with.

In terms of the benchmark, we have fm, nd that solving

even a task as simple as this can present serious difficulties.

The benchmark code is significantly larger and more com-

plex than that of any preceding vision benchmark, which

was the inevitable result of attempting to capture some of

the complexity of a real vision task. Unfortunately, even

this complex benchmark does little more than touch upon

true high level processing, because there has yet to be any

real consensus among the members of tim image under-

standing research community as to what constitutes typi-

cal high level tasks. Once some consensus is achieved, it

is likely that this benchmark will be extended to address

further high level processing, so that participants can make

use of the large body of code already developed. Our initial

sequential testing of the benchmark has also revealed that

just three of the tasks account for eighty-nine percent of the

total time. The match extension process (which includes all

of the top-down probing of the image data) is the most time

consuming. The second most costly task is the median fil-

ter that is applied to the floating-point depth image. The

computation of the gradient magnitude in the depth im-

age is also a significant contributor to the total time. The

other tasks are minor in comparison, which serves to em-

phasize that the total execution time is just one part of the

benchmark result, and must be considered carefully in the

context of all the other data that are obtained.
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THE MARTIN MARIE'FI'A ADVANCED SYSTOLIC ARRAY PROCESSOR

A. Haug R. Graybill

ABSTRACT

Martin Marietta Aero & Naval Systems
Baltimore, Maryland

An overview of the IV_rtin Marietta Advanced Systolic
Array Processor (ASAP'-) will be presented. The
modular design of the ASAP m allows a user to build as
large a processor as desired by concatenating multiple,
independently programmable unit arrays. Each unit array,
housed on a single VME card, is composed of a two-
dimensional grid of 256 bit serial nearest-neighbor con-
nected processors (SIMD), a local controller, and all I/O
support. Multiple unit arrays can be configured in any
configuration desired; all SIMD, groups of SIMD arrays
with MIMD between groups or all MIMD.

Keywords: ASAP TM, Massively Parallel Processor,

Beamforming, Data Fusion, Associative Memory, Image

Processing, Neural Processing, Signal Processing.

INTRODUCTION

Martin Marietta has a corporate-wide commitment to
develop and use advanced computer architectures for
military systems. At Aero & Naval Systems, in Baltimore,
our efforts have concentrated on coarse and fine grain
systolic architectures. To this end we have put in place a
real-time signal and data processing laboratory that serves
as an architectural testbed for all ongoing research in
this area. This laboratory contains a number of high-
speed devices for I/O, memory, and computation. The

computational devices include a vector processor, a 1
Gigaflop linear coarse grain systolic processor, and several
Martin Marietta-developed two-dimensional fine grain
systolic processors. Significant expansion of this labora-

tory is planned for 1989.

Corporate commitment to the development of a fine grain
bit serial massively parallel processor began in 1981 when
the Geometric Arithmetic Parallel Processor (GAPP) was
designed for image processing applications. At Baltimore,

the GAPP technology was transitioned to a new applica-
tion area with the development of a Programmable Sonar
Beamformer (PSB). Based on the experience gained on the
PSB, it was realized that a processor with more powerful
computational capabilities would be useful for beamform-

ing, so a new VLSI chip, the Advanced Systolic Array

Proces_s_r (ASAP TM) was developed in 1986. In 1987 the
ASAP'" chip was redesigned to increase capabilities still

further, resulting in our current fourth generation chip,
ASAPrMII.

To meet a diverse set a potential customer requirements,

we designed a unit array processor that was completely
modular at the card level. To achieve the desired pack-

aging requirements, three additional VLSI chips were
designed and developed. To demonstrate our processor
capabilities, several generations of full-up processors that

use multiple unit arrays have been built. A variety of
applications are being demonstrated including conventional
and adaptive beamforming, signal processing, high level

image processing, data fusion, parallel inference engines,
and neural net simulators.

PRODUCT DESCRIP]]ON

ASAP TM Chip Significant Features

The .._ignificant features of the current generation
ASAP m chip are shown in Table I. The processing cells

are connected via nearest neighbor paths with a broadcast
bus for each north-south column. Our processor design
provides for much improved add times, an equalization of

multiply times relative to adds, and a significant floating

point capability. All of these capabilities w_e traded-off
against chip real estate resulting in an ASAP chip with

16 processing cells per chip. Each processing cell has a
1200 bit local memory with additional external memory
capability.

Table 1. Simplified features of the ASAP TM II VLSI
device

• Complex, High-Performance Cells
• Low to Medium Chip Density

• Balanced Ratio of Computational Power to Memory

• External Memory and I/O Cell Ports

• Floating Point

• Multiplier Accelerator (10X)
• MIL-STD Ada

• VLSI Support Logic

• Software Development Tools

Unit Array Features

To achieve the desired single card packaging for the
ASAP TM unit array, three additional VLSI chips were

developed. In order to understand the function of these

chips, we first define the unit array concept, _.bown in
Figure i. As shown, a 4 x 4 array of ASAP -a chips

provide a unit array of 256 processing cells. High speed
data is normally passed into the array from external
parallel buses via the serial-to-parallel I/O (SPIO) inter-
face. This interface converts external 32 bit-parallel

words to bit serial data and visa-versa. Data then passes
through a 16 x 16 cross point switch (XPO1NT) into a

CH2649-2/89/0000/0367501.00 © 1988 IEEE
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ASAP Unit Array

High Speed 180
MBpa
32 Bit Parallel DaU
I/O Channel
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Control Plane

Processor Plane

Nearest Neighbor
Intarconnecl Plan

Hkuh Spsod
Dell 1111141

On-Chip Cell
Mamory

Off-Chip Coil
Memory

Figure I. ASAP TN unit array functional design

double buffered RAM. Simultap_ously, data can be passed
from the RAM into the ASAP'" cells through the cross

point switch. An alternate data path allows data to be

passed to adjacent unit arrays through the north/south/

east/west serial buses.

I/O and ASAP Tx array operati_Ds are controlled by the

I/O controllers and the ASAP"" controller, respectively.

A simple AMD 2910 based p];_cessor chip (IOCTLR) is used
for both the I/O and ASAP" controllers. For compact-

ness and reliability, the SPIO, XPOINT, and IOCTLR were

developed as VLSI devices. In addition to the above

functions, the XPOINT device provides for a unique

softw_e controlled arbitrary interconnection among the
ASAP-" processing cells.

The unit array has been functionally implemented with a

VME interface, as shown in Figure 2. Fi8ure 3 shows the

card layout for a 9 U VME card. This VME unit array

design provides the following features:

• 16 x 16 array of processing cells (16 ASAP TM

chips)

• Dual I/O controllers
• ASAP TMcontroller

• High speed data and control interfaces

• 20 MHz operation

• Independent I/O speed operation

• A 24, D32, VME interface.

Multiple Unit Array Configuration

The ASAP Ts unit array has been designed to allow

multiple unit arrays to be interconnected, as shown in

Figure 4. Since each unit array has only a single
ASAP T" controller, all processing cells on the array

operate in a SIMD fashion. However, because each unit

array has its own controller, operation from unit array to

unit array can be MIMD or SIMD.
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Figure 3. Card layout for VME based ASAP TM unit

array module
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Figure 4. Multiple unit array interconnectability

Software

Since our primary customers are within the DoD, we have

chosen Ada as our initial high-level language. Figure 5

shows the support software developed to date. All of the

software is currently hosted on VAX computers, but is

portable to other systems since this is designed into Ada.

The procedure for applications software development is as

follows. After an Ada program is developed it is executed

within the Aria Code Generator. This generates the mic[_-
code that can then be downloaded to an Ada ASAP

• TN

simulator or the target hardware. The Ada ASAP Run-

Time Debugger provides a complete software debugging

capability with both the simulator and target hardware.

The Hardware Test Software provides a complete set of

test vectors down to the device level. This test software

was used to certify all VLSI devices as they arrived from

the vendor showing first pass success on each device with

a very short turn-around for each certification. In

addition to the above software, a set of mathematical and

engineering library functions, as well as numerous

applications programs and a graphic/software development

tool, are under development.

ASAP TM Products

To date we have developed several products which include:

• SMSP-20M Single Module Systolic Processor,

20MHz, Multibus

• SMSP-20V Single Module Systolic processor,

20MHz, VME

• SMSP-20S Single Module Systolic Processor,

20MHz, VME/SUN.

The baseline versions of each of these products contain

the equivalent of 4 unit arrays (1024 processors) and can

be expanded with additional unit arrays. The existing

i............. _ I Aa ]
: Graphical _ C¢ :le Ii Entry ,_"r_'_-_'l G• neator/

,_............ ._ I I TM era I

AS fir= IRum rime A

I.arOwar.
I Test I

J ASAP_ I

_I Peckege

J Llbr.ry J

"_ ASAP_, I

J ASAP _ J
_l Target I

-[ HardwareJ

Figure 5. ASAP TM Ada software development tools

units are being used for a number of capability demon-

strations and extensive library and applications software

development is planned for 1989.

PERFORMANCE COMPARISONS

A comparison of peak performance for five massively

parallel bit serial machines are shown in Figure 6 and 7

and in Table 2, for add, multiply, and 32 bit floating

point operations, respectively. Data for the MPP, DAP,
and CM-2 were derived from data found in References 1,

2, and 3, respectively. In all cases, performance has been

normalized to that of 1024 processors. It is obvious from

this data that the ASAP TM processor provides a signifi-

cant performance improvement over all others. In fact, in

a package approximately the size of the current MPP, we

could provide in excess of 1.3 Terra-ops for single bit

operations.
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Table 2.

Adds

Multiplies

Performance comparison for 32 bit floating

point operations normalized to 1024 processors
(Mflops)

ASAP TM MPP DAP GAPP CM-2

91 29.3 12 0.54 0.07

170 18.2 7 0.07

A£N:I 2-

Operations
Per

Second

(Billions]

1-

Figure 6.

2.27

ASAP

0.30 0.28 027 MPP GAPP, DAP,

0,06 0.05 CM-2

Word Size (Bils}

Performance comparison for add operations

normalized to 1024 processors

Munip_

Operal_ns

Per
Second

(Billions)

Figure 7.

Note: GApp, OAP, & CM-2 fall below MPP

12

_sAP

A2
06 _(_ MPP

8 12 16

Word Size (Bits)

Performance comparison for multiply operations

normalized to 1024 processors

APPLICATIONS

Several sonar signal processing applications have been
demonstrated to date. The first of these is time domain

delay and sum beamforming for linear, planar, spherical,

and volumetric receive arrays with data words ranging

from one to twenty bits fixed point, and twenty four and
thirty two bits floating point. In 1989 we will extend

this application to time and frequency domain adaptive

beamforming. Conventional digital signal p_aocessing has
also been demonstrated in 1988. Using ASAP to gener-

ate simulated hydrophone data for linear and spherical

sonar arrays is planned for early 1989.

A multitude of additional military applications are sche-

duled for demonstration in 1989. In the sensor data

fusion area we are planning a Data Fusion Workbench.

This workbench will contain multiple groups of unit arrays

with different memory configurations on which we will

demonstrate data association performed on a parallel

processor, a parallel implementation of Kalman filtering,

adaptive hypothesis scoring based on changing sensor

modes and environment, and an intelligent "rule-based"

hypothesis pruning parallel inference engine. Each of

these will be implemented in a separate "processor" or

group of unit arrays, with overall control residing in a
SUN workstation.

Also in 1989, we are planning several demonstrations in

the h_h-level 3-D image understanding arena by using an
ASAP workstation as a Conformai Image Fusion Proces-

sor (CIPTN). Finally, we r_ope to demonstrate a sonar

classifier using an ASAP workstation as a Systolic

Neural-type Array Processor (SNAP). Table 3 presen_a
a comparison of the performance pp_ential of an ASAP
workstation configured as a SNAP relative to existing
neural array processors.

PLANNED ASAP TM ENHANCEMENTS

Over the next few years several improvements are planned

for the ASAP TM chip. ASAP'"III should provide a 4p_.

percent il3ucrease in performance relative to ASAP II,
and ASAP'"IV should provide a 1500 percent increase.

Extensive development and applications software is also

planned for the next few years. This includes libraries of

mathematical and. signal processing functions as well as

software for the specific applications mentioned above.

Planned improvements to the total system include the

development of MIL-SPEC VME based processor, as well

as Navy Standard Electronics Module (SEM) based proces-

sors. Preliminary designs for these products have been

developed and will be implemented as soon as funding
permits.

SUMMARY

Martin Marietta has introduced the most powerful bit

serial massively parallel processor available to date. It

provides significant computational power in a SUN based

workstation environment with larger machines available.

Extensive software is under development, with a substan-

tial software environment alrea¢_g available. And although
the current version of ASAP'" can be configured to

provide a terra-op of operation, within a f_..w years this

performance will be available in an ASAP '_ process_[
packaged in a relatively small volume. As the ASAP

products evolve, upward compatibility will be maintained

for all software, as was the case in our transition from
AsApTNI to AsApTNll.
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Table 3. Neurocomputer performance parameters
comparison (preliminary)

Company
Corporation

Machine

Capacity
Processing
Element

Interconnects,
Connections

Layers

Speed
Connections/
Sec

CUPS*

Utility

Nestor, Inc.

Sun/

Appollo/
PC-AT

150,000
(Simulated)

15,000,000

?

SAIC

T_- 1 TM

NC WIS

1,000,000
(Simulated)

1,000,000

?

500,000

?

TRW

p VAg

250,000
(Simulated)

5,500,000

8

HNC

PC-AT
The HNC/

ANZA

30,000
(Simulated)

300,000

?

5,000,000

250,000

Martin Marietta

Aero & Naval Systems

(SNAP TM)

Concept
Development Stage

1024 Dedicated

(Non-Simulated-H/W)

133,000,000

32 & Expandable
to (1024)

200,000,000

1,333,333

10,000,000

?

2.D Pattern Match 2-D Pattern Match

25,000

?

3-D Pattern Match

Conformal Object
Manipulation

* CUPS -- Connection Updates Per Second
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THE GEOMETRIC ARITHMETIC PARALLEL PROCESSOR

Eugene L. Cloud

Martin Marietta Electronic Systems
Orlando, FL 32862--8007

ABSTRACT

In the last decade the demand for parallel processors, particu-

larly for image processing, has grown rapidly. Single instruc-
tion multiple data (SIMD) computers provide very high

throughput, can be directly scaled to computational problems,
and exhibit a tractable, readily solvable control problem.

The Martin Marietta Geometric Arithmetric Parallel Processor

(GAPP TM) is a massively parallel processor that contains over

10,000 processing elements (PEs) in one or more arrays of PEs.
Developed to meet the requirements for installation into tacti-
cal military units, the GAPP-based processor is based on prin-

ciples which result in small size, light weight, and low power.

This paper describes the GAPP processing element, the array
of processors and its control, the system into which an array is
embedded, the interface to external data sources and data sinks,

and the software development environment. Typical applica-
tions are discussed.

KEYWORDS: massively parallel processors, high throughput
computers, image processing, Geometric Arithmetic Parallel
Processor (GAPP), single instruction multiple data (SIMD),
full adder/subtractor (FAS).

INTRODUCTION

Massively parallel processors provide unique, high-

performance solutions to a large class of problems. In the fall
of 1981, Dr. Wlodzimierz Holsztynski applied his mathemati-
cal expertise to the research and development of solutions to
Martin Marietta's image processing problems.

This research resulted in the invention of the Geometric Arith-

metic Parallel Processor (GAPP) and a family of derivatives.
The fundamental processing requirement for this system is to

provide flexible processing power despite environmental size
constraints.

BACKGROUND

The GAPP concept was first implemented as a medium scale
integration (MSI) breadboard in 1982. This first system emulat-

ed a 6 x 12 cell array using programmable logic and discrete
memory components to mechanize the cells. Later that year,
this system demonstrated the execution of a simple pattern
matching algorithm. The development of GAPP technology
continued into 1983 with the commitment to develop a GAPP-

based custom integrated circuit. NCR Corporation of Fort Col-

lins, Colorado, was licensed by Martin Marietta to design and

build GAPP chips. The first design was a PLA-based approach
that resulted in 3 x 6 cell chips. Prior to the completion of these
parts, known as GAPP I, we began to improve the design of the
basic cell toward higher cell density per chip (6 x 12 cells, or

72 cells per chip). The first of these new chips, GAPP II, was
delivered to Martin Marietta in lage 1984. Two chip design and
fabrication cycles were completed within 2 years. These chips
were fabricated in 3-micron complementary metal oxide semi-

conductors (CMOS) using a double metal process. NCR has
continued the process improvement and is now delivering parts
from a 2-micron double metal CMOS process.

During chip design and development, Martin Marietta designed
and built a prototype system on company funds. This system
was designed to perform real-time (30 frames per second) vid-

eo processing. The video source of primary interst and focus
was a forward looking infrared (FL1R) sensor. This application
was chosen because the FLIR is a major product line of Martin
Marietta Electronics and Missiles Group in Orlando.

The desired result from this processor was the extraction of tar-
gets from each image and the rejection of all nontargets (clut-

ter) in a tactical military scenario. In addition, the targets were
classified by type. This GAPP system was designed to be both
a research tool and an example of an automatic high-speed pro-
cessor. Packaged in a standard laboratory rack with considera-
ble room for additional experimental pieces, the design includ-
ed two GAPP arrays: the main array containing 41,472 proces-

sing ceils or elements and the target array containing 4,608
cells. The system also contained two 29,116 micro controllers,
two 68,000 single board microcomputers, and an extended
MIL-STD-1750A instruction set processor designed by Martin

Marietta. The GAPP II chips and the system design came to-
gether in 1985 and has since been in continuous operation.

The merit of the GAPP computation approach was well recog-
nized within the company and additional versions of GAPP
processors were authorized prior to completion of the first pro-

cessor. A flightworthy helicopter system whose main array
contained 51,840 processing cells was built and flown in 1986
and 1988. This system continues to serve as a test bed for vari-
ous programs. We also recognized that algorithm development
for GAPP-based systems would be dramatically improved by
installing GAPP processors as peripherals to our VAX TM-based

image processing laboratories. There are currently three GAPP
systems attached to VAX-based systems in support of pro-
grams at Martin Marietta. The largest GAPP systems' main ar-

ray contains 82,944 processing elements. This is probably the
largest array of processors ever constructed.

VAX TM is a registered trademark of Digital Equipment Corp.

CH2649-2/89/0000/0373501.00 © 1988 IEEE
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MartinMariettaand NCR jointly developed a peripheral pro-
cessor for the NCR Tower TM Computers (also compatible with

IBM PC-ATs TM and other compatible computers). Martin Ma-
rietta expanded the development so that the basic system is also
compatible with SUN 3TM systems. NCR continued its devel-

opment system for their customers.

CELL DESCRIPTION

General

We intentionally keep the GAPP cell as simple as possible.

This simplicity is the driving principle resulting from Dr.
Holsztynski's work. Nothing should be included in the cell that
is not involved in the computation clock cycle. This require-
ment keeps the cell structure small, allowing a large number of

cells per chip. As shown in Figure 1, thecell consists of six ac-
tive components: four l-bit registers, a l-bit full adder/subtrac-
tor (FAS), and 128 bits of memory. Additionally, multiplexers

and data paths permit the movement of signals within the cell.

Registers

Three of the 1-bit registers, labeled North-South (NS), East-
West (EW), and carry borrow (C) are connected to the inputs

of the 1-bit FAS. Additionally, the NS register output is con-
nected as an alternate input to the NS registers in the cells that
exist geometrically to the norda and south of this cell. Likewise,
the EW register is connected as an alternate input to the EW

registers in the cells that exist geometrically to the east and
west of this cell. This is the nearest neighbor orthogonal con-

nection of the fine grid array of GAPP cells. The contents of

the C register are not available outside the cell in which it ex-
ists without passing through some other register.

Full Adder/Subtractor

The 1-bit full adder/subtractor (FAS) is the computational ele-

ment of the cell. It implements the truth table shown in Figure
1. The three 1-bit inputs come from the three previously men-

tioned registers, NS, EW, and C. On every clock cycle the FAS
automatically produces the result prescribed by the truth table.
This truth table allows the construction of arithmetic and logi-

cal results, in a bit serial fashion, that are completely general.

In principle, one can perform all arithmetic and logical opera-
tions with this element. The output labels represent respective-

ly sum, carry, and borrow (SM, CY, BW). The SM output is
the exclusive OR of the three inputs. The CY output is the ma-

jority of the three inputs. The BW output is the majority of the
three inputs with the NS value as the negated value in the table.

RAM

The memory bit in each cell is organized as a 1 x 128 bit static
RAM. When a 7-bit address is supplied, along with read-write
signals, 1 bit of data may be read from or written into the ad-

dressed memory location in each cell. The cell RAM is only
used to store data.

Control/Clock

Each cell requires 20 bits of control/address information defin-

ing the activity required of the cell. The control section consists
of 13 signals (the other 7 are associated with the RAM address-

ing) which primarily select data paths within the cell. There are
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Figure 1. GAPP TM Cell

NCR Tower TM Computer is a registered trademark of NCR Corp.
IBM PC-AT TM is a registered trademark of International Business

Machines Corp.
Sun 3rMis a registered trademark of Sun Microsystems, Inc.
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fiveindependentparallelgroupingsofdatapaths:oneassociat-
edwitheachportionofthecellthatcanstoredata.Thus,the
RAMandregistersNS.EW,CM,andCcanbemanipulatedin
parallel.Additionally,eachcellmustreceiveaclocksignal.All
changesofstatewithinthecelloccursynchronouslywiththe
clock.

GAPP CHIP DESCRIPTION

Control

The control, address, and clock signals are common among all
cells on the chip. Thus, every cell performs exactly as its neigh-
boring cell. The only difference between activities are a func-

tion of the data content within each cell's registers and RAM.
These data differences are crucial because a cell or group of
cells, through the proper use of algorithms, can appear to be
"turned off." The cells' ability to perform logical operations

makes individual cell operations practical even in an SIMD
control strategy.

Shift Register Groups

If the NS registers are pictured as in Figure 2a, they form bidi-
rectional shift registers in the north-south direction. On a single

GAPP chip, there are six sets of 12-bit NS shift registers. If the
EW registers are likewise pictured as in Figure 2b, they form
bidirectional shift registers in the EW direction. On a single
chip there are 12 sets of 6-bit EW shift registers. Since every
processing element contains one each NS register and one each
EW register, then these groups of NS and EW shift registers

form a geometric orthogonal arrangement, as shown in Figure
3, across groups of cells. Means are provided for the contents
of the EW registers to be transferred to the NS registers and
vice versa.

Similarly, the CM registers are organized as a group of shift

registers, geometrically placed in parallel with the NS shift reg-
isters. The CM registers are unidirectional (from south to north).
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Figure 2. GAPP TM One-Bit Latches Viewed as Shift Registers
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Figure 3. Orthogonal GAPP TM Register Pairs.

Chip Performance/Mechanics

Each grouping of like-named registers, such as outputs from
the FAS and RAM locations at the same address, can be

thought of as planes of data (Figure 4). When an instruction is
executed, every cell in the chip reacts in exactly the same way.
Since each chip contains 72 cells, this has the effect of operat-
ing on a 72-bit "word" within the chip for up to five planes (in-
structions involving NS, EW, C, CM, and RAM) in one clock
time. Usually one to three planes are moved at once.

CM

NS

EW

C Registers

SM

CY

BW

o12 RAM

_ 126_ 127

Figure 4. GAPP TM Chip Plane Names
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Chip Edges

The ends of each of the three groupings of shift registers (CM,
NS, and EW) come to the edge of the chip. Both the CM and
NS groups exit at the north and south edges while the EW
group exRs at the east and west edges. Each of these data
groups may be thought of as input/output ports to the chip. In
that sense, each chip has 6 ports; 2 bidirectional 6-bit ports
(one at the northern andddd one at the southern edge for NS; 2
unidirectional 6-bit ports (one for output at the northern edge of
CM and one for input at the southern edge of CM; and2 bidi-
rectional 12-bit ports (one at the western and one at the eastern
edge for EW). Further, the system designer may choose to pro-
vide three simultaneously input (CMS, and E or W and N or S)
and three simultaneously output (CMN, and E or W and N or
S) paths on a given clock cycle. At a 10 MHz clock, each chip
has an input/output bandwidth of 60 MBytes/second, 30
MByterdsecond input, and 30 MBytes/second output.

The data signals are deliberately pinned out of the chip package
at four mechanical edges, providing relatively easy printed cir-
cuit board layout.

Chip Performance/Mechanics

Consider the following: a cell requires 25 clocks to perform an
8-bit add (3n+l, where n is the number of bits in each operand
to be added). Each chip can be clocked at 10 MHz frequency.
At this 100 nanosecond rate, each cell can perform 400,000 8-
bit adds per second. Each chip contains 72 cells each perform-
ing their add: thus the chip throughput is equivalent to 28.8
million 8-bit adds per second. The 8-bit add executes in 2.5 mi-
croseconds. As an example of an elementary image processing
operation, a 3 x 3 neighborhood Sobel operator takes 54.6 mi-
croseconds or 18,315 Sobels per second per cell.

Each chip contains 84 pins for power, ground, clock, control,
address, and data exchange. Each chip occupies about one
square inch of board space and dissipates about one-half watt.

GAPPARRAY

Assembly

The assembly of an array is simple; each chip is connected to
its logical neighbor (east connects to west and north to south).
Clocks and control are distributed to every chip in the array.
Practical limits exist and most are imposed by the choice of
board housing, backplanes, bus standards, or system architec-
ture. In the current design, arrays are modularized as 48 x 132
(6,336) cells on a single 9u board (15 x 17 inches). See Color
Plate VIII, page 700.

Input/Output

In standard systems, input of data occurs via the CM south port
and output occurs from the CM north port. This arrangement
takes advantage of CM plane, allowing for simultaneous input
and output during computation. To obtain simultaneous input
and output, three conditions must exist. First, a result must be
available at the start of the input/output operation. Second, a
plane of input data must be available in the external world.
Third, the algorithm currently running must require at least N
clocks, where N is the size of the GAPP array in the north-
south direction. To obtain free input/output, a result is loaded

from RAM or registers into the CM plane in one clock cycle.
Data in the CM register plane are shifted north one position for
each clock. Simultaneously, a row of data is output into an ap-
propriate buffer on the northern edge of CM. On the same
clock, a row of data is input into the southern edge of CM. This
operation continues for N clocks. During the N clocks, any oth-
er operation can occur withint the array as long as it does not
involve the CM plane. At the end of N clocks, data are written
from CM into RAM or registers as dictated by the program.

Sizes

The smallest size array is one chip. The required array size is
tailored to the system problem. In real-time image processing,
the major parameters then determine size including input data
rate, algorithm length (execution time), and array clock speed.
For example, assume a 10 MHz clock speed for the array. Fur-
ther assume that the data are arriving at 12 megapixels per sec-
ond and that the algorithm requires 50,000 instructions or
clocks (the equivalent of 2,000 8-bit adds for every pizel in the
array).

The algorithm will require 5 ms to execute (50,000/
10,000,000). The array must contain at least 60,000 cells (5ms
x 12,000) to maintain real-time rates without missing any data;
this equates to about 833 chips. Using the 48 x 132 cell GAPP
modules previously mentioned, a system containing ten mod-
ules will suffice (880 GAPP chips or 63,360 cells). The modu-
lar design approach can accommodate up to 24 GAPP modules,
2,112 chips, or 152,064 cells as shown in Figure 5. At a 10
MHz clock frequency, a 24-module system would exhibit a
computational throughput of 60 giga 8-bit adds per second. The
largest GAPP system to date contains 1,152 chips or 82,944
cells.

]

= | I,=.|
\1 I"I = I

I I 5_x132• I s_x2_ •
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Figure 5. G/_Ppn_ Chip Modulcs_Optional Configurations

GAPP SYSTEMS

Composition

Every GAPP-based image processing system must interface
with the outside world, as shown in Figure 6a. At the next level
of detail, the systems must include elements unique to GAPP-
based architecture such as the interface to data sources and
sinks appropriate to the array as well as program store and con-
trol for SIMD style processors, as depicted in Figure 6b.
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All GAPP systems have these functions but unique implemen-
tations are too numerous to mention in detail. The range of sys-
tem applications has spanned NASA Mars Lander studies to
Strategic Defense Initiative (SDI) applications, from laboratory
systems to tactical military hardware. GAPP array designs
range from small arrays (12 x 18 cells) to very large arrays.
GAPP systems have handled frame rates from seconds per
frame to more than 100 frames per second.

The remainder of this paper discusses systems composed of a
standard set of modules. The system component overview is
shown in Figure 7. We assume that these systems will be con-
nected to a host computer, although the majority of our GAPP
systems are stand alone ROM or disk-based machines. The re-

quired modules (solid outline) are described and available op-
tional modules (clashed outline) are discussed.

Program In

m :,'7; H'"r"°'["

Cor :rol
Pro_ ram

St, re [ (b)

Data Sinks

Program
Source

Figure 6. GAPP TM Chip System View

GAPP Module

The GAPP module, pictured in Color Plate VIII, page 700, and

diagrammed in Figure 8, is the heart of the system. The design
philosophy applied to this module drives the overall system
definition. The module contains three major elements, the array
of GAPP chips, an input buffer memory and an output buffer
memory. The GAPP array contains 88 chips arranged as a 48 x
132 cell group. CMS lines are used as the input means to the

input buffer section. CMN lines are used as the output means to
the output buffer section.

The input buffer is composed of standard memory chips, either
with 16K or 64K parts, depending on the application. These
parts are arranged to form a 48-bit wide memory that matches
the GAPP array size. Both data to be stored in the input buffer

MBII

Figure 7. GAPP TM Chip-Based Optional Elements
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Figure 8. GAPP TM Chip Module GMOD
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and its addresses may come from two sources: the GAPP con-
troller (G2MC) and (ff one is included in the system) the SIOC.
These sources control and write 48-bit wide data into the mem-
ories. The G2MC has priority over the input corner turn (CT)
data and address bus.

The output buffer is composed of the same type of chips as the
input buffer, but is double buffered. This double buffeting al-
lows the simultaneous wansfer of results to the data sink during
GAPP computations involving the other section of the output
buffer. Depending on the system configuration, the scan bus
output from the output buffer is the data and control path by
which real-time results and display transfers arc made to the re-
mainder of the system. If few results are desired, or if the data
rates are low, then results can be extracted from the output buf-
fer via the corner turn bus through the G2MC to the host.

Data may be input into the GAPP array from two sources via
the CMS port: the input buffer and the output buffer. This ar-
rangement allows continuous real-time sensor input while ena-
bling the output buffer to be used as virtual memory to aug-
ment the in-cell GAPP data memory. Since every module has
its own output buffer, the time required to save and recover
data to virtual memory is independent of array size or organiza-
tion.

The impact of this approach reflects into all areas of the system
design. First, consider the input side of the module. Since the
input buffer is not double-buffered, it is possible for the GAPP
program to need input from the input buffer while a real-time
sensor is inputting data. This eventuality is handled via control
from the GMC in conjunction with FIFO storage on the SIOC.

Second, on the output side, there are currently two system com-
ponents that might require simultaneous access to the scan bus:
the video display controller (VDC) and the post-GAPP pro-
cessing chain [entered via the output buffer data extractor
(OBDX)]. Because of this possibility, an arbitration function is
included on each board.

Third,from a systemstandpoint,each GAPP module has its
own uniquerelationshipwithrespecttotheothermodulesand
tothemappingofdataintothemodules.When thedatafrarnc
sizeisestablished(512x 512 or100 x 100)therelationshipbe-
twccnthatframeand thephysicalprocessorsizemustbedeter-
mined.ThisreflectsintoGAPP moduleand inputbuffermem-
ory addressing.Further,GAPP modulesdo not resideon the
systembus,MBII. Rather,theyarcaccessedviatheG2MC on
MBII.

GAPP Module Controller

The purposeoftheGMC shown inFigure9 istoprovidesys-
tem synchronizationand programstorageand broadcasttothe
GAPP modules. It is the primary interface to the GAPP mod-
ules and consists of two major sections plus the MBI] interface.
The lust section is the control and GAPP program storage sec-
tion and the second is the data input/output section.

Alldataand controlcommands arcprovidedtotheG2MC via
MBII from thehost,includingdownload ofGAPP algorithms
and thecontrolsequencetobeexecuted.The controllercanbe
configuredtoholdasmany asI mega word ofGAPP instruc-
tions.The minimum configurationis256K words.Board con-
trolstartsthe sequenceof GAPP executionvia the system
controland sequencer.Thisinturnestablishessystemsynchro-
nizationas a functionof embedded commands withinthe
GAPP code.Both GAPP module inputand outputbufferad-
dresssequencesarcestablishedfromthecontrollerfornormal
operationalinterfacewiththeGAPP array.A prioriknowledge
ofthealgorithmisusedby thesystemtoprccomputeaddresses
tomaintainsystemthroughput.Theseaddressesarcknown as
eithercompileorloadtime.

The second section, data input/output, is used for low volume
real-time, high volume nonreal-time, or setup data transfers. As
previously noted, results may be transferred via this path to the
host. Some applications require masks to be available as a bit

Static RAM (4 MB maximum, 1 MB minimum)
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Figure 9. GAPP TM Chip Module Controller (G2MC)
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plane while others assign a unique array cell address to each
cell loaded from the output buffer. These data are downloaded

via this path, which sets up data and extracts test algorithm ex-
ecution results to determine the integrity of the GAPP array.

Generic Interface

The generic interface (GI) module, shown in Figure 10, pro-

vides a standard GAPP system interface to a host system. This
smart switch routes programs and data to the appropriate mod-
ules within the GAPp-based system via the highest speed path
available. A host unique interface is required in conjunction
with the GI. Currently, three host interfaces are planned: IBM
PC-AT, SUN, and VAX/Apte¢ Systems TM.

The GI passes GAPP program data, lookup data, execution or-
ders, and the like to respective bus modules via the MBII mes-
sage passing protocol. Modules that can reside on the bus have

Host
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Figure 11. GAPP TM Chip-Based Minimum System
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MB11

a predefined list of recognizable primitives that enable new ca-
pabilities to be added to the system equipment list.

Minimum System

With these three modules and the host interface, a minimum

system can be configured (Figure 11). GAPP modules (1 mini-
mum), a controller, and the GI perform algorithm development

and numeric, geometric, and logical computations. This config-
uration is useful in a personal workstation with the IBM PC-
AT or the SUN as a host. The data transfer rates of these hosts

prevent gross inefficiencies for a 2-to-6 GAPP module system.

High Speed System

Figure 12 represents a high-speed real-time display and pro-
cessing system. If connected to a VAX/APTEC system with an
IBIS disk system, this system would provide powerful process-
ing capabilities for a multiple user environment. With a mini-

mum of eight GAPP modules, this system would avoid input/
output overload. Additional equipment would include video
disks and tapes for real-time data input.

The video display controller (Figure 13) provides for symbolo-
gy overlay over output video derived from GAPP output or

symbology overlay over digitized analog video with the option-
al video digitizer. The VDC provides a digital output port to
supply digitized video as an input to the GAPP system from
standard analog inputs (RS170 or RS343). The analog video
output is provided in RGB format. Lookup tables establish col-

or parameters. The VDC may be used alone, for output only, or
in conjunction with the sensor input/output controller (SIOC).

eric

HOlt

M""l T ...

Figure 12. GAPP TM High-Speed System/Muhiuser Environment

Aptec Systems TM is a registered trademark of Aptec Computer
Systems, Inc.
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The SIOC, shown in Figure 14, provides the interface between
digital video and the input buffer section of the GAPP m(xt-
ules. The SIOC accommodates a quantity of GAPP modules
and can select from one of two video sources, A or B. With op-
tional adapters, Emitter-Coupled Logic (ECL) or double-ended
Transister Transister Logic (TI'L) digital inputs can be used. In
the high-speed system configuration, one of these inputs is the
generic interface, while the other is the digitized video port of
the VDC. Thirty frames per second video can be received and
processed from either port. In some sensors, the order of pixel
presentation is scrambled. The DSC block is a programmable
window function. Windows of different sizes may be selected
from each frame of a continuous stream of images. The CMP
or compressor function is a programmable down-sampler.

The statistics box represents a custom statistic chip that accu-
mulates image statistics as the image is input to the system.
These data may be used to adjust the algorithm in real time.
The lookup table (LUT) can remap the image if desired. Some
sensors are scanned vertically while others are scanned hori-
zontally. This box remaps vertical scan to horizontal scan. The
system can accommodate direct vertical scanned input if de-
sired. The remainder of the SIOC interfaces the digital video
stream to the GAPP modules in conjunction with the GAPP
controller module.

Utilities-Algorithms-Software

The software development environment for GAPP-based sys-
tems is continuously improving and expanding. Our first soft-
ware system was based on the STOIC threaded language.
While this approach produced a complete software develop-
ment environment in about 4 weeks of elapsed time, it was not
attractive to outside customers. To overcome this aversion to
STOIC, an Ada-like language compiler was developed.

In conjunction with NCR, a C language-based sofware devel-
opment system was created. This system has been ported to the
NCR Tower computers, IBM PC-AT and its close compatibles,
and the SUN computer.

DSC = De-scrambler

CMP : Compresl)or GAPP

LUT : Lookup table Module

V-H • Vertical tO hoflxonlal Input
CT . Corner turn

BI Bus Interfsce Buffer

IB = input buffer Input
Bus

Figure 14. Sensor input/output controller (SIOC)

A number of utilities functions and algorithmic approaches
have been developed between 1986 and 1988. These include
computational and representational approaches to Hough
Transforms, artificial neural networks, 3-dimensional image
manipulation and rotation, multiple simultaneous discrete Four-
ier transforms, and floating point representations.

Many basic level operations exist as libraries. These libraries
are available for addition, subtraction, multiplication, division,
absolute values, thresholding, erosion, dilation, general convo-
lution, spatial filtering, down sampling, histogramming, and
logical operations on both single and multiple bit functions.
The "ADD" library, for example, must handle a significant di-
versity of operand locations and operand precision for bit serial
geometric processors. Geometrically, operands may be in the
same cells as data memory or in neighboring cells. The oper-
ands may be located at the same GAPP RAM address or at dif-
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ferent addresses, and the number of bits in the opcrands need
not match. All of these considerations must be implemented in
a general purpose library function for each of the standard ele-
mental computer operations.

Mars Rover Sample Return (MRSR)

Martin Marietta Astronautics Group uses a GAPP-based system
to investigate complex autonomous spacecraft landing. Color
Plate IX (p. 701) shows the marrain (Martian terrain) board
used to simulate the surface and the TV probe that captures the

pictures to be processed by the 100 x 100 GAPP cell process.
This processor is coupled to a Gould SEL TM computer via
RS422 link.

SUMMARY

The GAPP-based processor is a flexible and affordable system
architecture based on simple fine-grain bit serial processing
ceils. This system has broad application, including use in labor-
atory, tactical military, and space-based systems.

Gould SEL TM is a registered trademark of Gould, Inc.
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INTRODUCTION

Message routing networks are acknowledged to be one

of the most critical portions of massively parallel com-

puters. This paper presents a processor chip for use

in massively parallel computer. The programmable ap-

proach used in this processor provides enough flexibility

to make it a "universal" part for building a wide variety

of interconnection networks and routing algorithms. A

SIMD control scheme is used to make programming and
synchronizing large numbers of processors simple.

In the course of designing this processor, we were faced

with the decision of which logic operations to implement
in an ALU; informal design studies showed that it was

best to provide none. The processor performs all com-

putations by a sophisticated table lookup mechanism,

and has no ALU; it is thus called the No ALU Proces-

sor (NAP). Using tables rather than an ALU provides
a very flexible instruction set, and in real programs of-

ten allows more than one "operation" to be done in one

cycle.

Benchmarks written for the NAP show that indirect

addressing mechanisms can speed many common opera-

tions by a factor of about log N. We have therefore pro-

vided hardware to support indirect addressing, or Mul-

tiple Address Multiple Data (MAMD) operation. In ad-
dition, the NAP contains local storage used for flexible

instruction decoding: the same instruction can result in

different operations on different chips. These two mech-

anisms allow programmers to write programs for NAP
machines easily using SIMD style, and also provide the

power of different computations happening simultane-

ously in different parts of the machine.

Message routing networks for parallel supercomputers
occupy a unique place in the spectrum from special-

ized to general-purpose machines. Although these rout-

ing networks can used to build general-purpose parallel

computers (as well as specialized computers), they them-
selves are usually built out of very specialized hardware.

This paper presents a single processor design which is

useful for building a variety of different networks; in this

sense it is a general-purpose element within the spe-

cialty of interconnection networks. This processor is
an experimental design incorporating several novel ar-

chitectural features which make it simple to program,

general purpose, and efficient. Specifically, no ALU is

provided in the processor. The arithmetic functions nor-

mally performed by an ALU are instead performed by

table lookups into memory. In addition, a very flexi-

ble programming model is provided, which supports in-

direct addressing and multiple concurrent instructions

while operating in a SIMD or Multiple SIMD (MSIMD)
mode.

The NAP chip described in this paper is the result

of a design experiment which explores architectures for

communication network support. The experiment has
three main design goals:

Act as a "universal" element for routing networks.

By universal we mean both general purpose and ef-

ficient. The performance of the NAP when used as

a node within a network should be as close as pos-

sible to the performance of a special purpose chip
designed especially for that network.

• Provide communications control which is as flexible

as possible.

Keywords: Universal,Table lookup,ALU, Parallel,Pro-

cessor,Network, VLSI
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Keep the processor'sI/O pins (which connect to

other NAP chips)and memory as busy as possible

performing usefulwork.
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In the course of designing the NAP, we were faced with
the decision of which logic operations to implement in an

ALU; informal design studies showed that it was best to

provide none. Using tables rather than an ALU provides

a very flexible instruction set, and in real programs of-
ten allows more than one "operation" to be done in one

cycle. One of the most interesting lessons from the de-

sign of the NAP was that table lookup is a very powerful
mechanism.

A collection of NAP chips can be wired together and

can be programmed to simulate many things. We have

programmed our simulators to perform several impor-

tant parallel algorithms, including reduction and paral-

lel prefix in a tree network (Ref. 1), connection-machine

style routing on a cube connected cycle (Ref. 3), cellu-

lar automata programs (such as Conway's game of Life)
(Ref. 7). We are able to support any network with a

large number of nodes (up to about 282 nodes) of con-

stant degree, including fat-trees (Refs. 4, 2), butterfly
networks (Refs. 8, 5, 6), cube connected cycles, trees,
and meshes.

Section of this paper describes the instruction set ar-

chitecture of the NAP. Section discusses the processor
design and the implementation of the NAP chip. Fi-

nal]y, Section evaluates the NAP in the hght of our

design goals, and summarizes the lessons learned from

this project.

INSTRUCTION SET ARCHITECTURE

We adopt the (M)SIMD model of one or more con-

trollers broadcasting microinstructions to sets of pro-
cessors; each set of processors is controlled by one con-

troller. The controller handles all instruction sequenc-

ing, like loops or branches. In this SIMD model all

processors are globally synchronized at the instruction

level. Each processor communicates with other proces-

sors through eight bidirectional wires. The bidirectional

wires may be connected in any fashion to form an in-

terconnection network; the NAP chips form the nodes
of that network, and may do computations in parallel

to perform routing, do actual computing for the system,

or both. A system-level view of the NAP is shown in

Figure 1. Examples of networks which can be built us-
ing NAPs are Butterfly or Fat-Tree networks, Banyan or

Flip-type networks, Hypetcubes (more than 2 s proces-

sors require multiple NAPs per node), Cube-Connected-

Cycles, Shuffe-Exchange networks, Torus and Mesh net-
works, restructurable networks, and Trees. An impor-

tant restriction is that the networks are regular enough

to have fewer than 16 distinct types of nodes; most prac-
tical networks have one or two.

Indirect Addressing and MIMD

One very important mechanism provided by the NAP

which is not found in conventional SIMD computers is

indirect addressing. We support indirect addressing be-

cause of the wave nature of the computations performed

by many routing networks. Consider for example paral-

lel prefix (Ref. 1), which is a class of parallel algorithms

which use a tree interconnection structure between pro-

cessors to perform many operations (such as addition)
in logN time. At any stage of a parallel prefix computa-

tion, each level of the tree may be accessing a bit at a
different address than other levels of the tree are access-

ing. Conventionally, this would be handled by enabling

or disabling the processors at different levels of the tree,
and running the computation on different levels at differ-

ent times, thus slowing down the overall computation.
Indirect addressing provides a mechanism for different

processors to access different memory addresses at the

same time under SIMD control. The result is that par-
alhl programming can be done more flexibly and more
effciently.

In addition to indirect addressing, there are three

means of differentiating processors within the SIMD con-

trol structure and hence making programming more flex-
ible and efficient.

1.

2.

Conditional execution: the instructions broadcast

on the SIMD bus can conditionally load a local in-

struction store called the nanostore, conditionally

load the memory, conditionally load configuration

bits within the NAP (called I/O-or-State-Select or
ISS bits), and conditionally execute sequences of in-

structions. An instruction may be conditioned on

any of the 16 bits of state within the NAP.

The instructions stored within the nanostore of each

NAP may be different, so that different processors

may perform totally different operations in response
to the same broadcast instruction.

3. Processors can have different tables at the same ad-

dress in local memory, and thus perform different

functions even while they are accessing the same
address.

These three mechanisms, which are explained in more

detail below, provide a large degree of flexibility to NAP

programmers.

Instruction Philosophy

We assume that off-chip wire delays are slow compared

to on-chip cycle times and local memory access time,

since we are implementing systems with long wires.
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Figure 1. System-level view of a NAP-based computer. Global microcontrollers broadcast instructions to sets of

NAP chips. Each NAP chip is connected to an off-chip RAM, a SIMD instruction broadcast bus, and 8 bidirectional
network lines.

Therefore, we chose a mierocycle/nanocycle timing ap-
proach. At each microcycle, the controller broadcasts a

global microinstruetion, and each processor can read or

write from each of its eight pins. Within each microcy-

tie, there axe four minor cycles called nanocyeles. Dur-

ing each nanocycle, a nanoinstruction is executed which

nearly always references the external memory twice (one
read and one write or write-back). Thus, the NAP uses a

two-phase timing methodology internally, and the mem-

ory may be accessed during each phase. Two phases

make a nanocycle, and four nanocyeles make a micro-
cycle. The memory address may be changed once a

nanocycle.

The NAP is heavily memory based. As we have seen,

each phase of a nanocycle may involve a memory access,

so that the performance of the NAP is driven by memory

performance. Most programs written for the NAP are

also very memory-oriented. Operations axe performed
using tables in memory under the control of broadcast

microinstructions. Typically, these table-based opera-

tions take as operands an arbitrary combination of state

and input wire values, an integer, or an address. Each

table (called a function table) requires 256 words (8 bits
each). Our prototype supports up to 2K words of ex-

ternal RAM, so that up to eight different tables can be

stored in memory at once; additional tables are down-

loaded as needed. Tables may be accessed using either
direct or indirect addressing.

The NAP mieroword

Figure 2 shows the format of the NAP microword. This
word is the instruction broadcast from a controller to a

number of NAP chips in (M)SIMD fashion each micro-

cycle. The 39 bits of the microword are common to all

the NAPs in a set. Each microword contains distinct op-
eration codes for every nanocycle, as well as condition

codes, a direct memory address, and two table offsets

used for indirect addressing or table-based logical oper-

ations. The microword is also very memory-oriented; 17

of its 39 bits axe used for memory addressing.
The microwotd does not contain the actual nanoin-
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Name Function Width

INIT initialization and download control 1 bit

OP0 four-bit indexes into the nanostore 4 bits

OP1 which specify which nanoinstruction 4 bits

OP2 to perform in each nanocycle 4 bits
OP3 OPs share one address and condition code 4 bits

CC Condition code; this decodes to 16 conditions 4 bits

MIP Memory address (for direct addressing) 11 bits

F0 Function table offsets (for indirect addressing) 3 bits

F1 normally contains the start address of a table 3 bits
total number ofmicroword bits 39

Figure 2. The microinstruction word format shows the mnemonics, functions, and width of each instruction field.

structions executed each nanocycle by the NAPs.

Rather, it contains four four-bit OP codes which specify

an address in an on-chip memory called the nanostore.
The nanostore contains the nanoinstructions in the form

of a bit for every control line needed by the NAP hard-

ware. The OP fields give the 'address' of the nanoin-
struction within the nanostore. This approach reduces

the number of bits broadcast to the processors and thus

economizes on chip pins. In addition, it provides a mech-

anism for different processors to perform different work
under the control of the same microinstruction, since

different processors may have different nanoinstructions
loaded into the same address in the nanostore.

Memory Addressing Modes

A number of memory addressing modes are supported

by the NAP. Bit-read, bit-write, word-read, and word-

write modes are supported, and each of these may be ad-

dressed using any combination of bits available to the ad-

dress multiplexors. A memory address is built as shown

in Figure 3. Bits are multiplexed onto the SRAM ad-

dress pins from the microinstruction (the MIP, F0, and

F1 fields), or from internal state bits. There are sixteen
bits of state in the NAP: eight bits from the external

SRAM held in a Memory Data Latch (MDL), and eight

bits which can be configured as any arbitrary combina-

tion of I/O bits or additional State bits (called IS bits).
All of the these state bits may control the memory ad-

dress.

A memory address specifies an eight-bit word. Within
that word, the low order three bits of the MDL specify a

bit in that word. A memory address is II bits (providing

8K bits of address space) in the NAP chip. Each mem-

ory address is used for one nanocycle only, although the

memory addressing fields are held constant for a whole

microcycle.

Providing a Global OR-tree

A global-or line to the microcontroller (the computer

which broadcasts the SIMD instruction stream) can be

derived from any of the I/O/State bits by OILing the ex-
ternal wires together. This capability is extremely use-

ful. For example, when checking for a condition (e.g.

does any processor contain zero, or does any processor's

memory contain a pattern which matches the broadcast

pattern), the result can be returned to the mierocon-

troller within a microcycle. The distance from the mi-

crocontroller to the NAP chips through the SIMD bus

and back through the global-or tree might be more than
200 ns, so that programmers using the global-or mecha-

nism might have to take account of the pipelining effect.

Any bidirectional communications pin on the NAP may
be used to construct a wired-OR tree.

PROCESSOR DESIGN

A block diagram of the NAP processor is shown in Fig-

ure 4. The major subcircuits are a set of datapath cir-

cuitry, a Nanocode store consisting of 16 by 28 bits of

static RAM, Nanosequencer logic to control the execu-

tion of instructions, and a set of Instruction pipeline

registers. The NAP uses a three-phase (1.5 nanoeycle)
pipeline internally: operation lookup, nanocode access,

and datapath operations happen sequentially in every
nanoinstruction.

The NAP is designed to work with 35-ns external

Static RAMs. These are expensive. It would make sense

to move this memory on-chip.

Sixteen words by 28 bits of nanocode store are pro-

vided which are addressed in sequence by each of four

opcode fields in the microinstruction. These nanoin-

structions are downloadable and may differ for different

processors. The outputs of the nanostore are the con-
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Address bits bit source 0 bit source 1 bit source 2

Bits 0:4 MIP[0:4] MDL[3:7] IS[0:4]

Bits 5:7 MIP[5:7] IS[5:7]

Bits 8:10 MIP[8:10] F0[0:2] El[0:2/

Figure 3. The memory address is constructed from combinations of the Memory Immediate Pointer (MIP), the

Memory Data Latch (MDL), the I/O-State bits (IS), and the Function table pointers (F0 and F1).

Figure 4. The block diagram of the NAP chip shows the SIMD instruction latches (left),the nanosequencer (lower

left), the state and I/O circuitry (top center), the data-path (right), and the RAM interface (lower right).
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trol bits used directly by the logic in the processor; the

nanostore itself is a static RAM with decoders, write
amps, and sense amps. This RAM has a access time

goal of 25 ns, and is 1974 by 1620 microns in area using

a 3 micron CMOS technology.

Conditional instruction execution is provided in the

nanosequencer via an enable control which may disable

all outputs of the nanostore. This disabling happens
if the bit in the microinstruction condition code field

selected by the state bits is high. This mechanism allows

up to 16 different classes of processors.

The NAP is designed using a fully static CMOS cir-

cuit methodology in MOSIS scalable CMOS design rules.

A two phase non-overlapping clocking approach is used;

Approximately half of the circuitry on the chip (and ex-

actly half of the control lines) are 'active' on phase 1,
while the other half is active on phase 2. The MAGIC

layout system was used for the layout of the chip. Each

chip contains four NAPs, although only one of these pro-

cessors is fully connected to the pins of the chip. The
other three processors are accessible through scan path

circuitry. The overall circuit is 7900 by 9200 microns in

a 3 micron CMOS process.

EVALUATION AND CONCLUSIONS

We have shown that it is feasible to design a processor

chip which supports a variety of bit-serial routing net-

works efficiently. This type of chip is a step towards

understanding how to build and operate interconnection

networks for massively parallel computers. The NAP
chip we have designed provides very flexible address-

ing mechanisms, and allows indirect addressing so that

MAMD operation is possible. This chip also supports
three distinct means of multithread operation, so that

different processors operating off the same instruction
stream can do different things. Finally, this processor

chip has no ALU; table lookup is used for all operations.

We have found all of these mechanisms useful in writing
example programs, and believe that the NAP approach

can teach designers about how to provide addressing and

processor selection mechanisms in SIMD processors, and

about the issues involved in providing flexible and high-
performance interconnection networks.

How well has the NAP design stood up to its original
design goals? Let us examine those goals one by one:

• Provide communications control which is as

flexible as possible. The operation of the pro-

cessor is completely programmable at both the
microinstruction and nanoinstruction levels. Pro-

cessors have considerable flexibility in addressing

modes, and indirect addressing at both the bit and

word level is well supported. In addition, there are

three distinct means for processors operating from

the same instruction stream to do different things:
in addition to the standard conditional execution

(which is made very general in the NAP), they can

have different nanoinstructions in their nanostore,

or use different operation tables in their memory.
In practice, this allows programmers to write pro-

grams with the simplicity implicit in SIMD control

and synchronization, yet keep processors efficiently

utilized doing different things at the same time. Es-
sentially, one can program a machine built of NAPs

as sets of processors, even if those processors share
the same controller.

Keep the I/O pins and memory as busy as

possible performing useful work. Each mi-

croinstruction may make up to four memory ref-
erences, each of a read-modify-write nature. Ev-

ery microinstruction executed by the processor can

be able to read from and write to up to eight I/O

pins on the processor. All of the programs written

on NAP to date have been able to keep the I/O
pins active at at least one bit per microcycle, which

corresponds to our assumptions about wire latency.

Similarly, most of these programs use most of the

nanoeycles in a microcycle to perform useful work,

so that memory is well utilized. The cycle time of

the NAP is also in good agreement with the speed
available from state-of-the-art commercial SRAMs

or on-chip dRAM.

The NAP should serve as a 'universal' ele-

ment for routing networks. To date, we have

written NAP programs for message routing using

algorithms designed for butterfly networks (Ref. 6)
using the same number of cycles as a node designed

specifically for that purpose. We have also written

NAP programs for parallel prefix (Ref. 1) which ex-

ecute in one microcycle per bit. Although these

examples are not sufficient evidence to prove that
NAP is in fact a universal communication element,
they do indicate that NAPs would be useful in a
number of different networks.

Experiment with an ALU-less processor. Our

experience in writing NAP programs using tables
for operations is that 'compressed tables', which do

more than one thing in one operation, are immedi-

ately of use. For example, one portion of the table

might be used to increment a pointer while another

part might perform a boolean operation on a few

I/O bits. We had hoped that experimenting with

table-based operations might lead us to a choice of

which operations to put into an ALU; instead, we
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discovered that the generality offered by these ta-

bles was just the right thing for programming.

We hope that the NAP chip will eventually serve as

a testbed for experimentation with new interconnection

networks and parallel algorithms. We plan to test the

NAP design using a variety of 'benchmark' programs and

networks to test its utility as a general-purpose network
element. Measurement of effect of indirect addressing

and our processor differentiation mechanisms on proces-

sor utilization will tell us something about the efficiency

of our approach. Finally, using these mechanism to write

programs may lead to future insights about what pro-

gramming constructs are useful for writing effective pax-

a]lel programs for communication networks.
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Abstract

An orthogonal multiprocessor (OMP) was recently proposed

by the authors. This paper presents multidimensional OMP

which is conceived for massively parallel computation. The OMP

compares very favorably over two known architectures, namely

generalized hypercube and spanning-bus hypercube. All three ar-

chitectures extend the original concept of binary n-cube. Among

the three, the OMP requires equal or less hardware and yet

presents some interesting application potentials in massively par-

allel computation. The orthogonal architecture is a viable al-

ternative to the conventional SIMD array computers which use

distributed local memories.

1 Introduction

An orthogonal multiprocessor (OMP) architecture has

been recently conceived at University of Southern Califor-

nia [4] and independently at Princeton University [6]. A

similar architecture, called EMPRESS, has been built by

ETH (Swiss Federal Institute of Technology) for solving

PDE problems [3].

An OMP has p processors and p2 memory modules inter-

connected by p dedicated memory buses in two orthogonal

directions (Fig.l). The details of the OMP architecture can

be found in [4]. Each white circle represents a memory

module and each shaded circle is regarded as a computer

node consisting of a processor, its local memory and a bus

selector. Each bus is used by only one processor. The

unique feature of the OMP rests on conflict-free memory

access operations: column access and row access. The two

accesses are mutually exclusive, which is termed as the or-

thogonality principle. In a row access, all processors access
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the row memories. Likewise, in a column access, all proces-

sors access the column memories. All processors can com-

municate with each other in twomemory accesses. By the

orthogonality principle, parallel computation and commu-

nication can be achieved among multiple processors. High

memory bandwidth and efficient computation are provided.

A rich class of parallel algorithms has been developed for

the OMP [4,5,6]. Parallel programming is easy due to easy

partitioning of the tasks and simple allocation of resources.

However, a major problem in implementing a large OMP

comes from the fact that it requires O(p 2) memory modules

and their interconnections.

P/M Q Computer node

(processor/memory/switch}

M (_ Memory

o&

PIM (_ o&

p_M M&

Fig. 1: OMP(4,2), a two-dimensional orthogonal

muItiprocessor with radix 4.

*This research wa_ supported in part by the ONR grant N00014-86-
K-0559 and in part by the NSF grand DMC-84-21022.
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In this paper, the OMP is extended to multidimension

for massively parallel computation. The OMP compares

very favorably over two known architectures, namely gener-

odized hypercube [1,2] and spanning-bus hypercube [1,7]. All

three architectures generalize the original concept of binary

n-cube. The OMP requires equal or lesshardware among

the three and yet presents some interestingapplicationpo-

tentialsin massively parallelcomputation.

The organization of the paper is as follows: Sections 2

and 3 describe detailed architectureof binary OMP and

k-ary OMP; Section 4 dealswith interprocessorcommuni-

cation strategy and network characteristics;Section 5 in-

cludes potentialapplicationsand conclusions.

2 Binary Orthogonal Multiprocessors

[] Processor

0 Memory

0 Computer node

(processor, memory, switch)

° /

2/
0 1

3

The original OMP (Fig.l) is regarded as a 2-dimensional

architecture with radix 4 since the memories are organized

into a 2-dimensional array. Before a general extension of the

OMP (i.e. k-sty OMP), binary orthogonal multiproce88ors

are characterized below to clarify the idea.

A binary 3-dimensional OMP, denoted as OMP(2,3),

is shown in Fig.2. It consists of 23-1 = 4 processors and

2s = 8 memory modules. Each processor has a dedicated

memory bus to shared memory array. Memory buses are

switched to provide 3 directional accesses (x, y, and z). Fig-

ure 3 shows patterns of parallel memory access using the

orthogonality principle. For the x-access, only those buses

running in the x direction are active. There is no contention

between processors in memory accessing, y-access and z-

access are performed in a similar fashion. Each memory

bus is spread into x,y, and z directions. There are two

memory modules tied to a bus for each dimension. One of

four memory modules connected to the same bus can be

accessed in any direction. It is dedicated to the processor

that owns the bus, calleda private memory. Thus, private

memories and associated processors are assumed to be at

same nodes (i.e.shaded circles,which is termed computer

nodes in the figures).

A binary 4-dimensional OMP (OMP(2,4)) has 2'-I = 8

processorsand 24 -- 16 memory modules. The architecture

isillustratedin Fig.4. There are 4 disjointways of memory

accesses (w, =,y and z accesses).Figure 4b-c illustratesthe

memory accesses.
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Fig.2 The multiple bus interconnection
structure of an OMP(2,3)
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(a) x-sccess
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(b) y-access

0

o

(C) Z-access

0

Fig.3 Three orthogonai directions for

memory accesses in an OMP(2,3)



A binary n-dimensional OMP (OMP(2, n)) isconstructed

by p = 2n-1 processors and m -- 2" memory modules based

on a binary n-cube. Memories are located at allvertexes of

the cube. Edges of the cube form 2"-x buses interconnect-

ing processors and memory modules. 2"-l processors exist

every two links away. This corresponds to two-bit differ-

ence in the node index when an n-bitbinary representation

is used.

Binary OMPs are very similar to binary n-cube com-

puters. Buses with shared memories are counterparts of

the point-to-point links in the hypercube computer. An

OMP uses equal number of memory modules and a half

of processor nodes. The OMP needs 2 "-1 buses, each of

which runs into n dimensions, while the hypercube requires

n. 2" point-to-point links. Thus, OMP demands fewer links

(buses) to achieve massive parallelism. Orthogonality rule

simplifies the control complexity in memory access.

A network diameter is defined as the maximum number

of links of the shortest path between any two processors. In

a hypercube topology, the network diameter is obtained by

Hamming distance. It corresponds to the number of edges

of the shortest path between the source and the destination.

The communication cost in the OMP is measured by the

number of memory reads or memory writes for a message

to reach the destination via the shortest path. Message

passing between processors d edges apart in an OMP needs

d - 1 memory reads and d - 1 memory writes. Thus, two

memory references in the OMP are equivalent to the rout-

ing cost for one edge in the hypercube. We will call them a

routing unit. By the above definition, the network diameter

of a binary n-dimensional OMP is n - 1. Thus, OMP has

slightly smaller network diameter. Comparisons of binary

OMP with binary hypercube are summarized in Table 1.

Table 1: Comparison of a binary OMP with a binary hy-

percube

OMP(2,n) Binary n-cube

# processors 2 "-1

# memory modules

# buses or links 2"-1

Ports per node n

Network diameter n - 1

2"

2 _

n • 2n-!

n

[] Processor C) Memory • Compuler node

(e} Overall configuration

(b) w-access

(C) Z-aCCeSS

Fig.4 The OMP(2,4) architecture with

4 orthogonal memory access directions.

3 k-ary OrthogonalMultiprocessors

In general, a k-ary n-dimensional OMP (OMP(k,n))

consists of p = k "-1 processors, m = k n = kp memory

modules, and p dedicated memory buses. Memories and

interconnecting buses form a k-ary n-dimensional hyper-

cube ((k, n) hypercube). The architecture may be called a

shared-memory hypereube. Nodes on colinear edges are con-

nected by a bus instead of point-to-point links. Figures 5

and 6 show a ternary 3-dimensional OMP (OMP(3, 3)) and

ternary 4-dimensional OMP (OMP(3,4)), respectively.

A memory bus spans to n orthogonal directions (dimen-

sions), k memory modules are tied together per dimension

in a bus. A private memory located at computer node is

common to every direction. A total of n(k - 1) + 1 mem-

ory modules are accessible by each individual processor. A

memory module is shared by n different processors except

private memories. Since n ::_ p, memory is partially shared.

The access is controlled by an n-to-1 switch in each mem-

ory module that allows only one bus (or a processor) be
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Fig. 6: An OIVIP(3_4) architecture consisting of
27 proeessars and 81 memory modules.

(Only partial interconnections are shown.)

Fig. 5: An OMP(3,3) architecture consisting of
9 processors and 27 memory modules.

(Hidden nodes and buses are not shown.)

p processors

n.1

p=k

p>> k

p>> rl

( m memory modules)

t]
nl = k

(a) OMP(k,n)

To n outof p buses

,_ (,),, (i) / B(i)

oeo

I Switch

+
(b) A memory module

Fig. 7: An OMP(k,n) architecture consisting of

p= processors and k n memory modules

interconnected by p dedicated buses.

m=_p

,B2, ... , Bp

switched to at a time. The logical structure

can be viewed as Fig.7. The orthogonal access

rule is observed for memory read/write: all pro-

cessors should access the memory in the same

direction in a memory cycle. Processors which

do not need memory accesses do not participate

the memory access. There are n different pat-

terns of memory access by the rule. Due to the

synchronous memory access, the SIMD operation

is quite suitable for controlling high-dimensional

OMPs.

The OMP architecture is very similar to span-

ning bus hypercube (SBH) [1,7] and generalized

hypercube structure (GHC) [1,2] as shown in Fig.8.

They are organized based on hypercube topol-

ogy. Each node of both architectures represents

a processor and its local memory. S13H and GHC

are distributed-memory multiprocessors while the

OMP is a shared-memory one. A bus connects

multiple processor-memory nodes in SBH. There

could be bus contentions between processors while

the OMP does not. The GHC contains point-

to-point links for interprocessor communication.

Radixes of all dimensions of GHC are assumed

same here. If the three systems have an equal

number of nodes, OMP uses k times less nodes

as processors. Table 2 summarizes the compar-

isons of hardware complexity of OMP
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with GHC and SBH. The longest path between two nodes

in k-ary n-dimensional hypercube has n edges. Thus the

network diameter of OMP(k, n) is n - 1. Section 4 deals

with the issue in more detail. So the diameter of the OMP

is a slightly smaller than others. The number of ports is

the largest for GHC. Both OMP and SBH have n ports

per node. For massively parallelism, OMP is appealing

since it has the least interconnection complexity for the

interconnections. Figure 9 shows the interconnectlon com-

plexities of the OMP compared with GHC architectures for

various configurations for massively parallel computation.

The number of independent buses and the number of links

are considered in both OMP and SBH, and GHC, respec-

tively.

For the OMPs with the same number of processors,

there are various system configurations with different radixes

and dimensions. The larger the dimensionality, the smaller

the number of the memory modules required ( p = k"-l).

For example, a OMP(2,7) of 64 processors requires only 128

memory modules with a diameter of 6, while an OMP(8,3)

needs 512 modules with a diameter 2 (Table 3). Similar

situation can be observed for 64K processor systems. The

tradeoff between the choice of radix k and dimension n lies

in cost-effectiveness and communication speed/network di-

ameter).

(a) A 4X3X2 generallzed hypercube network
[Bhuyan and Agrawal '84]

(b) A 3 3 spanning bus hypercube network
[Wlttle '81]

Fig. 8: Two known generalizations of

the hypercube architecture

4 Orthogonal Computation and

Communication

There are various mappings for k n-I computer nodes

onto (k,n) hypercube with k" vertice. The following sec-

tions deal with interprocessor communication after formal-

izing the node assignment of an OMP onto (k,n) hyper-

cube.

4.1 Processor/Memory Assignment

Processors in an OMP(k, n) can be indexed by (n - 1)

dimensions.

P_ -- P(a,-2, a,_-s,..., al, aO), (1)

(O<_a_<k forall p=O,1,...,n-2)

Table 2: Comparisons of Orthogonal Multiprocessor

(OMP) with Generalized Hypercube Computer (GHC) and

Spanning-Bus Hypercube (SBH) architectures

Architecture

processors

:/it memory modules

OMP(k,n) [ GHC(k,n)
SBH(k,n)

k "-1 k" k"

k"

# buses or links k'*-' [ nk"(k - 1)/2 nk "-I

Ports per node n n(k - 1) n

Network diameter n- 1 n n

Memory modules can be indexed similarly by n dimensions

asM(b,_l,b,___,...,b,,bo) for0<bq <k, q=0,1,...,n-

1. One simple way to assign k n-1 computer nodes on the

vertices of (k,n) hypercube as follows: P_ is mapped to a

node j = (b,-1,b,-2, ...,bt,b0) such that
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bk=a_-x for k=l,2,...,n-1 -}

I (2)

Thus, only the last digit of j needs to be determined in the

mapping.

A processor located at (b_-x,"',60) can directly access

n(k - 1) + 1 memory modules whose indexes are the same

as that of the processor node except in one dimension:

M(b_-l,b.-2,'",b_,bl,z)
M(b,-x,bn-,,"" ,b2,z, bo)

: (z -- 0, X,...,k - 1)

M(b,,-x, z, b,-s," " , bl, bo)

M(x, b,,-2, b,-s," " , bl, bo)

For a non-private memory module M(b,_ 1, b,-z,..', bl, b0),

the n processors sharing the memory are those at (b,_ x, bn-2,

• .', bl, zo), (bn-l,bn-2,"", zx,b0),"" ", (bn-l,z_-2,"", bl,b0),

trod (zn-x,b,-s,'" ,bx,b0), where z0,zx,. "-,z_-i are some

fixed constants satisfying the relationship (2).

The OMP architecture can he conceptually simplified

such that only the processors and their interconnections are

considered. Hypothetical interconnections between proces-

sors, called logical links, are introduced. Two processors are

assumed connected by a logical link if they share a mem-

ory module. The original OMP(k,n) can be reduced to

(k, n - 1) hypercube by removing all memory nodes and

creating logical links. The (k, n - 1) hypercube consists of

processors at each node and links between nodes. Such a

structure may be called a processor-hypercttbe.

Table 3: Various OMP configurations for two given machine

sizes

No. of bum

or llnk*

t OHO1012 ,'" Radix

¢, o // p
k=8

101° I .... SBH /." ./

/ "-- OMP /" ¢./j/P

¢, e p

iif_a_ st wt

10

2 4 6 8 10 12

Dimension (n)

Fig. 9: Comparisons of tnterconnectlon complexities of
OMP with Generalized Hypercube (GHC) and Spanning

Bus Hypercube (SBH) architectures.

A (k, n- 1) processor-hypercube can be created by pro-

jecting the OMP(k,n) to n - 1 dimensional space. For

example, the original OMP(k,n) may be projected along

the nth dimension. Because no two processors exists on the

same line (bus) in the OMP(k, n), there is no overlap of pro-

cessors at the same node in the projection. A processor at

(bn-x,b,-s,... ,bl,b0) is mapped to P(b,-x,bn-s,'.. ,bl,bo)

in the processor-hypercube. The (k, n- 1) processor-hypercube

preserves the interprocessor connection relationship except

the nth dimension. In other words, the interconnection

information for the nth dimension is lost in the processor-

hypercube. This results in decreasing the physical proxim-

ity (edge count) by one between processors whose nth dig-

its in their indices were different. Suppose distance in the

processor-hypercube is computed using Hamming distance.

It will overestimate the distances for processor pairs which

had the same coordinates in nth dimension, since d-digit

difference in their indices does not change after projection.

However, the d-digit difference corresponded to the distance

of d - 1 from our original definition. Those with different

# processors p = 64 p = 65 536 (= 64K)

Organization

(k-ary, n-dim) (2,7) (4,4)(8,3) (2,17) (4,9) (16,5)

# memory modules 128 256 512 128K 256K 1000K
Network diameter 6 3 2 16 8 4
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coordinate values in the nth dimension will get correct dis-

tance. Thus, the routing distance measurement based on

(k, n- 1) processor-hypercube gives an upper bound.

The average internode distance tt, determining the queue-

ing delay in the communication network, is defined as

rl-I

= _ dNdl(P - 1) (3)
d=l

where Pd is the number of processors in the distance d from

a source node. It is computed as Cn- 1)Ok- 1)k_-i/(k "-l -

1) _ n- 1, if k >> 1. In binary OMP, d _ (n- 1)/2.

The average internode distances of generalized hypercube

and spanning bus hypercube are n [1]. Hence the network

properties of the OMP are quite comparable to those two

hypercube architectures.

4.2 Routing Algorithms

Data can be routed on the processor-hypercube using

algorithms employed in hypercube computers. Two proces-

sors having only one-digit difference can communicate with

the cost of one routing unit. Messages are sent toward the

direction with unequal coordinate values. Processors with

two-digit difference have a distance of two. For example, in

the OMP(4, 4), the processor P(0,0,0) can send a message

to the processor P(0, 1,3) in two routing units. There are

two disjoint paths in the processor-hypercube.

Path 1: P(0,0,0) _ P(0,1,0) _ P(0,1,3)

Path 2: P(0,0,0) _ P(0,0,3) --, P(0,1,3)

Exact paths in original OMP can be derived using the same

idea with computer node assignment defined in (2).

Data routing between two processors whose indices dif-

fer by multiple digits can be done using a successive routing

to immediate neighbor processors whose indices differ only

one digit. There are many alternative paths for a given

pair of processors. Data routing can be simplified if the

routing sequence follows the order of the index, i.e. if there

are d-digit difference in the indices, we arbitrarily choose a

dimension in which the digit is different. The data are sent

along the direction, then along the next highest dimension

with unequal indices, and so on. Once the lowest dimen-

sion is reached, the next dimension is determined in wrap-

around fashion. We can find d disjoint paths to route data

to the same destination due to d different choices for the

first routing dimension. Hamming distance is the routing

distance required to reach the destination. The maximum

difference in the indices between processors is n - 1 for the

(k,n - 1) processor-hypercube. Thus the network diame-

ter is n - 1 for OMP(k, n). Simultaneous data movements

by multiple processors via the same logical link causes no

contention. It is because each logical link represents n sep-

arate physical memory buses associated with the processors

in the direction. The orthogonal access guarantees parallel

data movement for all processors without conflict.

Broadcasting from a processor to all p processors takes

n - 1 = log k p steps. The data propagate along jth dimen-

sion at jth step (j = 0, 1,...,n - 2). At one memory cycle,

each processor simultaneously writes the data received onto

all k memory modules in the jth dimension. Each step the

number of processors grows k times which have already re-

ceived the data. Thus, after n - 1 steps all processors will

get the data.

Below we show a parallel algorithm for computing a

consensus function. Consensus functions include the max-

imum/minimum, sum, and/or of p numbers. By recursive

doubling, k numbers stored in k processors of OMP(k,2)

can be summed up in O(log 2 k) memory accesses [5]. This

corresponds to the summing of k numbers stored in k pro-

cessors which lie on a straight line in a (k, n - 1) processor-

hypercube. There are plk such parallel lines along the di-

rection. Thus, for each of those parallel lines, a summation

of k numbers is computed simultaneously. After one step

of the concurrent sum, the number of intermediate sums

to be further added is reduced to 1/k of previous one. By

alternating the direction among the n - 1 dimension, the

total is found after n- 1 summing operations since there are

k "-x numbers. The algorithm is sketched below. The re-

sult (a sum of the p numbers) will be obtained in processor

P(0,0,.-. ,0).

Algorithm SUM

forj=0ton-2do(1) and (2):

(1) Form groups of k processors having same coordinate

(a,_-l,a,,-2,'" ,a_+l,as,O,O,... ,0) except a_.

Each group of k processors simultaneously computes a

sum of k data by recursive doubling using k x k

memory array in the group.

(2) The results are shifted to the processors whose nodes

have the same indices except a zero in j-th

dimension.
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The following computes the time complexity of Algo-

rithm SUM. Step (1) can be done in O(iog 2 k) time. Step

(2) takes constant time. Hence the overall time complex-

ity of the algorithm is O{(n - 1) log 2 k} = O(log 2 k _-1) =

O(log2 p).

5 Concluding Remarks

The OMP is a hybrid architecture which combines the

advantages of both shared-memory and distributed-memory

systems. It is generalized from the hypercube to use some

of the nodes as processor nodes and the remaining as par-

tially shared memories. Partial sharing of memories signif-

icantly reduces the required memory ports per module as

compared with fully shared-memory multiprocessor. Log-

arithmic diameter provides fast and efficient communica-

tion. The orthogonality principle enables conflict-free, par-

allel memory access, and scalable performance, which are

very desirable for either SIMD or MIMD operations. These

properties support massively parallel computation for me-

chanics, physics, chemistry, vision, and etc. P0tential ap-

plications are summarized in Table 4.

Table 4: Potential applications of the generalized OMP ar-

chitecture

• Signal/image/speech processing

• Numerical modeling

• Neural network simulation

• Graphics for visualization

• Sensory fusion and robotics

The distinct characteristics of the generalized OMP are

summarized below:

By introducing high-dimensional configurations, the

number of memory modules required is reduced sig-

nificantly from the original OMP (O(kp) vs. O(p2)).

The orthogonal memory access rule may be rigid for

general-purpose applications. However, it contributes

to the delivery of high memory bandwidth and simple

memory access control.

• The performance of the OMP in interprocessor com-

munication is comparable to other similar architec-

tures like GHC and SBH in terms of network diameter

and average internode distance. The OMP requires

lower interconnection complexities.

• For fine-grain computation., the shared-memory or-

ganization performs better in communication than

distributed one. It has less overhead in carrying rout-

ing information and does not need complex routing

algorithms than the message-passing scheme.

Indeed, the orthogonal architecture becomes a viable

alternative to the conventional SIMD array architecture

which uses distributed local memories.
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ABSTRACT

The goal of the BLITZEN project is to construct a physically
small, massively parallel machine. A highly integrated chip
has been designed with 128 processing elements (PEs). A
BLITZEN system consisting of 16,384 SIMD PEs will require
only 128 PE array chips. This paper presents the PE
architecture , the organization of PEs on the chip, and the
feature set of the chip which has been custom designed and is
being fabricated at the Microelectronics Center of North
Carolina. Each PE has 1K bits of static RAM and performs
bit-serial processing with functional elements for
arithmetic, logic, and shifting. Unique local control features
include modification of the global memory address by data
local to each PE, and complementary operations based on a
condition register. PEs on the chip are positioned in an 8 by
16 array. Data I/O is accomplished through a new method
using a four-bit bus for each row of 16 PEs. The BLITZEN
chip is one of the first to incorporate over 1.1 million
transistors on a single die. It has been designed with MCNC's
advanced 1.25 micron CMOS process to operate in excess of
20 MHz. A 16K PE system, operating at 20 MHz, can perform
IEEE standard 32-bit floating point multiplication at a rate
greater than 450 megaflops. Fixed point operations on 32 bit
data can exceed the rate of one billion operations per second.
Since the processors are bit-serial devices, performance
rates improve with shorter word lengths. The bus oriented
I/O scheme can transfer data at t 0240 megabytes per second.

Keywords: massively parallel, custom VLSI, parallel
processing, SIMD, MPP.

OVERVIEW AND MOTIVATION

Parallel machines make use of multiple processing elements
executing simultaneously to speed up computation. For the
purposes of this paper, we will consider a massive/y parallel
machine to be a parallel machine with at least 10,000
processors. A number of massively parallel machines have
been constructed, including the Massively Parallel Processor

* This work was supported in part by NASA Goddard Space
Flight Center under Contract Number NAG-5-966 to the
Microelectronics Center of North Carolina.

1. Dept. of Computer Science, North Carolina State Univ.,
Raleigh, NC 27695-8206.
2. Dept. of Computer Science, Duke Univ., Durham, NC
27706. He is also supported by contracts: ONR #N00014-
80-C-0647, Air Force #AFOSR-87-0386, O N R
#N00014-87-K-0310, NSF #CCR-8696134, DARPA/ARO
#DAAL03-88-K-0195, and DARPA/ISTO #N00014-88-K-
0458.

(MPP) built for NASA Goddard Space Flight Center by
Goodyear Aerospace Corporation (now Loral Systems Group),
the Distributed Array Processor (DAP) built by the British
firm ICL, and the Connection Machine (CM) built by Thinking
Machines, Inc. (Refs. 1, 7, 8, and 11). These projects
demonstrated the feasibility of constructing machines with
massive parallelism. Nevertheless, only a relatively small
number (a few dozen) of the machines have been built so far
and they have been utilized almost exclusively by research
branches of government agencies, academic, and industrial
organizations.

Miniaturization of Sequential Computing Machines

The situation now may be very similar to the development of
the first mainframe computers in the late 40's: only a few
general purpose computers existed. At that time, IBM made an
early study which indicated that the worldwide use of
computers would require only a few dozen mainframes (the
rest of the computing equipment being calculators or special
purpose machines). Nevertheless, a combination of
advantageous engineering and economic factors resulted in the
proliferation of computers. Central among these factors was
the use of advanced electronic techniques to reduce the
physical size, that is, to miniaturize computing machines. By
miniaturization, we mean a high level of integration of the
hardware onto VLSI components. Note that the process of
miniaturizing sequential architectures has not necessarily at
all degraded the computing power available to users.
Miniaturization first allowed mainframe computing machines
to be economically manufactured; and later, further
improvements in integrated circuit technology allowed
personal computing machines to be physically placed within
the working environment of office workers, engineers, and
scientists. In fact the development, for example, of
miniaturized RISC architectures, has actually improved
performance in many cases, by allowing higher execution
rates.

BLITZEN: A Miniaturized Massively Parallel
Machine

The central goal of the BLITZEN project is to develop a
miniaturized massively parallel machine. The machine will
be physically small while providing the performance
associated with massively parallel processing. We are
convinced that the development of such a miniaturized
machine will have the same benefits as discussed above for
conventional sequential machines:

(1) These miniaturized machines should be much more
economical, allowing a much larger market for massively
parallel machines.

CH2649-2/89/0000/0399501.00 © 1988 IEEE
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(2) The miniaturized machines could be backplaned with
conventional workstations, making the capabilities of
massively parallel computation easily accessible to
engineers and scientists.

(3) A miniaturized machine could potentially be used in
environments that require very small size and power
consumption, such as on space flights. For example, NASA
plans to have such a machine as a component of the Space
Station computing system.

This paper provides rationale for design decisions, many of
which have the dual benefit of both insuring miniaturization
and also improving performance.

The Project Team

The BLITZEN project involves a number of institutions in the
Research Triangle area of North Carolina, including Duke
University, North Carolina State University (NCSU), and the
Microelectronics Center of North Carolina (MCNC). Project
personnel included John Rail, Jonathan Rosenberg, and
graduate students Jonathan Becher, Nigel Hooke and Lars
Nyland of the Computer Science Dept. of Duke, Edward Davis
of the Computer Science Dept.of NCSU, and Don Blevins and
Fred Heaton of MCNC. The BLITZEN project has received
partial support under a grant from NASA Goddard Space Flight
Center.

Team effort to date has resulted in development of the
processing element architecture (Refs. 4 and 5), custom
design for the PE array chip, development of a full scale PE
array simulator (Ref. 10), microcode for selected arithmetic
operations, and the specification of an assembler language and
architecture for the BLITZEN controller (Ref. 9). We are in
the process of developing a prototype system and a high level
parallel programming language which is an extension of C++
for the BLITZEN machine.

Organization of the Paper

In the next section, "Processing Element Architecture", we
describe the bit serial processing element and provide some
comparisons with the MPP and Connection Machine. Local
control features and methods for memory access are
emphasized. Following the discussion of individual P E
architecture, we describe, in the section "PE Array Chip
Architecture", the organization of PEs on the custom chip,
with emphasis on our interconnection and I/O schemes. The
section "Chip Feature Set", provides details of the custom
chip design and instruction pipeline. An overview of system
architecture concepts and software for BLITZEN is given in
the final section, "BLITZEN Systems".

PROCESSING ELEMENT ARCHITECTURE

Each processing element in BLITZEN is a bit serial processor,
with a variable length shift register and random access
memory. The BLITZEN design used the MPP PE architecture,
described in Ref. 2., as a starting point.

The existence of the MPP has provided experience with
massively parallel processing such as that reported by the
MPP Working Group (Ref. 6) and by K. E. Batcher, the chief
architect of the MPP, (Ref. 3).

Our group has designed various improvements on the MPP PE
architecture into BLITZEN:

(1) Incorporation of RAM on-chip for each PE.

Motivation: This allows the PE to access memory without off-
chip delays.

(2) Bus oriented I/0 with a four bit path for each set of 16
PEs.

Motivation This gives BLITZEN a total I/O capability of
4,096 bits per cycle. (in comparison, the MPP has a total
I/O capability of 256 bits per cycle, and the Connection
Machine has an I/O capability of 1,024 bits per cycle.)

(3) Local modification of RAM addressing.

Motivation: This allows on-chip memory accesses to be
determined by the contents of each PE's shift register.

(4) Local conditional control of arithmetic and logic
functions.

Motivation: This improves the performance of various
arithmetic operations.

(5) Bidirectional shift register.

Motivation: This allows more flexible data movement.

(6) An X-grid interconnect, allowing eight neighbors per PE.

Motivation: This gives a factor of two improvement (over the
NEWS grid) in diagonal data movement.

Note that (3) and (4) give the BLITZEN PE a degree of MIMD
control, which can improve the flexibility and efficiency of
the machine.

Figure 1 presents the functional elements of one BLITZEN PE
and shows a similarity to the PE in the MPP. Blocks with
double line boundaries are storage devices. There are six
single-bit registers labelled A, B, C, G, K, and P. Two devices
hold multiple bits. One is a variable length shift register
which, in conjunction with registers A and B, has a capacity
of 32 bits. The remaining storage device is a 1024 bit
random access memory (RAM). Arithmetic and logical
operations are performed by a full adder and a logic block.
The above elements communicate primarily over a single bit
data bus. A four bit I/O bus provides a path to pads of the chip
for connection to external storage devices. An I/O bus is
shared among 16 PEs on a chip. Following paragraphs discuss
features that represent significant departures of BLITZEN
from the MPP.

On-Chip Memory

An on-chip, static random access memory (RAM) is
associated with each PE. From a processing point of view it is
a 1024 by 1 bit RAM. A memory read operation reads the
single bit specified by a ten bit address and places the value
on the data bus. A memory write operation writes the value
from the data bus into the location specified by a ten bit
address.
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Input/output operations view memory as a 256 by 4 bit RAM.
I/O operations access memory using the eight most significant
bits of the ten bit address, and transfer four bits between the
I/O bus and memory.

Masking, lhe local control feature Ihat can be used to enable
or disable certain operations, is possible on all memory
accesses.

Local Address Modification

In a SIMD machine, the control unit issues an instruction to
all PEs. If a memory operation is involved, one address is
delivered to all PEs. In BLITZEN, the global address can be
modified al each PE. Conventional processors generally
modify an address thal appears in an instruction by adding
index or base register values, or extracting an address from
some Iocalion for indirect use. In a SIMD machine, logic that
handles local modification of addresses must appear at each PE

and be locally decoded. That is, the logic must appear at each
of the 128 PEs on this chip. To conserve chip area the
modification chosen is the logical OR of the global address
with ten bits from the shift register. This can simulate
indexing when data structures begin on appropriate power of
two boundaries where the least significant bits are zeroes.
When normal (unmodified) memory operations are issued,
the global address is unchanged.

Figure 1 shows a ten bit bundle of signals from the shift
register labeled "local rood". The ten most significant bits of
the 16 bit section of the shift register are used to provide
local address modification.

We believe BLITZEN is the first massively parallel machine
with the ability to modify the global SIMD memory address in
every PE. BLITZEN has addressing logic with every PE.
Previously, a SIMD machine developed by DEC, and the

Connection Machine 2, allowed a large group of processors to
share indirect addressing logic.

Conditional Operations

BLITZEN provides additional new local control of PEs through
the use of a programmable conditional operation test
involving register K. When using the conditional fealure,
operations which are complements of each other can be
performed at the same time in different PEs. The feature
applies to operations involving logic at register P, or loading
a value into register C. When a conditional operation is
issued, processing is normal in all PEs where K - 0. In those
PEs where K - 1 the results are complemented. Since both
normal and complemenled operations take place, based on
testing a condition, this is like a restricted form of the high
level IF-THEN-ELSE concept with both lhe THEN and ELSE
clauses happening concurrently. When a conditional operation
instruction is nol used by the programmer, register K is
available to hold a temporary value.

The condilional operation feature can be used to improve
performance, by a factor near two, in non-restoring division
algorithms where Ihe next iterative step depends on the
result of the current step. If the current step produces a
negative partial remainder, the divisor is added at the next
step. If the current step produces a positive partial
remainder the divisor is subtracted al the next step. The
approach to following both paths concurrently is to program
the subtraction operation for conditional execution. By using
the sign bit as the conditional flag in K, subtraction will take
place in those PEs where K-0 and addition where K-l, as
desired.
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BidirectionalShift RegisterandDataPaths

TheMPPshiftregisterisunidirectional.In BLITZEN it has
been made bidirectional. In the MPP all bits shift during a
shift operation, even if they are not selected under the
current length setting. Since BLITZEN uses a section of the
shift register to hold local address bits, the register design
has been changed such that bits do not shift if they are not
selected. This also lets the shift register be used to hold
temporary variables.

Several smaller changes have been made, as compared to the
original MPP PE. Bidirectional paths are provided between
the data bus and all registers except C. Since a masked writ{,
operation is possible, the equivalence function between
registers P and G has been eliminated. For a more detailed
description of the BLITZEN PE architecture, see Refs. 4 and 5.

PE ARRAY CHIP ARCHITECTURE

Organization of PEa and Functional Components

The above PE architecture is used as the basis for the

BLITZEN VLSI processor array chip. A single chip contains
128 PEs, each with tK bils of locally addressable memory.

By placing 128 PEs and their local memory on a single chip,
we make a major step toward miniaturization of the BLITZEN
machine. Only 128 of these PE array chips are required for
an entire 16,384 PE BLITZEN machine (In comparison the
MPP processing element array chip contains eight PEs, and
the system requires a total of 2048 such chips. The
Connection Machine has 16 PEs per chip.).

A single PE is a building block for the chip architecture. PEs
are organized into an 8 by 16 array on the chip. They are
interconnected with a two dimensional grid for
communication between PEs, as discussed in the next section.

Data is moved on and off the chip over a sel of eight I/O buses,
each with 16 PEs attached, as described in the section
"BUTZEN I/O Scheme" Figure 2 shows the organization of PEs
on the chip, including the X-grid interconnections, I/O buses,
and some logic and control signals that are common to all PEs
on the chip.

Message Routing Capability on the BLITZEN Machine

Why a Hypercube Interconnect Is Not Necessarily
an Improvement Over a Grld - One major design
decision was not to use a logarithmic diameter
interconnection network, such as the hypercube used by the
Connection Machine. Instead we used a variant of the two

dimensional grid, namely the X-grid (due to C. Fiducoia),
with diameter 128, which is the square of the number of
processors. In spite of our background in theoretical
computer science, we concluded thai a logarithmic diameter
network would be impractical for our needs. The key
problems with logarithmic diameter networks, such as the
hypercube, are:

(1) The number (namely 896) of I/0 pads that would be
required for hypercube edges exiting a processing element
chip with 128 PEs is impossibly large.

(2) The inter-PE wiring requires large amounts of area,
both on-chip and between chips.

A decision to use a hypercube interconnection network would
make it very difficult to highly integrate our machine.
Because of pin count and network area requirements, we
would have been limited to only 16 PEs per chip, and even
then only have 1/16 of the I/O pins required for a full
hypercube interconnect. The result would be an interconnect
with perhaps no greater communication capabilities than a
two dimensional grid.

C.C)LUMN SELECT ADDRE_

Figure 2. BLITZEN Chip Architecture
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Another argument in favor of the grid interconnect is the
empirical experience that a very large class of applications
naturally require the grid interconnect.

The Connection Machine has some impressive built-in
hardware for doing permutation message routing.
Unfortunately, this routing circuitry uses a large fraction of
their processor chip area and decreases the step rate of their
machine. We decided that our need for a high performance,
miniaturized architecture was more important than the need
for message routing circuitry, (which can be replaced by
software routing routines that are neady as efficient,)

X-Grid Inter¢onnectlon - Processing elements are
interconnected in two ways on a chip: a grid interconnection
for routing and a bus structure for I/O. Figure 2 shows the
X-grid nearest neighbor routing network. PEs are arranged
in a two dimensional grid with interconnection paths to
neighbors in the eight compass directions N, NE, E, SE, S,
SW, W, and NW. A routing operation transfers the state of P
to the P register of a neighboring PE and accepts a new state
from the PE in the opposite compass direction.

Four bidirectional routing connections are brought out of each
PE from the four logical corners: NE, SE, SW, and NW. The
connections intersect between PEs as shown in figure 2. A
routing path is established by an operation which sends data
out in one direction and accepts data in from one of the
remaining directions. As an example, routing in the north
direction can be achieved by sending P out to the NE and
accepting P in from the SE. The data value on the SE input
originated in the PE to the south. All PEs route the same
direction in one processing cycle.

Eight paths can be established with four wires out of each PE
by sending data on one wire, receiving data on one of the other
three wires, and placing the remaining two wires in the high"
impedance state. This X-grid interconnects PEs on a chip and
extends across chip boundaries so that an array of chips can
be uniformly interconnected. Additional off-chip logic can
provide various treatments of edges of the total array, as was
done in the MPP system. The use of the X-grid allows a factor
of two improvement In the frequently occurring case of
diagonal data movement.

BLITZEN I/O Scheme - Data I/O is the critical path in any
parallel machine. The MPP's I/O scheme is simple -- data is
shifted in from the west edge of the array using the S--plane,
and shifted out simultaneously along the east edge. In a
BLITZEN system the array would be segmented along chip
boundaries, so a natural extension to the MPP I/O scheme
would be to have data flow in one side of a chip and out the
other using the same S-plane idea. Thus BLITZEN would have
data I/O occurring every 16 PEs, from west to east, using 32
pins.

At that time in the chip design activity, floorplanning
predicted that the local static RAM should have a 256 by 4
aspect ratio. The RAM would have a four-bit interface, with
further demultiplexing and multiplexing for the one-bit PE
data bus. Since there were four data wires available per row
of PEs on a chip, an alternative I/O approach was presented.
The approach was to move, conceptually, the 16 output S-
plane connections from the east edge to the west edge, and

combine them with the 16 input S-plane connections to form
eight bidirectional, four-bit I/O buses on each chip. Each
four-bit bus is shared by the 16 PEs in a row. This scheme
has several advantages, such as very high bandwidth, an
easier interface for extending memory off-chip, the ability to
broadcast data to all PEs simultaneously, fast data movement
across the chip, and elimination of the S-plane.

Each chip has column select logic that is used in conjunction
with the I/O buses. For normal I/O transfers, one PE in each
row is active. The PE column index is the same for all rows

and is given by a four bit address to the column select logic. In
broadcast mode, data can be input lo all PEs on a row, thus
column selection is not used.

Video RAM (VRAM) chips are available with very high block
data transfer rates, matching the rates of our PE I/O buses,
and with four bit outputs, matching our four bit I/O buses.
We plan to use one megabit VRAM chips, organized as 256K
by 4, to augment the PE memory by 64K bits each. We will
allow the 16 PEs along an I/O bus to share a vertically
packaged VRAM chip.

CHIP FEATURE SET

The BLITZEN PE array chip was designed by the
Microeleclronics Center of North Carolina (MCNC) with two
orthogonal constraints: maximize both integration and speed.
The chip incorporates over 1.1 million transistors on a die
1 f.0 by 11.7 mm. It was designed with MCNC's 1.25 micron,
two level metal, CMOS process. It is packaged in a 168 pin
pin grid array and is designed for the JEDEC 3.3 volt power
supply standard. The operating frequency is 20 MHz worst
case, and power dissipation is 1.0 war1.

The chip contains 128 PEs positioned in an 8 by 16 array.
Internally, a three stage pipeline enables BLITZEN to execute
an instruction every cycle, as shown in figure 3. During the
first cycle a 23 bit SIMD instruction from the control unit is
latched and decoded into a fully horizontal 59 bit
microinstruction. During the second stage of the pipeline the
microinstruction is broadcast to all 128 PEs. In the final
stage the instruction is executed. By issuing a fully horizontal
microinstruction, no additional decoding logic was needed in
the PEs. The encoding of the 23 bit instruction was optimized
to minimize the amount of internal decoding.

Data transfers on the I/O bus take place in a single cycle as
shown in the timing diagram in figure 4. If the I/O buses are
used as an interface to high density video RAMs, blocks of data
can be transferred quickly to and from the chip. Routing
communication on the X-grid also takes place in a single
cycle.

Figure 5 is the floorplan of a single PE. Each PE has access to
its own 1K bits of memory, which are internally organized as
32 by 32 bits. Multiplexing is provided to select four out of
32 bits for interfacing to that PE's I/O bus. When a PE
accesses memory for an operand, further selection of one out
of four bits is needed. Address calculation logic (predeeode) Is
also needed at each PE to support the indirect addressing mode
provided by local modification of the global address. The
execution unit of a PE, including the shifter and ALU, contains
approximately 1130 transistors.

403



clock

InstructionDecode
_nstr 3 instr 4 instr 5

Instruction Broadcast

_nstr 3 mstr 4 instr 5

Instruction Execution

_str 2 Instr 3 instr 4 instr 5

Figure 3. The instruction pipeline.
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Figure 4. The instruction pipe for I/O bus transfers.
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Figure 5. VLSI design floorplan for one PE.

BLITZEN SYSTEMS

In a top level view of the system architecture, major
components are organized around two buses. An internal bus
supports data transfers between register and memory
components. The second bus is used for transfers between
BLITZEN and a host computer. Massive SIMD processing takes
place in the processing array. Data in the on-chip local
memory Is supplied from off-chip, video RAM data memory,
with the transfers considered as I/O operations with respect
to the array.

Instructions are broadcast from the control unit to all PEs in
the array. More specifically, operation codes originate in
microcoded routines stored in control memory, and local
memory addresses are generated from the register set.
Together they form an array instruction. Control logic
manages the register set and sequences the microinstructions.
A scalar microprocessor can be included for use as the
processor running an application program. It executes scalar
instructions and sends calls for array instructions to the
sequencing logic in the control unit.

Two external interfaces are planned. The host interface is a
narrow path thai matches the host wordlength. It is used for
downloading programs (both application and microcode) and
transferring data at low bandwidth between BLITZEN and the
host with it's peripherals. High speed peripherals
communicate with BLITZEN through custom peripheral
interface logic. This path accesses the data memory and is
potentially very wide for very high bandwidth.
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DataMemory

EachBLITZENprocessingelementhas1KbitsofRAMon-chip
for holding data. It is known that many applications can
benefit from additional memory, but the 1K amount was
governed by chip size and density limits. In BLITZEN, the
memory limitation can be alleviated by off-chip data memory
that is accessed across the I/O buses. The use of VRAM for this
purpose was mentioned earlier. Data memory can be viewed
as the primary data memory of the system with on-chip RAM
treated as registers or data cache.

Using the high bandwidth I/O buses it is possible to change the
content of all or part of the on-chip RAM very quickly. In one
instruction cycle 32 bits (eight four-bit items) can be
transferred between VRAM and each array chip. If the system
is operating at 20 MHz, the total transfer rate is
(4 bytes/chip)*(128 chips) per 50 nanoseconds, or
10.24 Gigabytes per second. In 128 instruction cycles, 32-
bit data items can be transferred into (or out of) the on-chip
RAM of each PE. In 4096 instruction cycles the entire 1K per
PE RAM can be loaded. In 8192 cycles the content of RAM for
the entire array can be swapped. Operating at 20 MHz, the
time required to swap the total content is 409.6
microseconds.

Holographic Routing

J. Reif, at Duke, has invented a holographic message routing
system, using electro-optical components yielding very high
routing rates. He is developing this device under DARP/VARO
contract. K. Johnson from the Electro-optical Computing
Center at University of Colorado, Boulder, is constructing a
prototype of this system. We are developing microcode to
allow BLITZEN to use this electro-optical routing device.

Programmer's Model

BLITZEN is a computing system whose primary computational
resource is a single instruction stream, multiple data stream
array processor with a massive number of processing
elements. This massively parallel array operates in
conjunction with several other major system components.

Programming BLITZEN takes place at several levels. At the
lowest level is the machine language for the array. The
hardware instruction set is specified in Ref. 4. Since the
instruction set is concerned with single bit register
transfers, it is not expected to be used by application
programmers. Rather, it is the basis for a microcode
development language, named BLITZ (Ref. 10), that couples
array operations with control unit register transfers and
sequencing operations. Commonly used routines
corresponding to assembly language instructions such as load,
store, add, floating point add, etc. are being written in BLITZ
for inclusion in a microcode library whose routines can be
called from a higher level language. An object oriented
language based on C++ is being developed for application
programming. High level language statements will be
compiled into parallel assembly language statements that
result in a calls to microcode routines which are executed on
the array hardware.

Parallel PE Array Simulator

Prior to the existence of hardware, a software behavioral
simulator known as "Zyglotron" was developed (Ref. 10).It is
a "full scale" simulator in that it can simulate the entire
16,384 PE array with very high performance. Zyglotron is

being used for microcode development, and can allow the
development of algorithms and high level software to proceed
concurrently with hardware system development. As noted in
the abstract of Ref 10, "The simulator has achieved such high
performance by taking advantage of e natural mapping that
exists between massively parallel bit-serial machines and
the vector architecture used in many high performance
scientific super-computers." The simulator runs on the
CONVEX C-1 vector processing machine and is written in C
and in the CONVEX C-1 assembly language.

CONCLUSION

This paper has reported on the architecture and VLSI design of
a new massively parallel processing array chip. The BLITZEN
PE array chip, containing 1.1 million transistors, has been
submitted to the Microelectronics Center of North Carolina

for fabrication. The chips are the basis for a highly
integrated, miniaturized, high performance, massively
parallel machine that is currently under development.

The work reported in this paper resulted from the efforts of a
group of researchers, mentioned in the overview section,
participating in this project with the support of the
Microelactronics Center of North Carolina. We also benefitted
from discussions with Kenneth Batcher of Loral Systems
Group concerning architecture of the MPP and local address
modification schemes; with John Dorband of NASA Goddard
SFC concerning conditional operations; and with Charles
Fiduccia of General Electric who described their cross-omega
machine with an eight neighbor grid interconnect. The
interest and support of Milt Halem, NASA Goddard SFC, has
been crucial to the success of this project.
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MASSIVELY PARALLEL COMPUTING SYSTEM FOR RESEARCH AND
DEVELOPMENT APPLICATIONS

W. Keith Johnson
Amber Engineering,Inc.

Goleta, CA

ABSTRACT

A description of Amber Engineedng's SIMD Processor

Development System (SPDS) is presented, The SPDS is designed

to provide = cost-effective, turn-key solution to u_ dalidng to

explore ma_ively parallel computing applications. The SPDS,

which is based upon the Geometric-Arithmetic Parallel Processor

(GAPP) integrated circuit, contains • two-dimensional array of

between 2,304 and 10,368 processing elements. This processing

element array operates in • classical single-instruction/multiple-

data fashion. The SPDS processing electronics may be connected

to any "AT-bus' compatible computer vie an Amber provided

interface card. The SPDS works in conjunction with an optional

frame grabber card to acquire RS-170 imagery and to display

processed results on • standard analog monitor. Software bundled

with the SPDS runs under the MS-DOS operating system and

includes • compiler/linker/ microc<xts generator for the GAPP

array, • GAPP utility library in source code form, and • menu-driven

user interfece with intaractive symbolic debugging capability.

Keywords: Massively Parallel Processing, Single-

Instruction/Multiple-Data (SIMD), Geometric A/ithmetic Parallel

Processor (GAPP), Development System.

SIMD Processor Development System

Amber Engineedng'e SIMD Processor Development System (SPDS)

wovidal • complete development onvironmant for the Geometric-

Arithmetic Parallel Processor (GAPP) integrated circuit (Ref. 1). The

SPDS incorporates an army of GAPP integrated circuits, an array

controller circuit card, and compiler/debugging software into an

Integrated development platform. Application code generation is

expedited by the fact that execution is performed in hardware at

the full rated speed of the GAPP integrated circuit. The cost of the

8PDS is minimized by utilizing an "AT"-class personal computer as

the host machine, by constraining the input/output operation of the

SPDS to the DMA rate supported by the host computer, and by

utilizing • moderately sized GAPP array as the execution engine.

Although • moderately sized GAPP array is used (from 48-by-48 up

to 108-by-96 processing elements), the SPDS software allows the

GAPP array to process am•gee of arbitrary size via successive

subimage processing (windowing). Once application software has

been developed and validated upon the SPDS, the resulting

executable microco¢le may be directly ported to • user developed

GAPP execution system. In many applications, the SPDS itself

may be used as an execution system with the addition of a real-

time Input/output interface circuit card.

INTRODUCTION

_aly parallel computing systems are emerging from highly-

specialized laboratory and research environments Into mainstream

processing applications. Impeding the progress of this trend has

been the lack of low-cost development system products designed

to expedite the generation of application software for massively

parallel computers. To date, development environments for

mat_vely paraJlel computers either emulate the target platform

with • general-purpose machine (very slow) or reside upon the

target platform itself (very expensive). Amber Engineering hal

recentiy released • development system for massively parallel

computers that alleviates both of these problems.

.................................. ,

Rgure 1. SPDS Block Diagram
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SPDSHARDWAREARCHITECTURE

AsdepictedinFigure1,theSPDSiscomprisedofa Processing

Bectronics Unit that is connected to a host computer via a High-

Speed Host Interface. Contained in the Processing Bectronics Unit

are from one to four GAPP Array circuit cards, an SIMD Controller

circuit card, and an optional Real-Time I/O Interface circuit card.

The host computer is an "AT*-class personal computer (including

80386-bised machines that support the *AT" bus). Installed on the

AT expansion bus of the host computer are the High-Speed Host

Interface circuit card and an optional Frame Grabber circuit card.

Host Computer

The host computer facilitates the rain-machine interlace

operations of the system, and is Also responsible for the

compile/link/download & control functions. In addition, the host

computer's miss storage device is utilized to store source code,

intermediate compiled code, executable microcode, and image

data for use by the Processing Electronics Unit. If equipped with

the optionid Frame Grabber circuit card, the host computer may

perform RS-170 image acquisition and display. The Frame

Grabber incorporated into the SPD$ is the Imaging Technologies

model FG100-640/2 AT. All interactions between the host

computer and the Processing Electronics Unit are accommodated

via the High-Speed Host Interface circuit card, which is capable of

transferring program and image data between the host computer

and the Processing Electronics Unit at the DMA rate supported by

the host computer. The DMA rate is between 500,000 and

1,000,000 bytes per second depending upon the manufacturer and

model of the host computer.

Processing Electronics Unit

The Processing EJectronics Unit, shown in Figure 2, is packaged in

a self-contained enclosure that houses the GAPP Array circuit

cards, the SIMD Controller circuit card, and, optionally, a Real-Time

I/O Interface circuit card. The Processing Electronics Unit Is

responsible for executing the program(s) supplied by the host

computer upon image data supplied by the host computer

(development mode) or upon image data supplied by the Real-

Time I/O Interface (real-time execution mode). The Processing

Electronics Unit has dimensions of 15 by 28 by 26 inches making it

ideal for lab or office environments.

The SPDS can be configured with one, two, or four GAPP Array

circuit cards, thus providing main array sizes of 48-by-48, 48-by-96,

and 108-by-96 processing elements respectively. In addition to the

main processing array, the one, two, or four GAPP Array circuit

cards will provide comer-turn arrays of 12-by-48, 12-by-96, and 12-

by-96 processing elements, respectively, to accommodate

input/output reformatting for the main GAPP array. Each GAPP

Array circuit card contains 40 GAPP integrated circuits as well is

the necessary buffers, transceivers, and decoding logic necessary

for the proper operation of the card. Jumpers installed on the

GAPP Array circuit card allow the card to be configured as a 48-by-

48 element main array with a 12-by-48 element comer-turn array, or

as a 60-by-48 element main array. The SPDS has been designed

for field expansion such that users may enlarge their GAPP arrays

by installing additional GAPP/Vray circuit cards.

Figure 2. SPDS Processing Electronics Unit

The $1MD Controller circuit card broadcasts command and address

Information to the GAPP Array circuit cards during program

execution. The SIMD Controller performs this operation at a 10

megahertz rate, the maximum rate allowed by the GAPP integrated

circuit. Prior to program execution, microcode is downloaded from

the host computer into the SIMD Controller's 64K deep by 48-bit

wide writeable control store memory. During program execution,

the microcode is read out from the control store memory, under

the direction of a program sequencer, to cause the GAPP

processing elements to perform the desired operations.

Additionally contained on the SIMD Controller is a 256 bit dynamic

constant memory. The dynamic constant memory allows the host

computer to download run-time constants, such as thresholds or

adaptive filter coefficients, for subsequent injection into the GAPP

processing array.

Additionally contained on the SIMD Controller circuit card is a 256K

byte input/output buffer memory. This buffer streamlines data

transactions between the host computer and the GAPP array circuit

cards. The input/output buffer memory is divided into two

independent blocks. While one block is communicating with the

host computer, the other block may send data into and receive

date from the GAPP array, thereby overlapping host

communications with processing. The roles of the two buffer

blocks are reversed after each successive GAPP processing

window, i.e. the block communicating with the host will then

communicate with the GAPP array and the block communicating
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with the GAPP array will communicate with the hoet. Each of the

two blocks is furthermore segmented into separate seotlons for

input to the GAPP ._rey and output from the GAPP _ray so that

input and output may occur simultaneously.

Although designed =us an interactive development system, the

SPDS may be converted into a high-speed execution platform with

the addition of a ResI-Time I/O Interface circuit card. This cimuit

card will place the image =_quisition and display functions

(normally performed by the frame grabber and host computer via

software drivers) into hardware for real-time performance, The

ResJ-Time I/O Interface is responsible for partitioning the incoming

video stream Into GAPP array-sizad regions of plxels for injection

into the GAPP array. The Real-Time I/O Interlace is also

responsible for reintograting the GAPP array output data into a

contiguous image for display. In both the input and output

functions, the Real-Time I/O Interface circuit card must

accommodate overlap between adjacent processing windows in

order not to introduce artificial edge effects dudng subimage

processing.

call up an editor to generate source code, to compile and link the

source code into executable microcode, and to cause the SPDS

system to execute the microcode. Additionally, a number of debug

facilities are included In the algorithm development mode menu

structure. The debug facilities include I_eakpoint and stepping

functions as well III GAPP RAM and GAPP register

upload/download utilities. GAPP RAM uploading/downloading

functions may be performed symbolically (i.e. u GAPP variable

names) or absolute (i.e. as GAPP RAM addresses). When

uploading GAPP information, the data may be sent to the frame

grabber for presentation as video information or to the host

computer for presentation as numerical information. Figure 3

shows the top-level menu structure for the algorithm development

mode along with a window of GAPP RAM information displayed in

numerical format. After a user has completely debugged = GAPP

program in the algorithm development mode on single subimage

data, the user may move on to the image-no corner turn mode to

test the algorithm on full images.

SPDS SOFTWARE ENVIRONMENT

The SPDS includes a software package that is combined with the

hardware to provide a complete development environment. The

software consists of four major elements - a user interface shell, a

GAPP compiler, a GAPP applications/utility library, and embedded

hardware drivers.

The user interface shell is a multiwindow, menu-ddven environment

in which all aspects of the SPDS system may be controlled. When

ontedng the user interface shell, the user is prompted to select one

of four modes of operation:

I. Ngorithm Development Mode,

2. Image - No Cornor Turn Mode,

3. Corner Turn Development Mode,

4. Image - with Comer Turn Mode.

These four modes of operation allow the user to tailor the operation

of the SPDS to the task at hano as the user is progressing with the

development of a GAPP application. Extensive built-in help tiles

are available to assist the user at any time via the user interface

shell.

Algorithm Development Mode

In the algorithm development mode, the SPDS works with an

image that is identical to the size of the GAPP array. The GAPP-

sized subimage may be selected from a 640 by 480 frame grabber

image under software control. Once a subimage of data has been

selected, the user is provided with a menu set that allows him to

Figure 3. Algorithm Development Mode Menu

Image-No Corner Turn Mode

In the image-no corner turn mode, the SPDS works with the full 640

by 480 frame grabber image (or other full image size es specified

by the user). The GAPP array processes the larger full image by

splitting the full image into GAPP-sized eubimages and

sequentially processing each subimage. To avoid artificial edge

effects between adjacent subimages, the SPDS software overlaps

adjacent subimages. The amount of overlap is a function of

maximum algorithm kernel size, and as such, the overlap

parameters may be arbitrarily set by the user. After a frame of data

has been captured by the frame grabber or uploadad from the host

computer's hard disk, the user may instruct the SPDS to execute a

number of pradefined programs on the data with the results

automatically displayed. Menu options in the image-no corner turn

mode Include input/ output RAM location selection, kernel size

selection, microcode file selection, image transfer functions, and
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execution control functions. Figure 4 shows the fop-level menu

structure for the input-no corner turn mode.

intermediate code to executable form which may be downloaded

to the SIMD Controller.

Figure 4. Input-No Corner Turn Mode Menu

In the image-no corner turn mode, all input/output functions are

perfomned via standard, built-in SPDS hardware drivers.

Additionally in this mode, input/output and processing occur

sequentially instead of overlapped. To generate custom

input/output code for the GAPP Corner Turn array and/or to

overlap corner turn code with main array processing code, the last

two SPDS modes of operation are provided.

Corner Turn Development Mode and Image-W_th Corner Turn

Mode

The final two modes of operation are reserved for constructing

custom input/output routines (corner-turn programs) and for

merging corner-turn programs with main processing programs.

Custom comer-turn programs may be developed for applications

that have input/output requirements that are not met by the

standard corner-turn program supplied with the SPDS system.

Furthermore, corner-turn programs may be merged with main

array processing programs so that input/output and processing

occur simultaneously in the GAPP array for maximum

performance.

NCR-GAL compiler

The GAPP array within the SPDS utilizes NCR's GAPP Algorithm

language (GAL) as source code. NCR-GAL combines the structure

and syntax of the "C" programming language with GAPP-specific

assembly level mnemonics resulting in source code that is easy to

develop and maintain yet compiles to extremely efficient object

code. The NCR-GAL compiler included with the SPDS reduces the

source code to an intermediate form. A linker and microcode

generator, also included with the SPDS system, transforms this

SPDS PERFORMANCE

The throughput of the SPDS is indicated in Table 1 for a variety of

image processing tasks. As indicated in the table, the millions of

operations per second rating for the SPDS is a function of the

operation complexity, the size (number of bits) in the operands,

and the size of the GAPP array.

MOPS PER ARRAY SIZE

OPERATION 48x48 48x96 108x96

BOOLEAN OPERATION (1-BIT) 5760 11500 25920

ADDITION (8-BIT) 853 1706 3838

MULTIPLICATION (8-Blr) 65.0 130 292

MULTIPLICATION (16-BIT) 15.6 31,2 70.2

3x3 CONVOLUTION (8-BIT) 16.7 33.4 75.2

5x5 CONVOLUTION (8-BIT) 6.0 12.0 27.0

3x3 MEDIAN FILTER (8-BI'F) 8.0 16.0 36.0

Table 1. SPDS Performance

SPDS APPUCATIONS

The SPDS is currently being utilized to pedorm front-end

processing functions for a passive airborne warning application. As

shown in F3gure 5, a standard SPDS system is outfitted with an

application-specific Real-Time Processor Interface circuit card to

receive digitized video from an infrared-sensitive telescope. The

telescope provides 360 degree azimuth coverage to detect

incoming threat objects (helicopters, aircraft, and missiles) from all

directions.

The custom Real-Time Processor Interface provides delay

equalization, nonuniformity correction, intensity transformation,

and frame buffering functions upon the incoming video. The

buffered video data is then placed into the GAPP array contained in

the SPDS under the direction of the SIMD Controller. The GAPP

array performs spatial and spectral filtering on the video data and

then presoreens the filtered image for candidate targets. The

processed image, along with detection point indication flags, is

passed back out from the GAPP array into the Real-Time Processor

Interface where each detection point location and associated

intensity information are recorded. The detection point data is then

handed off to the Compaq 386/20 Host Computer for final

classification and track file processing.
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Rgure 5. SPDS Applied to Passive AirborneWarning System

Additionally output from the Real-Time Proceseor Interface Is a

uniformity correoted video stream which Is displayed upon a

monitor after passing through a scan converter. Track and mission

symbology generated by the Host Computer is also received by

the =can converter and superimposed upon the video data for

presentation to the system user.
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THE APx ACCELERATOR

E. Abreu, D. Jenkins, M. Hervin, D. Evans

Visionary Systems, Inc.
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ABSTRACT

The APx Accelerator is an SIMD Parallel Processor system designed

to provide very high computing power in a PC/workstation

environment. The APx is an expandable system and provides from

64 to 256 16-bit processors which provide peak instruction rates from

800 to 3200 MIPs. The individual processors in the APx Accelerator

are 16-bit RISC processors which are quite powerful and versatile. In

addition, pairs of 16-bit processors can be configured to operate in

32-bit mode under software control. IEEE format single precision

floating point operations are supported in 32-bit mode with peak

ratings from 40 to 160 MFLOPs.

This presentation deals with the architectural and implementation

features that work together in the APx Accelerator to achieve high

sustained system performance for a significant set of compute-

intensive functions. These features include VLSI integration,

memory bandwidth, concurrency of operations, inter-processor

communications, processor selection mechanisms, and I/O

bandwidth.

Keywords: SIMD, RISC, Parallel Processors, Workstation,

PC, Array' Processors.

INTRODUCTION

As processing needs of engineers, scientists and

professionals continue to outpace the performance

improvements of conventional machines, computer

scientists have come to realize the advantages of parallel

processing techniques to keep up with these demands.

Parallel processors which contain thousands of processing

elements have been developed to try to keep in pace with

today's processing requirements. Examples of these

machines include Thinking Machines' Connection

Machine CM2 (Ref. 1), Goodyear's Massively Parallel

Processor MPP (Ref. 2), ICL's Distributed Array

Processor DAP (Ref. 3) and the NCUBE Ten (Ref. 4).
Each of these machines has particular strengths and
features that are not available with the others. These

machines may also be characterized as being too large

and expensive to be widely available in a desktop

environment.

PRECEDING PAGE BLANK NOT FILMED

The APx PROCESSOR SYSTEM

The APx Parallel Processor System from Visionary

Systems Inc. (VSI) is a desktop supercomputer that offers

the performance advantages of massively' parallel

processors in a desktop and interactive environment.

The APx is a result of the research and development

efforts performed at the ITT Advanced Technology

Center on Cellular Array Processors (Ref. 6), and

continued through product development at VSI. The

major design goals of the APx are the following:

True supereomputing performance: Floating point

performance equivalent to supercomputers and

integer and memory bandwidth approaching that of

massively parallel processors.

Price range equivalent to that of technical

workstations. Substantial reduction in cost is

afforded through the use of custom V-LSI technology.

• Compact size that is expandable and scalable to fit

the user's present and future needs.

Architecture that provides uniform acceleration over

a wide range of applications rather than very specific

and limited sets of routines.

THE APx ARCHITECTURE

The APx is a data parallel computing system based on

the Single Instruction, Multiple Data (SIMD)

architecture. In an SIMD machine, all of the processors

execute the same instruction sequence from a common

controller. Figure 1 shows a block diagram of the

system. The block diagram reveals the following
features:

• There is a single program Controller which contains

the sequencer, program memory, scalar address

generator and host (AT Bus) interface.

• The Processor Array contains from 64 to 256

powerful RISC-based, lg-bit processing elements.

The Processor Array may be expanded in increments

of 64 processors.
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• Both program memory and data memory are

memory mapped into the host workstation's memory

space via the AT Bus. The host workstation or PC

then becomes the front end computer, allowing users

to retain their user-friendly and familiar

environments.

• I/O channels are provided for high-speed data

transfers between the processor array and high-speed

peripherals like high resolution monitors and image

scanners for real time graphics and imaging.

Figure 2 shows a graphical presentation of the basic APx

system, which consists of a controller board and from one

to four processor boards each containing 64 processing

elements. Each processor board contains four custom

VLSI chips, each containing 1B powerful RISC-based 1B-

bit processors with substantial on-chlp memory. These

boards are AT-sized, and can plug directly into available

slots of popular workstations and PCs. Larger systems

are housed in their own self-contained units which can be

connected to the host computer via an interconnect cable.

Programming the APx will be done in C, FORTRAN, or

the PAC assembly language provided by VSI. PAC is a

parallel programming language designed to take full

advantage of the features of the APx hardware but

simple enough to be easily understood and learned. By

utilizing the host workstation/PC as a front-end, the user

can retain major amounts of software, and simply replace

compute-intensive routines and applications with routines

that utilize the APx. These APx routines may have come

from subroutine libraries supplied by VSI or may have

been written by the user.

Processor board

Processor board

Processor board

PROCESSOR ARRAY l • IIOST

r _=_ WORKSTATION/

64- 2'56 PROCESSORS [ PC

II II

I I
GRAPHICDIsP1.AVI I

I SCANNER I

Figure 1. APx System.
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Z

iUlIIIi
/

/

wogram RAM
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Figure 2. mPx Hardware. :" "
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PROCESSING ELEMENTS

At the heart of the APx system are the processing

elements. Figure 3 shows a block diagram of an

individual processing element, which is a powerful 16-blt

processor as opposed to very simple 1-bit serial processors

found in a number of massively parallel computers. The

APx processing elements have several features to increase

overall system performance. These are:

• Pairs of 16-bit processors can be configured under

software control to act as single 32-bit processors.

Each 16/32-bit processor has an integral multiplier

and IEEE format single precision floating point unit.

An integral multiplier/floating point unit eliminates

the need to transfer data to a separate co-processor

which could slow down overall performance.

• Each processor contains 16 general purpose registers

and has access to a substantial amount of on-chip

memory and a much larger external memory.

Furthermore, the processors employ a Load/Store

architecture that permits concurrency between

arithmetic and memory operations.

• Addressing of memory can be done in two ways.

The first is through the use of a scalar address

generator which provides a single address to be used

by all processors. The second approach is through

each processor's register set wherein each processor

supplies an independent address to its own memory.

VSI's research into applications showed that both

scalar and independent addressing modes contribute

to the applicability of a parallel processor over a

wide range of problems.

APx COMMUNICATIONS

Efficient inter-processor communication was a major

design implementation goal in the APx system. Because

of VLSI technology and the ability to package an entire

system in a compact enclosure, VSI was able to

incorporate two necessary communication mechanisms in

the APx. These are:

• A high speed mesh topology: Each processor in the

Processor Array is connected with its left, right, up

and down neighbors. The processors at the end of

the array are connected to form a torus. What

differentiates the APx implementation from other

machines that use a mesh or a hypercube topology is

that the APx uses 16-bit busses to connect the

processors as opposed to 1-bit serial lines employed

by other parallel machines. As a result, an APx

processing element can transfer a 16-bit word of data

in one cycle.

EXTERNAL MEMORY I

I'

ON-CtlIP MEMORYI , I
MEMORY DATA REGISTER

REGISTER SET

ALU

I MULTIPLIER /FLOATING POINT UNIT

I
OTtlER _ INTER-PIIOCESSOR!

I)ROCESSORS I COMMUNICATION I

OTHER
PROCESSORS

Figure 3. APx Processing Element.

* A high-speed 32-bit broadcast bus: The broadcast

bus allows the scalar controller or a selected

processing element to send data to all or a subset of

processing elements. Because of VLSI technology, a

32-bit number can be broadcast globally in a single

cycle.

APx PROCESSOR SELECTION

VSI realizes that it is not enough to have powerful

processors with very high memory and communication

bandwidths, but it is also necessary to be able to

efficiently control and coordinate these processors. The

APx is equipped with a number of processor selection

mechanisms to enable efficient coordination between

processors. These mechanisms can be classified into the

following groups:

Intra-processor selection - In an SIMD machine, the

instructions are broadcast to all processors. It is

important that each processor be able to conditionally

execute these instructions based on its own internal

status and flags. In the APx, each processor contains a

mechanism called the Vector If Else stack for this

purpose. The result of a conditional test is pushed onto

this stack. The status of the stack then determines

whether the processor is activated/deactivated to execute

the instructions being broadcast by the controller. The

Vector If Else mechanism supports 16-deep nesting of

conditional instructions and provides support for high-

level constructs like If, Else, Endif, etc.
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Inger-proceasor aelection - Frequently, it is important

to be able to single out a particular processor out of the

entire Processor Array. This selected processor is often a

source processor during broadcast operations as explained

earlier. Two inter-processor selection mechanisms are

provided for this purpose. The first mechanism enables

the programmer to sequentially select processors in an

ascending or descending manner, treating the processors

in the array as a string of processors. The second

mechanism is a Find/Drop capability wherein the first

Find operation causes the system to scan all the

processors and select the first active processor. Each

succeeding Find then selects the next active processor.

Hardware is provided such that the scanning and

selecting activity is completed in one cycle.

Global Status - A status which indicates if "any" of

the processors are active is available to the controller.

The controller can then use this information to

conditionally jump over program code. This feature is

useful in implementing high-level constructs llke WHILE

ANY which is useful for sparse matrix operations.

APx I/O CAPABILITY

The APx is designed to be ideal for applications such as

high-speed graphics, for visualization of engineering and

scientific analysis, and for advanced image processing.

As such it is very important that the APx not only have

superior computational capability, but it should also be

complemented by an 1/O system which can take

advantage of the high processing bandwidths.

In addition to the industry standard AT Bus, separate

I/O channels are provided in the APx which are geared

for interface with high-speed peripherals for graphics and

imaging. An I/O channel is a separate independently

controlled and asynchronously timed bus available for

each group of 64 processors. Double buffered I/O

registers are provided in each processor. An external I/O

controller can transfer data to and from these I/O

registers concurrent with other operations in the APx.

This is possible because the instructions to transfer data

between the I/O registers and the I/O bus are

independent of the other instruction fields. Interrupt

logic is provided in the Controller such that when the

I/O controller has filled the I/O registers in each

processor, it can activate an interrupt routine which

transfers I/O register data directly into general purpose

registers, on-chip memory or external memory. An I/O

hoard is being designed to interface the I/O channels

directly to frame buffers for graphics/image controllers.

APx SOFTWARE ENVIRONMENT

The APx system software environment is based upon the

host workstation's operating system. This has the

distinct advantage that users retain a familiar and

friendly interface (i.e., UNIX, MS-DOS). Application

programs are written using the host's existing

environment and programming languages, but key

compute intensive routines are run on the APx. These

routines are either called from a set of libraries supplied

by VSI or from user programmed routines. Data is

shared between the host application program and the

APx routines, since the APx program and data memories

are mapped into the host computer's address space using
the AT Bus.

Users can program their own routines in the PAC

assembly language or in C or FORTRAN. At the lowest

level, the PAC assembly language gives the user access to

all the capabilities of the APx hardware. PAC

instructions are very similar to those in RISC-based

instruction sets, with the only difference being that data

operations like ADD, MULT, LOAD, and STORE are

really vector operations that are executed on all

processors.

VSI expects to supplement PAC with two different types

of C and FORTRAN subroutine compilers; those which

compile code for a single processor and those which

vectorize code to use the entire processor array. The first

type of compiler will compile C or FORTRAN routines

for a single processor, with interprocessor communication

explicitly controlled by the program. This gives the user

the benefits of programming in a high-level language

while retaining the efficiency of expllcitly managing the

parallel execution and data storage mapping on

individual processors. The second type of compiler will

vectorize C or FORTRAN subroutines for users who

want to automatically convert existing subroutines to use

the APx hardware. In this case, the compiler maps the

program data onto the processors and generates the

necessary code for interprocessor communication if one

processor needs data stored in another processor's

registers or memory.

In addition to the compilers and assembler, VSI will

provide a linker, loader, debugger, and simulator to aid

in software development and debugging.

SPECIFICATION AND PROJECTED

PERFORMANCE

The APx specifications are shown in Table 1. It indicates

that the APx performance indeed competes with

supercomputers and massively parallel processors.

Performance for various selected subroutines on a 256-

processor system (AP256) using 16-blt precision are

shown in Table 2. Again the projections compare

favorably against very expensive supercomputers and

massively parallel processors. We believe that

performance like this that is widely available in a desktop

environment will not only answer the present needs of

engineers and scientists but will also open up markets for

new capabilities in computing.
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NumberofProcessors
PeakMIPS

PeakMFLOPS(32-bitIEEEformat)
IntegerAdd,Logical,Move,andShift(MIPs)
IntegerMultiply(MIPS)
FloatingPointAdd (MFLOPS)
FloatingPointMultiply(MFLOPS)
TotalOn-ChipRAM (Kbytes)
TotalExternalDataRAM (Mbytes)
ExternalMemoryBandwidth(Mbytes/s)
On-ChipMemoryBandwidth(Mbytes/s)
I/O BusBandwidth(Mbytes/s)
ProcessortoProcessorBandwidth(Mbytes/s)

AP64
64/32
800/400
4O
800/400
160/40

_40
4O
32
2to8
200
8OO
25
1600

AP128

128/64

11600/800

8O

1600/800

320/80

8O

8O

64

4 to 16

4OO

1600

5O

32O0

AP256

256/128

3200/1600

160

3200/1600

640/160

160

160

128

8 to 32

8OO

3200

100

6400

Note: Where two numbers are shown, separated by a slash, the first is performance in

16-bit mode and the second is performance in 32-bit mode.

Table 1. APx Specifications

512x512 Image 5 msec

3x3 Convolution

512x512 Complex 60 msec

2D FFT

512x512 Complex

2D FFT (16x16 Blocks)

20 msec

256x256 Hough Transform

(10% density)

20 msee

Maximum of a 64K Vector 0.1 msec

Sort of a 64K Vector 7 msec

Table 2. AP256 Projected Performance.

1B-bit precision used.
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The Design of a Bit-Serial Coprocessor

to Perform Multiplication and Division on
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Abstract-Many signal and image processing
algorithms are being mapped onto SIMD massively
parallel architectures which are often composed of
single, bit-serial processor elements (PEs).These PEs
are slow when performing the many multiplications
and divisions required by FFTs, convolutions, and
other common DSP operations. A custom VLSI co-
processor has been designed to greatly increase the
speed of these operations. In this paper, the need for
such a processor, the multiplication and division al-
gorithms of the processor, and comparisons of these
algorithms to those implemented on several machines
is presented.

When fabricated in 1.2 ktm CMOS technology, we estimate

that 64 coprocessors will easily fit on a single die. This is

equivalent to tbe number of AMT DAP processor elements on a
chip. Hence, only a doubling of area is required to increase the
multiplication and division performance by an order of

magnitude for 16 bit operations.

A description of the simple hardware architecture is
presented, followed by the algorithms used for multiplication
and division. Finally, performance comparisons between the

algorithms used in the COPE, DAP, and GAPP for
multiplication, division, and multiply-accumulate operations are

given.

L INTRODUCTION

CONVENTIONAL bit-serial processors such as the

AMT DAP[1] and the NCR GAPP[2,3] execute the operations

of multiplication and division in O(N 2) cycles, where N

represents the operand bit length. This corresponds to a design
style that saves area at the expense of processing time and yields

an area-delay product (ADP) of O(N2). By employing a parallel

adder whose area is proportional to N, another design is
obtained which retains an ADP of O(N2), but the delay is

reduced to O(N). Furthermore, if successive multiply-

accumulate operations are to be executed, as is commonly the
case in a wide class of digital signal processing algorithms, a

series of M multiply-accumulate operations takes O((N2+N)M)

cycles for the bit-serial processor and only O(NM) cycles for the

the parallel adder design.

We will present the design of a VLSI coprocessor element
(COPE) that employs a parallel adder to achieve the increased

speed described above. It accepts operands of variable length
(N < 16), and produces a 2N bit product. The overall process
takes 4N cycles, and if needed, the result may be accumulated

for further processing without any processing time penalty. In
addition, the COPE has been designed to perform division in

O(4N) cycles, as opposed to O(N 2) for a conventional bit serial

processor.

II. COPROCESSOR LOGIC

The COPE coprocessor of Figure 1 consists of three shift

registers, a full adder, two's complement circuitry, control logic,
and four serial bit manipulation circuits. The shift registers are
used to multiply by two, store and retrieve data, and perform

serial to parallel data conversions. The bit manipulation logic
performs transformations on incoming and outgoing serial data,
as required by the multiplication and division algorithms.

The MQ register is used to serially acquire the multiplicand
or divisor, or to assemble the quotient. It is also able to dump

the quotient serially (right shift). The LS register is used to store
either the multiplicand or divisor, and to multiply the left shift

the multiplicand. The LS register may be loaded in parallel with
either the MQ register or its two's complement. The final
register is the accumulator. It serially acquires the dividend,

serially dumps the remainder, or latches a new parallel sum.
This sum is generated by a parallel full adder.

Two algorithms have been developed for the COPE chip,
which perform the desired functions of multiplication and
division. The control circuitry to implement these algorithms is

split into two sections. A global control section is responsible
for generating data independent control signals for each PE on

the chip. Each PE also contains local control logic to generate
those signals which are data dependent. In this manner, it is
possible to implement data dependent algorithms within an
SIMD architecture.

PRECEDiHG PAGE BLANK NOT FILMED
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Figure 1: The COPE Arithmetic Coprocessor

IIl. ALGORITHMS

The COPE chip accomplishes multiplication and division in a
serial manner as the operands are shifted into the chip. In both
algorithms, one operand is fully loaded into the PE. As each bit
of the second operand is presented to the PE, the desired
operation is progressively performed. Once the last bit has been

used, the result may be shifted out of the COPE. The algorithms
for both multiplication and division are described below and are
detailed in Appendix I.

A. Multiplication Algorithm

For a multiply, the multiplicand is shifted into the MQ
(Multiplicand-Quotient) register. As sign bit of the multiplier is
presented to the COPE, the LS register is loaded with either a

copy of the multiplicand (positive) or the two's complement of
the multiplicand (negative). Also, the accumulator is cleared.

Then, as each bit of the multiplier (LSB first) is presented to the

COPE, the multiplier's absolute value is generated by the serial
signlogic. If the resulting bit is high, the accumulator will be

incremented by the value in the LS register. (If the multiplier is
negative, the LS register contains the two's complement of the

multiplicand, and hence the accumulator will be decremented.)
At the end of the cycle, the LS register is multiplied by 2 (left
shifted). After the last bit of the multiplier has been processed,

the accumulator will contain the desired product, which may
then be shifted out of the COPE for further processing.

A multiply-accumulate operation may easily be perfomaed by
eliminating two of the steps above. Since the product is required
for subsequent operations, the accumulator should not be cleared

(except for the first cycle), and the product should not be shifted

out of the accumulator (this reduces the cycle time by the product
length, 2N).
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B. Division Algorithm

The division algorithm is started by shifting the divisor into

the MQ register, after which the negative (i.e., -Idivisort) of the
divisor is loaded into the LS register, and the accumulator is
cleared. Each bit of the dividend is then presented to the COPE
(MSB to LSB). If the dividend is negative, its bits will be

complemented as they enter the processor. For each dividend
bit, the sum of the dividend bit, the LS register, and a left shifted
accumulator is generated. If an overflow is generated from this
operation, the accumulator is loaded with the sum; otherwise,
tim accumulator is left shifted, with the dividend bit becoming

the accumulator's LSB. Also, the overflow bit is right shifted

into the MQ register. Once all of the dividend bits have been
processed, the accumulator may need a simple correction. The

accumulator is added to the LS register, and the sign of the
dividend (this completes the two's complement of the dividend,

which was partially done by complementing the incoming bits).
If this sum generates an overflow, the accumulator is replacetl
by the sum. Finally, the quotient may be retrieved from the MQ
regi_x, and the remainder retrieved from the accumulator.

The results may still require some simple manipulation,
depending upon the sign of the operands. If the dividend is
positive, the accumulator will contain the remainder. Otherwise,
the accumulator should be incremented by one if the final sum

generated an overflow, and its two's complement generated.
This will result in the correct remainder. The quouent must be

incremented by one if the dividend is negative and an overflow
occurred. Then if the operands are of different signs, the

quotient's two's complement must be generated. All of these
adjustments may easily be accomplished as the results are being
shifted out of the COPE, with no time penalty.

C. Algorithm Testing

Both algorithms were tested through extensive simulation.
Two programs were independently developed in the C language
with slightly different features. The first program simulated the

algorithm by using functions which closely emulate the classic
two phase registers used in the actual VLSI implementation.
This technique helps to guarantee that the data from various

registers will he valid at the appropriate times. The second
simulation simulates variable length operand feature. From

these two programs, the required control signals were verified.

IV. PERFORMANCE COMPARISON

The motivation for the COPE chip was to design a

coprocessor for the DAP which performed multiplication,
division, and multiply-accumulates in a more timely fashion than
an unaided DAP can. After comparing the algorithms used in
the COPE to those of the DAP and GAPP, we found:

Machine

DAP
GAPP
COPE

Number of Cycles Number of Cycles
for Multiplication for Division

0.86n 2 + 28n + 105 0.44n 2 + 38n + 227
6n 2 - 2n + 1 8n 2- 7n + 3

4n 4n + 1

where n is the number of bits in the operand. For simplicity's
sake, it has been assumed that the two operands have an equal
number of bits; however, this is not a requirement. It should

also be noted that the equation for DAP division was derived
from actual cycle counts for the DAP programs.

Comparative Multiplication Cycles

op-size Number of C_,cles
!(bits) GAPP I DAP ICOPE

8 369 410 32
16 1505 725 64
32 6081 1900 128
64 24449 5400 256

COPE Speed Increase Over
GAPP ] DAP

11.5 12.8
23.5 11.3
47.5 14.8
95.5 21.1

op-size
(bits) GAPP

8 459
16 1939
32 7971
64 32323

Comparative Division Cycles

Number of C_,cles COPE Speed Increase Over
I DAP /COPE GAPP ] DAP

560 33 13.9 17.0
950 65 29.8 14.6

1900 129 61.8 14.7
4350 257 125.8 16.9

As mentioned above, a multiply-accumulate operation may

be perfromed with no added expense, as the partial sum remains
in the COPE to be used in later cycles. For an FIR filter the cylce
time is 4NL +2, where L is the filter length, and N is the word

length. Relative to the DAP, this is a speed improvement of
apwoximaltely 24 fold for a 16 bit, 32 tap FIR filter.

V. CONCLUSIONS

It has been shown that a coprocessor can he designed which
will greatly enhance the functionality of a bit serial processor,
such as the DAP. The coprocessor implements multiplication

and division algorithms, which operate at least an order of
magnitude faster than is possible through software methods.
This processor is also able to accomplish multiply-accumulate

operations at no extra cost to the user. All of this can be
accomplished with an increase in area by a factor of only two at

1.2 p.m.

VI. APPENDIX I

A. Multiplication Algorithm

clew ACC

extend sign bit of multiplicand into MQ
shift multiplicand into MQ
if multiplier is positive

load MQ into LS (sign extend)
else

load two's complement of MQ into LS (sign extend)
cndif
for each multiplier bit (LSB to MSB)

let m = multiplier bit
if multiplier is negative

let m = two's complement of m
end if
if m is set

let ACC = ACC + LS
end if
left shift LS

end for

right shift ACC (LSB to MSB) to obtain product

A multiply-accumulate operation may be performed by
repeated application of the above algorithm without clearing the
accumulator. The result is obtained after the final multiplication

has been performed.
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B. Division Algorithm

cle_ ACC

extend sign bit of denominator into MQ
shift denominator into MQ

if des_minator is negative
let LS = MQ

else

let LS = two's complement of MQ
¢ndif

for each numerator bit (MSB to LSB)

let n = numerator bit

it numeratta isnegative

let n = one's complement of n
endif

let x=2* ACC + LS + n
if overflow occurred

let ACC = x

else

left shift ACC with n becoming LSB
endif

MQ = 2 * MQ + overflow
end for

if numerator is negative
Ietx=ACC+LS+ 1

else
let x = ACC + LS

endif
if ovcrflow occurred

let ACC = x
cndif

both numerator and denominator positive:
fight shift ACC to obtain remainder

fight shift MQ to obtain quotient
numerator positive and denominator negative:

fight shift ACC to obtain remainder

fight shift MQ and generate its two's complement f¢¢ quo-
tient

numerator negative and denominator positive:
if overflowoccumxl

fight shift ACC and two's complement for re-
rnaind_

fight shift MQ, add one, and two's complement

for quotient
else

fight shift ACC, add one, and two's complement
for remainder

fight shift MQ and two's complement for quo-
tient

end if

both numerator and denominator negative:
if overflow occurr_

fight shift ACC and two's complement for re-
mainder

fight shift MQ and add one to obtain quotient
else

right shift ACC, add oa¢. and two's complement
fct remainder

fight shift MQ to obtain quotient
endif
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ABSTRACT

This paper is concerned with the control environment
of the SPHINX Pyramid Machine. First, a low overhead
interlayer method, to synchronize communication of
independently controlled SIMD processor meshes is

presented. We show how it can be used to provide
multitasking within a mesh to allow opposite data flow
to cross safely. Related programming concepts for
Multi-SIMD machines -- control transmission- is

presented.

Keywords: Pyramid Machines, Multi-SIMD, Parallel

Languages, Interprocessors Synchronization.

INTRODUCTION

SPHINX is a cellular pyramidal machine primarily
designed for image processing applications [4,5],
currently under development as a joint effort of
University Paris Sud, and ETCA Defence Research labs.

It is organized as a set of stacked layers of decreasing
size interconnected according to a dual network: a
mesh based inter-neighbor interconnection network
within a layer, and a binary tree between adjacent
layers. The SPHINX processing element relies on bit
serial operations and communications. It is formed of

an ALU, with enhanced data transfer capabilities, a 256
bits local memory, and a set of special purpose
registers. An hardware prototype pyramid 32x32 (2047
PEs) is going to be available in the next future.

Two important differences between SPHINX and other
pyramidal machines [1,6,7] are that each PE has 2 sons

instead of 4, and that each layer receives its own
instruction stream (figure 1); so SPHINX presents both
an SIMD aspect, since all the PEs of a same layer share
the same instruction stream and a MIMD aspect
between layers. It is a Multi-SIMD machine. If we
define the power of a pyramid as the number of

processors at it's base, SPHINX, as a binary pyramid
uses 50% more PEs than a quaternary one of the same
power, but presents several advantages:

-- operations between layers can generally be
pipelined in an efficient way, since each PE has
two sons and a two input ALU;

binary pyramid MIMD control

Figure 1 : SPHINX Architecture

-- oct-trees as well as quad-trees can be built by

grouping PEs of differents layers into virtual
PEs;

-- thanks to the larger number of layers
compared with a quaternary pyramid, we can
make a more efficient use of the MIMD aspect.

Arguments against pyramid are often the following
[3]:either the pyramid is SIMD, leading to a very poor
layer occupation, either, for a Multi-SIMD machine,

the interlayer control will slow down data transfer. We
present a control scheme with a very limited overhead
for SPHINX and related software aspects.

THE CONTROL STRATEGY

The instruction stream bandwidth problem draw us to
spread the control over the pyramid: different layers
are independently controlled. With this control
scheme, communication between adjacent layers leads
to a critical synchronization problem. As data are
transferred between layers in a bit serial way, this
type of communication implies that one must be able to
realize an intercontroller synchronization within a hit
serial instruction execution time (typically lOOns).

CH2649-2189/0000/0423501.00 © 1988 IEEE
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Two Levels of Synchronization

To obtain the necessary speed of synchronization, we

distinguish between two levels of synchronization: a
low level one insuring integrity of the interlayer

transferred data with respect to the state of

communication buffers according to a

producer/consumer protocol, and a high level one

allowing coherent manipulation of data within the

whole pyramidal structure by means of information

passing between adjacent layers.

The high level synchronization is necessary to take
into account the constraints of process scheduling,

parameter passing and interlayer message passing. To
deal with the problem of high level data exchange

between layers, it communicates with its two adjacent

controllers. It will typically be realized with a standard

microprocessor executing compiled code to run

application programs generating system control and
word level pyramidal instructions, translated into

sequence of bit-serial instructions by a simple macro-

generator and put into a FIFO for the low level

synchronizer.

The low level synchronization has in charge the

correct transmission between layers at the bit-serial

level. It has to be done within a bit serial instruction

execution time, but is very simple as one has only to

consider if an instruction is executable with respect to

the state of interlayer communication buffers, i.e. the
buffers used as source are full at the time of the

operand fetch and the ones used as destination will be

free when the results will be stored.

The necessity of low level synchronization is not

bound to the size of one bit of the communication

buffers. If the buffer size were made greater, either

through a hardware or software artifice, the problem

would be actually identical: a n bit buffer permits to

overcome the synchronization necessity for the n-1

first bits, but then the buffer may be full and the

problem comes back.

High Level Macro
Control Generator

F
F
F

FIFO Low Level

Synchronizer

_)e__Layer n.-1 /

Layer n /

Figure 2: Overview of the Control System.

The Low Level synchronizer

To illustrate the way program are synchronized, let us

consider the following problem:We want to compute

the histogram of a certain attribute stored in the lowest

layer of the pyramid, i.e. the number of occurrences of

every value of attribute, and either output it by the

apex of the pyramid, or store it in the upper layer. A

straightforward algorithm is the following:

for i varying from 0 to the last attributes value

begin
select the PEs where attribute = i

count the number of selected PEs

end

The select operation is a point wise procedure applied

to PEs in the lowest layer. The count operation uses the
vertical communications to accumulate, in a

logarithmic time, the number of selected PEs. The

actual method is the following: at the lowest layer, PEs
send the selected bit to their father. At the others

layers, PEs add sequentially the bits they receive from

their sons, sending the result to their father, followed

by the MSB of the result stored in their carry register.

The algorithm is the following, assuming the pyramid

has height layers:

at the base

begin
send the selected bit to the father

end

at layer l such as top __ l < base

begin

repeat height - l times

begin
send to father the sum of the bits

transmitted by left and right sons
end

send carry to the father

end

Figure 3a presents the instruction matrix, i.e. the

instructions executed on every layer vs. time, for one

step of the histogram, computing the sum for one

attribute value on a pyramid of height 5,

Thanks to the MIMD interlayer control mode, it is

possible to start another step of this operation as soon

as the previous step has completed in the lowest layer.

This lead to the idealized version of the histogram

computation presented in fig 3b. One can see that

MIMD allows a large gain in computing time, as the

apparent execution time will only be limited by the

data output time, instead of the complete count

operation time.

The high level control will execute the previously

described algorithm, and send to the low level

controllers the instructions streams of fig 3c. The

instructions are correct in term of their relative

occurrence within a layer, but the actual execution
time is not fixed.

The low level controller will synchronize these

streams, and send the instructions as soon as it is

possible in terms of the producer consumer protocol.

This leads to the instruction matrix presented in figure

3d. This matrix is less regular than the idealized
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Top
1
2
3

base

Layer

Top

Time

Fig 3a: One integrationstep
ofthe plainhistogramprocedure.

Layer

Layer

Top
1
2
3

base

Is Is Is IsJcIs Is Is IsIc Is Is Is Is IcI

--"P_J_CJr__IIAIAIAIcIIAIA_Alcl

Time

Fig3b: Idealized version of the plainhistogram
operation.The MIMD between layercontrol
mode allows independantexecutionof every
integrationstep.

Layer

Top is s s S!c s s Islslclslslslslcl
1 IA '_ A _ A A AIc.IAIAIAIr'3
2 A A _ A!A r. AIAI_I

base F_

Time

Fig 3c: Instructionstream sendby the
high level controllerto perform plein
histogramm.

Top
1
2
3

base

s s s s c slslslslclslslslslcl

IAIA_CA
IAICIA C

EIEI ,E
t

Fig 3d: The instructions sent to the Processing
Elementsafterproducer-consumerlike
synchronizationperformedbythe low level
synchronizer.Thisstep leads to a layer
occupationautomatically optimizedat run
time.

Layer

_ls IS I SI._ IC.I rd n Inl nl D! IS IslsI._ Icl [_lr_l_lnlDI

Alcl _ _Alcl Inlr_IDlnlnl

Islslslslsld _ __

Time

Fig 3e: The associative histogram problem with the unidirectionnal synchronization
scheme. The lack of data stream crossingcapabilities leads to a poor pyramid occupation.

Layer

1
2
3

base

IA A DIDIA CDID D A AIDIDIA ClDID DI_

IAIA C AIDID AClD D D IDID IDID

IAICIA C IDD' D

Time

Fig 3£ The associativehistogramwiththe bidiroclionnaf syr_chronization
scheme. The crossingof uncorrelatodupwardsand downwardsstreams
insures a better layer occupation.

Label signification

[] Add sons

[] Emitdata to father

[] Rediapatchdata

[] Down to the sons

[] process Carry

[] Store

L

Time

Figure 3: Pyramid occupation vs. time for different histogram operations and different
synchronization mecanisms.
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version of figure 3b, but more efficient in term of
pyramid occupation. More, the programmer just has to
take care of the logical correctness of his program, and
the synchronizer will automatically optimize its
execution at run time.

On figure 3d at date labelled t, we can see a vertical data
shift. Layer 3 performs an add operation and sends the
result to layer 2, whilst this one performs the same
operation on previously generated data and so on until
the top. This means that the instruction on layer 2 can
take place, not because the present state of the father's
receive buffer is correct (empty), but because the

instruction in the upper layer will empty the buffer, if
executed.

This kind of operation where all the concerned
communication buffers are full before operand fetch
but freed before the result should be stored, requires
non local knowledge to be performed. [2] presents a
cellular automaton based mechanism able to solve this

kind of problems at run time, as well as a complete
description of this synchronization scheme.

The crossing of data movements.

The previous model works very well when all the data
movement are of the same direction, but it presents
some weakness in other cases. Let us consider the
following associative histogram problem: each PE at
the base of the pyramid contains an attribute value,
and we want to associate it, in the PE memory, with the
number of occurrences of its value in the base. The
vertical connections of the PEs are used both to
compute the number of occurrences in the top of the
pyramid in a time logarithmic to the number of PEs of
the base, and to project the so computed sum from the
top PE to the PEs of the base. The computing necessary
for each value involves two distincts data movements:

an ascending one to compute the sum and a descending
one to project it.

There is two way to realize this operation on a pyramid.
The first one avoids data crossing by means of the
following algorithm:

for i varying from the first to the last value
begin

count the number of PEs where attribute = i
send the result down

at the base begin
where attribute = i begin

associate the number with the attribute
end

end

end

As it is shown in figure 3e, this leads to a very
inefficient use of the pyramid, most of the layers being
idle whilst the data is sent downwards.

Another method consists to allow the crossing of the
upwards and downwards data stream. Indeed, these

streams are logically uncorrelated, and one can

perform the nth integration, while the n-lth result is
sent down. One possible result is shown in figure 3f.

The drawback of this solution, when using the
previous synchronization method, is the possible
turning up of deadlocks when two data transfers are
coexisting. The figure 4 shows the top layers and their
communication buffers Computing the first bits of the
sum in the associative histogram problem. When the
first bit of a sum is computed at the top of the pyramid,

the 2d bit can't be computed at the top before this 1st
bit has been consumed by the level 1, At the same time,
the instruction to consume this bit can't be executed by
level 1 before the one which compute the 3rd bit has
been executed. The two layers are in deadlock.

i ] [
) (
] [

] [
)

LT"
]
)
]
)
]
)

Figure 4: Deadlock emergence in data reverberation.

Of course, one could imagine to synchronize statically
the layers at compile time, and to schedule the

instructions in a way avoiding deadlocks. This solution
leads to several drawbacks. First, it implies that the
state of the layers in term of occupation must be well
known, and accordingly, all the previously scheduled
routines must have completed, disabling any use of

pipeline. Second, this leads to an unstructured
instruction stream, that imposes a very large data

transfer rate, that causing bandwidth problems. Third,
this static synchronization is not always possible if we
want to be able to use data driven algorithms. For
instance, if the global operation termination is
controlled by a run time criterion as a convergence
test on a layer, it is clearly impossible to perform any
kind of static scheduling. We now present a
synchronization method able to solve this kind of
situation.

Two FIFO for the synchronizer

A proper automatic deadlock-free run time
synchronization of data crossing requires that the
upwards and downwards instruction streams are

generated by two independent (pseudo) parallel
processes, The synchronization mechanism should be
able to choose the best candidate according to the
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communication buffers state. The algorithm should be

like the following:

in parallel begin

for i varying from 0 to n begin
count the number of selected PEs

where attribute == n

end

for i varying from 0 to n begin

at all levels except base begin

send downwards the result of the

count operation
end

at base begin

where attribute = i begin

receive the value emitted by

the upper level
end

end

end

end

To perform this, we propose to have two FIFOs in which

the synchronizer fetches instructions. One contains

the instructions taking part to the ascending data
movement, and the other the instructions for the

descending one (figure 5). The synchronizer selects

one of the two FIFOs. As long as the execution of the

instruction on the top of the FIFO is compatible with

the state of the interlayer communication buffers, it is

sent to the PEs of the layer. When the instruction must

be delayed and the other FIFO is not empty, the

synchronizer switches the context in the PEs of the

layer and uses the instructions of the other FIFO.

Instruction

Figure 5:The dual FIFO synchronization.

The context switch is expensive, since on SPHINX five

registers have to be saved in the PE memory, but it

occurs only when distinct data movements are

crossing. When there is only one data movement in a

layer, there is no context switch and then no overhead.

We will call process the sequence of instruction that

takes part to a data movement in a layer. We label the

processes as ascending or descending, according to the
data movement to which they are taking part. Only one

ascending and one descending process can be

simultaneously running in the same layer. The

crossing of data movement is accomplished through

this coexistence of processes inside a layer.

The use of two FIFOs allows a deadlock free coexistence

of the two processes in the same layer, provided they

only carry data either upwards or downwards: let's

imagine that in the layer i we have a process P iwhich

is blocked in a deadlock. We will suppose that Pi is an

ascending process but the demonstration is easily

extended to the case where Pi is a descending one. Pi

may be blocked either because a process P i-I in the

layer i-1 doesn't produces the data Pi needs, or because

a process P i+l doesn't consumes the data P i produces. As

Pi.l and P i+1 are ascending processes, they produce

their instructions in the FIFO of the ascending

processes. As they are the only ascending processes in

their layers, their instructions are on the top of their

FIFO, and they must be blocked because of the

ascending processes of layer i-2 or i+2 to which the

same reasoning may be applied. There can't be a

deadlock as long as there is no interaction between

ascending and descending processes.

Vertical communication as resources

Some processes don't fit in the ascending/descending

scheme we just described. For example, the process at

the top of the pyramid in the associative histogram

program, both consume data from the layer 1 like an

ascending process, and produce data for the layer 1

like a descending one in the same instruction. We label

such a process as bidirectional, and activate it

according to the following protocol: in each layer,
each direction of communication is considered as a

resource; an ascending process needs the ascending

resource, instantiated by the communication buffers

from the lower layer and to the upper layer, a

descending process needs the descending resource and

a bidirectional process needs both resources. A process

is run in a layer only if the resources it needs are

available. That way in a layer we can have either at

most one ascending and one descending process, or a

bidirectional one.

Bidirectional processes are necessary to have crossing

data streams performing useful work, as they permit

exchange of data between them, but their existence
allows occurrences of deadlocks, as is usual when two

processes are communicating together via blocking

input and output primitives. Proper programming
allows the avoidance of deadlocks, which are easy to

detect as they are always caused by bidirectional

processes.

THE EXPRESSION OF COOPERATION

Independently of the control strategy, one has to

provide an effective way to specify the cooperation of

different layers, which directs as well how high level

synchronization is realized, as how the programmer

specify process creation. The control model described
above relies on anonymous ports, as any other

communication scheme would have implied to carry

identifying information about communicating

processes with any bit of data. Despite this constraint,
one has to let the communication expression specify as
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explicitly as possible the identity of the processes
involved.

To express the cooperation of the layers, we propose to
use the same scheme that is used for data movement:
pyramid algorithms arc conceived in term of data
movements between layers, and then a task is defined
which migrates, accompanying the moving data. We
choose not to execute that migration via process
migration between layer controllers, because process
migration implies that the process environment
migrates with the process, and also because data
exchange between PEs from differents layers involves
two processes: one sending the data and a second one
receiving them.

The task migration is accomplished on a local to a layer
base, in a way we call control transmission, after data
transmission. The creation of the task involves three
distinct steps: at first, a process is created in the layer
initiating the data movement; that process creates in
the neighbor level another process and then sends

data to the newly created process.

For example, a step of the sum for the histogram will be
programmed with:

process sum(n)
begin

if current layer = base then begin
create process sum(l) in the upper level
send the selected bit to the upper level
end

else if current layer = top then begin
sum the n bits received from lower level
end

else begin
create process sum(n+l) in the upper

level

send to the upper level the n+l bit sum
of the n bit received from lower level

end
end

at base create process sum(0)

The associative histogram operation can be
programmed in the way. One only needs to activate at

the upper layer a descending process to carry data
downwards.

Control transmission presents several advantages:
involving only transmission between adjacent layers,
it can be realized by in a point to point communication
between adjacent controllers.

The environment of each process is clearly stated in
the program, as each process communicates either
with the process which created it, or with a process it
has created, or both. Accordingly, provided the
algorithm is correct in terms of data transfer i.e. the

same amount of data is produced and consumed by
communicating processes, the consumer will always be
the right one, even though transfers are made
through anonymous ports.

Deadlocks coming from process creation obeys the
same mechanisms as data communication. One

bidirectional processes can, directly or indirectly
create deadlocks by process creation requests.

The use of layers being controlled by process
execution, it can be dynamically adapted to the state of
data in the PEs, allowing a better exploitation of the
occupation of the layers.

CONCLUSION

We have presented a synchronization method to solve
the problem of the Multi-SIMD control of the SPHINX

Pyramid Computer. Based on a recently designed chip,
we are building a 32x32 machine, with a controller

relying on these principles. We have as well, designed
a high level language--pyr-e--based on C for which a
compiler is on the way.
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The Ynet:
An Interconnect Structure for

a Highly Concurrent
Data Base Computer System

Dr. Philip M. Neches

Teradata Corporation

Abstract

The Teradata DBC/1012 Data Base Computer System applies a
multiple data stream, multiple instruction stream (MIMD)

concurrent processing architecture to implement the relational
model The interprocessor interconnect structure, called the

"Ynet", is the basis of the architecture, which can connect up to
1,024 high performance microprocessors to form a very high
performance system. This talk describes the design
considerations for the Ynet as the interconnect structure for a

highly concurrent database system which also requires high
availability and real-time operation.

Background

Design "Givens". Teradata Corporation was organized in
1979 to develop and market a relational data base computer
system. Several key elements of the product architecture were
known from the outset of the design process:

(1). The product would implement the relational model of
database management. By 1979, the pioneering theoretical
work of E. F. Codd and others had resulted in software

prototype relational systems, which had established significant

productivity benefits for both conventional application
development and unanticipated ("ad hoc") requests.

(2). The product would employ a MIMD parallel processing
architecture. During the 1970's, several workers in academia
produced an extensive literature on parallel architectures to
implement some of the operators of the relational model. Hsiao

and DeWitt particularly championed MIMD (Multiple
Instruction streams, Multiple Data streams) approaches because
of the breadth of functions required of a relational system.

(3). The product would employ multiple microprocessors. The

advent of the 16-bit generation of microprocessors put the
power previously associated with minicomputers onto one chip.
Further, both the absolute performance and price/performance
of microcomputers would increase at a much faster rate than
either mainframe or minicomputer technology. The

microprocessor was thus clearly established as the engine of
choice for cost-effective designs.

The combination of a MIMD architecture with microprocessor
economics permits products with a number of advantages. A
design would be inherently very modular, pelmitting both small
and very large systems to be constructed out of the same

"buiMing blocks". By using the most cost effective technology
for the building block, the resulting systems should display very
competitive price-performance across the range of

configurations. Further, the rate of price-performance
improvement should be very rapid.

Combining a MIMD parallel architecture with microprocessors
to implement the relational model also has several key
consequences for the design. The Ynet interconnect design
responded to these challenges:

(1). Systems of up to hundreds of processors would be needed
to address some of the most demanding applications. The
interconnect structure thus has to be capable of extending

systems to this scale. We chose 1,024 processors as the design
target for this reason.

(2). Work would have to be divided among these processors.
This resulted in the functional division between host

communication and language processing in the Interface
Processor (IFP) and database semantics operations in the

Access Module Processor (AMP). (See Figure 1). This also
led to the design decision to spread the storage of the rows of
each table across all of the Access Module Processors. Each

AMP stores some of the rows of each table: work is managed so
that the task of operating on the rows is always done by the

processor on which the rows are stored.
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(3). Every parallel processing system must face the issue of
how to divide the problem into smaller sub-problems, each of
which can be assigned to a processor. Because of the associated
problem of managing the distribution of data on secondary
storage, this problem proved to be particularly straightforward
for a relational database management system.

Consequences of the Requirements. The distribution of
work following the distribution of data means that the system
must have a broadcast mode of operation. Many operations
require every AMP to do essentially the same operation to its
subset of the rows. Further, the broadcast operation must be
reliable: that is, the message invoking the operation must be
guaranteed to be received by all of the intended recepients.

To see why this must be the case, consider a system with N
Access Module Processors. If N-1 AMPs receive a message
which will cause some change to the database, and 1 does not,
that 1 AMP's subset of the database will not be consistent with
the rest. This is the worst offense imaginable for a database
management system: to corrupt the integrity of the information
under management. We call this the reliable muhicast problem.

Next, envision a system with perhaps hundreds of AMPs, each
working on some portion of a complex request. There must be
an efficient was to monitor the status of requests in process
within the system. Such events as completion of a step which
must be synchronized in all processors must be ascertained with
a minimum of overhead.

Finally, in this kind of MIMD architecture, each AMP produces
only a subset of the response from its subset of the database.
The system needs a way to merge the partial results from each
processor into a single result stream.

This requirement suggested the basic form of the Ynet as a
sorting network. Users frequently request reports to be
presented in some sorted order, typically different from
whatever order was used to store the data. Thus a relational
database management system will spend some significant
amount of its resources sorting intermediate and final result
setS.

The system faces several other important requirements. The
system will have many simultaneous users, and thus must be
multi-threaded to permit many requests to be in various stages
of processing at the same time. In a system with hundreds of
processors, and which may have several hundred disk drives,
this means that the system must be designed for fault tolerance
from the outset. Finally, although the system is composed of
many processing elements internally, it must appear to the users
and operations personnel as a single system ("single system
image").

The Ynet

The Ynet design evolved in response to the requirements
outlined above. Historically, these requirements were
understood before the design began.

A DBC/1012 system actually includes two completely
independent Ynet structures for fault tolerance. (See Figure 1).
When both Ynets are operational, the processors divide message
traffic between the two Ynets. When either Ynet is down,
traffic goes over the remaining Ynet, including messages passed
by a special diagnostic program which tries to isolate the fault
in the failed Ynet.

Each Ynet is a tree-structured network of circuit switching
nodes. Each node connects to two elements below and one
above: an element can be either another node or a processor
interface (YIF board). The following sections describe the node
itself, the processor interface, and the protocols which operate
in the network.

Node

Ports. Each node has three ports: A, B, and C. (See Figure 2).
The A and B ports connect to either nodes or interfaces in the
"down tree" direction. The C port connects to another node in
the "up tree" direction.

Each port has a fully duplexed set of signals for data, control,
clock, and parity. The data path is 1 byte (8 bits) wide. In
addition, there is a COLLISION signal which occurs only in the
downtree path.

Data Paths. The node logicis divided into the sorting logic
in the uptree data path and the broadcast logic in the downtree
data path. The sorting logic includes a comparitor, multiplexer,
state flip-flops (DECIDED and AorB), parity checking, and
control logic. The downtree logic includes only parity checking
and latches.

Flow. Let's follow a packet through the network. Initially, all
of the nodes' DECIDED flip-flops are set to 0, indicating that
the network is ready to accept a new packet. Each processor
interface sends the next packet that it wants to send into the
Ynet. On each clock interval, a new byte from each packet goes
from the interface to the first level node. The Ynet is thus byte
pipelined.

Each node looks at the two packets coming in on the A and B
ports, one byte on each clock interval. If the two bytes are
identical, the node logic propagates the byte uptree to the C
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Figure 2 - Node Logic, Excluding Clock Circuits
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port, and does not alter the settings of the state flip-flops.
However, the the bytes mis-compare, then the node propagates
only the lower valued byte to the C port. The node also sets the

DECIDED flip-flop to 1 and sets the AorB flip-flop to incidate
which port provided the lower-valued byte. The node is now
armed to accept further bytes only from the port which sent the

lower-valued byte, and thus which has the lower-sorting packet.
Finally, the node asserts the COLLISION signal to the losing
portonly.

Collisions. When a processor interface sees a COLLISION
signal, it knows that its packet was not the lowest sorting
packet: it "lost" in contention with other packets. The collision
mechanism arms the processor interface to retry its packet

following the acklowledgement sequence, which follows every
"primary" packet contention cycle on the network.

Collisions, that is, mis-compares, can occur at any level in the
tree of nodes. Thus, is the node sees the COLLISION signal
asserted from a higher level node via the C port, it propagates
the COLLISION signal downtree to the A and B ports.

In the uptree direction, the nodes implement in hardware an
algorithm called "tournament son". The name comes from the

analogy to a sports tournament where the packets axe players
and the nodes are matches: the winners of the quarter-final
matches advance to the semi-finals; the winners of the semi-

final matches advance to the finals, and the winner of the final
match is the winner of the tournament.

Broadcast. At the top or apex of the network, the winning
(lowest sorting) packet is turned around and started in the
downtree direction. Each node simply propagates the byte
which arrives on the downtree Port C data path to the downtree
portions of Ports A and B: it thus broadcasts the downtree
packet to both ports.

The result is that the winning packet is received by every

processor interface at exactly the same time. Subsequent
sections will describe the actions taken by the processor
interface.

Packaging. The node logic consists of about 25 SSI and MSI

parts. The design originally used standard 'LS and 'S series
"Iq'L; these parts have been largely replaced by 'ALS and

CMOS equivalents to reduce power consumption. An ASIC
version is planned for a follow-on implementation of the
system.

The node logic is packaged on two kinds of boards: the NODE
and NODEX. The NODE board (See Figure 3) houses seven

luPtt t*lu_q
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Figure 3 - Ynet NODE Board

nodes to connect to 8 processorinterfacesby backplane wires
usingTFL signalinglevels.

The NODEX board (See Figure 4) houses 3 nodes, which
connect to as many as 4 NODE or NODEX boards via a

25-coax-pair ribbon cable using differentialdrive signaling.
The cablecan be up to 10 meters.

A system with only NODE boards can have up to 8 processors.
A system withone levelof NODEX boards can have up to4*8
= 32 processors.A system with two levelsof NODEX boards

can have up to4*4*8 = 128 processors.And so on.

Clock. The Ynet employs a unique scheme for clock
distribution.Because the Ynet isa byte-synchronousnetwork,

the importance of clock distributionis readilyapparent. Each
NODE and NODEX board regeneratesthe clocklocally,with a
phase-lockedloop to kccp itsynchronizedwith the board above
it.The NODEX board has 4 phase locked loop circuits,one for
each of the 4 downtrcc ports. Each phase locked loop circuit
compares the locallygeneratedreferenceclock with the clock
returned from the lower level board. The difference between

the local and returned clock signals is the error signal to the
phase detector circuit. The phase locked loop scheme results in

clocks held synchronous to within 1 nanosecond throughout a
system which could fill a large computer room.

Processor Interface

Most of the functionality of the Ynet results from the logic
implemented in the processor interface. The interfaces provide
a packet-switched interface to software, where the node network
is more accurately characterized as a circuit switch. Each
DBC/1012 processor has two Ynet interface cards, one for each
of the two Ynet structures in the system.

The processor interface is divided into three sections, each of
which is implemented by a finite state machine. (See Figure 5).
These are the Ynet Input, Ynet Output, and CPU Interface
sections. A special high speed memory (HSRAM) froms the

core of the design of the processor interface. The HSRAM has
three ports, one for each of the three finite state machines. The
HSRAM and the three FSMs dervie thir clock from the Ynet
network.

HSRAM. The CPU Interface FSM makes the HSRAM

appear to the CPU as part of its memory address space. The
programming interface to the Ynet appears through placing
messages to be sent in the HSRAM and examining messages

Figure 4 - Ynet NODEX Board
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receivedin theHSRAMusing ordinary processor instructions.
Messages received from the Ynet appear in the Input Circular
Buffer area of HSRAM. The processor places messages to be
sent in the Output Buffer area of HSRAM, and sets words in the
Transaction Vector area of HSRAM to point to messages to be
sent. The Ynet Output FSM places pointers to messages which

have been successfully sent in the Output Pointer Circular
Buffer, so that software running in the processor can take
appropriate action, such as freeing the area occupied by the
message itself in the Output Buffer area.

The HSRAM also includes various control information that is

used by the processor interface hardware. By placing this
control information in HSRAM, software can initialize the Ynet
in a very flexible yet powerful manner.

Transaction Vectors. A Transaction Vector represents the

state of a user transaction or job in each processor in the system.
The state of a transaction within the system is derived from the
Transaction Vectors with the same designation ("Transaction
Vector ID" or TVID) in every processor. The current
implementation of DBC/1012 software allocates over 1,000
Transaction Vectors, which permits over 1,000 user requests to
be pending in the DB C/1012 simultaneously.

Hash Maps. Data rows are assigned to processors in the
DBC/1012 by a hashing algorithm. The field(s) composing the
primary index of the row are put through a modulo prime
number hashing algotithrn, which results in a hash "bucket"
number. The Hash Map section gives the mapping of buckets
to Access Module Processors.

There are two Hash Maps in the system: Prime and Fallback.
Each row is stored on the AMP to which its hash bucket is

assigned in the Prime Hash Map. In addition, if the user has
requested it, a second copy of the row is kept on the AMP to
which the corresponding bucket is assigned in the Fallback
Hash Map.

There axe approximately 3,000 hash bucket numbers. Each

AMP is assigned several bucket numbers for both Prime and
Fallback Hash Maps. This makes it possible to evenly divide

To Ynet

T
Output

Finite

State

Machine

From Ynet

i
l Input

Finite

State

Machine

Processor Modulebus

CPU
Interface

Logic

3 Port HSRAM Interface

HSRAM

Figure 5 - Processor Interface

the storage of data, and hence the processing load, among the
processors of the system. When additional AMPs are

configured into a system, the new AMPs are populated by
moving some buckets from the existing AMPs to the new
AMPs, and then moving the rows corresponding to the moved

buckets. Thus only the minimum amount of data necessary is
moved during re,configuration.

Because the Prime and Fallback Hash Maps are independent,
the system has a great deal of flexibility in choosing which
processors should provide back-up for each other. DBC/IO12
software implements a concept called "Fallback Clusters". In
this concept, a group of between 2 and 16 AMPs form a cluster:
rows that are in the Primary Hash Map of AMPs in the cluster
will also be in the Fallback Hash Map within the same cluster.
Obviously, the allocation of buckets must be such that the
Prime and Fallback copies are on different AMPs. In the cluster
concept, the Fallback copies for buckets that are Prime on one

AMP in the cluster are equally allocated among the remaining
AMPs in the cluster.

Compared to conventional mirroring schemes for rehable
operation, the Faltback Cluster conceot reduce_ the, irnnact of a
processor failure on the remaining processors in the
configuration. Under mirroring, if a processor fails, the mirror
processor must assume 100% of the workload of the failed

processor. With the cluster concept, for an N processor cluster,
each processor assumes 1/(N-l) of the workload. This results in

considerably less cost for standby processing capacity required
to sustain a workload even with processors down.

Groups. The Ynet HSRAM contains a set of groups. A
group is represented by three bits: Valid, Member, and

Semaphore. If the Valid bit is set in any processor, the group is
allocated and is in use. A processor sets its Member bit to

indicate that it belongs to the group and should receive
messages addressed to the group. The Semaphore bit is used to
ensure mutual exclusion during operations which allocate,
deallocate, or test the status of the group.

Groups can be allocated statically (when the system starts up) or
dynamically. DBC/1012 software uses the Ynet group
capability to form groups of processors which are concerned
with a given user transaction, so that messages can be sent only
to those processors engaged in doing work on behalf of that
transaction. Present software allocates over 1,500 groups per
system.

Dynamic groups are important for workloads which consist of a
large number of relatively simple transations. Each transaction

cannot use the full degree of parallelism provided by the
DBC/1012: in fact it typically affects only a few processors.
However, the workload collectively uses the entire
configuration. The dynamic group concept permits the
DBC/1012 to be dynamically partitioned into subsets
appropriate to each transaction. Note that many overlapping
subsets can be in existence simultaneously.

We believe that the dynamic groups concept will be essential to
programming and operation of MIMD computers with
thousands or tens of thousands of processors which are
proposed for the 1990's.

Example Message Flows

The following examples discuss how various features of the

Ynet operate for sending messages through the system which
evoke new work in the Access Module Processors. These

messages are called "Step Messages". They are prepared by the
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SQL Parser, which executes in the IFPs. Their transmission to
the AMPs is requested by a second program which runs in the
IFPs, called the Dispatcher. Each step message requests one
AMP, a group of AMPs, or all AMPs to do some operation
against the database. The parser generates one or several step
messages to effect each SQL statement received from the user.

Arbitration. The first example (See Figure 6a) shows two
IFPs each attempting to send a step at the same time. The first
node on the left decides in favor of the step message from IFPl
in the example because it sorted lower. Note that this means
that the Ynet not only handles contention, but in doing so
automatically enforces system wide message priorities.
DBC/1012 software uses this feature to ensure that certain
critical control messages always have priority over ordinary
messages, for example.

The winning message reaches the top of the network, and is
turned around and broadcast down the network. It arrives at the
processor interface of each processor at exactly the same time.
(See Figure 6b).

Acknowledgement. Every processor interface generates
some kind of acknowledgement to every received primary
packet. Acknowledgements are minimum length (2 byte)
packets which contain only a command code and the ID of the
responding processor. The command code used in
acknowledgement packets is a function of whether the
processor is intended to receive the packet and whether it can in
fact receive the packet.

Figure 6a - Both IFP' s try to send at the same time

The acknowledgements are s_.d (merged) up the network just
like the primary packets that evoked them. Only the lowest-
sorting acknowledgement packet makes it to the top of the
network: it is in turn broadcasted down the network and is seen
simultaneously by all of the processor interfaces.

After dealing with the surviving acknowledgement packet, each
processor interface then begins the cycle over again by trying to
send its next packet. This will be the same packet as in the
previous attempt for all processors except IFP1, which got its
message through.

If a processor had no actual message to send, the processor
interface sends a special "idle" sequence which is guaranteed to
sort higher than any real message.

A primary message can be addressed to a processor id, a hash
bucket, a group, or a transaction vector. Step messages are
always addressed to a hash bucket, a dynamic group, or to the
special static group of all AMPs. We will consider each in turn.

One AMP (Point to Point). Step messages are sent to a
hash bucket when the Parser recognizes that all of the rows in
the request must have the same Prime Key. An example of this
kind of request in a banking application would be "find the
balance of account 1234567". In this avvlication, account
number is the primary key, and account 1234567 hashes to
AMP4. (See Figure 6c).

Every processor interface generates an acknowledgement to
every primary packet. In this case, AMP4 generates an "ACK"
or positive acknowledgement: AMP4 is the only processor
which has the appropriate hash bucket. All other processor
interfaces generate a Not Applicable Processor (NAP)
acknowledgement. NAP means that the processor interface
determines that the packet was not addressed to that processor.
The command codes are assigned such that ACK sorts lower
than NAP. Since ACK is the lowest sorting acknowledgement
packet, it reaches the apex of the network and is broadcast down
the network.

When IFP1 sees the ACK, it knows that the appropriate
processor could and did receive the intended message. This is
reflected by an update to the Output Pointer Circular Buffer in
HSRAM. Also, the processor interface generates an interrupt to
the processor to tell it to examine the Output Pointer Circular
Buffer.

Figure 6b. The winning packet is received by each processor
interface at the same time Figure 6e - Acknowledgements for point to point messages
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In AMP4, the ACK comrxrms receipt of the message, now stored
in the Input Circular Buffer. The AMP4 processor interface

generates an interrupt to the processor to cause software to
process the new message.

All other processor interfaces see both the primary packet and
the acknowledgement packet, but take no action. They simply
wait for the acknowledgement sequence to complete. At that
time, all of the processor interfaces, whether they were involved
in the packet we just followed or not, attempt to send thier next
primary packet.

For IFP1, this will be the next packet it had ready to send. For
all other processors, it will be the same packet they previously
tried to send without success, or the idle pattern, or a new

packet which software placed into the Output Area and chained
to an active Transaction Vector during the processing of the
currant packet.

A Few AMPs (Multieast). Next, conisider a message
addressed to a dynamic group. Messages to commit or roll back
work for a simple transaction are typically addressed to the
dynamic group allocated just for that transaction.

The message is sent from IFP1 in exactly the same way as in
the previous example, and is received by all processor interfaces
in exactly the same manner as before. (See Figure 6d). In this

case, only AMP2 and AMP5 are members of the group.
(Previous step messages in this transaction would have caused
these two AMPs to join the group). That is, only AMP2 and
AMP5 have the Member bit set for this particular group.

Thus, both AMP2 and AMP5 generate ACKs; all other
processors send NAPs. In fact the ACK sent by AMP2 sorts
lowest, because it has a lower processor ID than the ACK send
by AMP5. The ACK from AMP2 is thus broadcast to all
processor interfaces.

Again, IFP1 deals with the ACK by generating an interrupt to
software to signal successful transmission of the message. Both
AMP2 and AMP5 generate interrupts to begin processing of the
new message in the Input Circular Buffer. All other processors

effectively ignore both the primary packet and the
acknowledgement and walt until they can send their next
primary packet.

All AMPs (Broadcast). A message intended for all AMPs
is addressed to the special staticaUy defined group of All AMPs
by the sending IFP. (See Figure 6e). In this case, the processor
interface of every AMP generates an ACK; only the processor
interfaces of IFPs generates NAP _knowledgements.

As in the previous examples, IFPl's processor interface
generatesan interruptto softwarethatthe message successfully
got through to allrcceipients.Each AMP's processorinterface

generates an interruptto cause the new rncssagc to be
processed.

Two Phase Commit. Finally, consider an example in

which one of the intended recepient AMPs cannot handle the
message intended for it. (See Figure 61). This condition

typically results from congestion control algorithms in the
DBC/1012. In this example, AMP3 is temporarily overloaded,
and cannot receive more messages. The processor interface of

AMP3 generates a third kind of acknowledgement message:
negative acknowledgement (NAK). The command code for
NAK is arranged to sort lower than ACK, which in turn sorts
lower than NAP.

Since the NAK generated by AMP3 is the lowest sorting
acknowledgement packet, it gets to the apex and is broadcast to

all processor interfaces.

The processor interface of IFP1 generates an interrupt to
software, as before. However, instead of storing the ACK

response with the message, it stores the NAK response. This
tells software that the message did not get through, and further
identifies the lowest-numbered processor which could not

receive the message. This information forms the basis for
recovery action initiated by software.

In IFP2, the whole proceeding is of no interest, and IFP2 simply
waits until it can send again.

In AMP1, the processor interface generated an ACK, and is thus
expecting of have its ACK conf'trmed. The NAK tells the
AMP1 processor interface that some other receipeint could not
process the message. Thus AMP1 in effect discards the
message and generates no interrupt to software. All of the other
AMPs' processor interfaces take the same action.

Figure 6d - Acknowledgements for multicast messages to a
dynamic group

Figure 6e - Acknowledgements for broadcast messages to a
static group
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Conclusions

As can be seen from the foregoing examples, the Yne,
implements a two-phase commit protocol on every message, as
a simple byproduct of transferring the message and
acknowledging it. Two-phase commit is an expensive protocol
ff implemented in software, and is the only algorithm known for
implementing reliable communications in a distributed system.

The combination of two-phase commit and group addressing in
the Ynet means that the system can treat a group of processors
as a single entity whenever desired. The .group, like a single
processor, receives messages as an atormc, uninterruptable
operation which either entirely succeeds or entirely fails.
Further, the processors in the group receive messages at the
same time and in the same order.

Because of this property, programs which implement such
synchronization intensive functions of a database management
system as transaction commit and roll hack, and system start-up
and recovery -- typically the most difficult algorithms of a
database manager and tough enough in a uniprocessor
environment -- have straightforward extensions to a concurrent
processing environment.

Thus, we have demonstrated how the Ynet design responds to
the challenges of a highly concurrent environment, but also to
the challenges of real-time, high availability, multi-user
applications. In this regard, the Ynet addresses problems
usually not considered in the design of exsiting concurrent
processing architectures.

While the Ynet design evolved from the requirements of a
commercial relational database management system, the
structure is suitable for other classes of problems characterized
by high degrees of concurrency. These could include
numerically intensive problems, such as matrix manipulation
and simulation of physical systems, or more general problems
such as those posed by artificial intelligence research and
implementation of object-oriented environments for large
problems where a great deal of computational power must be
harnessed.
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ABSTRACT

The topology of the elementary processor

intcrconnection in a parallel architecture is an important
feature in obtaining high performances. Nevertheless, due to
the constraints of electronics, the most of the parallel

architectures have fixed interconnection topologies between

elementary processors. As far as communications are

concerned, optics presents interesting characteristics for
application in highly parallel communication networks such

: no crosstalk, free space transport and high bandwidth. The
O.N.E.R.A./C.E.R.T. MILORD project aims at developing

an optical interconnection network to build a reconfigurable
highly parallel architecture dedicated to high performance

applications. The muldprocessor prototype, which has been

developed, is composed of INMOS microprocessors

connected by theft four serial links on an optical crossbar

network. As the interconnection topology can change during

the executi?9 at pre-determinated points of the program,
various configurations have to be managed. In this paper, we

first a give a brief survey of optical network devices. Then,
the architectural features and the main characteristics of

needed software tools are presented. Finally, we give a survey

of applications well suited for reconfigurable architectures.

Keywords: optical reconfigurable network, parallel
architecture, transputer, occam, optical free space.

INTRODUCTION

The increasing demands of applications like signal and

image processing, artificial intelligence and numerical

applications for growing powerful computation, indicate the

needs of highly parallel computers (Ref. 1). With the
advances of technology and declining cost of computer

hardware, we can envisage the design of massively parallel

architectures composed of several hundreds of processors. The

elementary processor interconnection network becomes an

important part of the parallel processing system. Its

efficiency greatly contributes to the global system

performance (Ref. 2).

(*) in collaboration with P. Churoux, M. Fracas and

Laug at O.N.E.R.A./C.E.R.T.- Dept of Optics

The most attractive interconncction topology would
permit any processor to direcdy communicate with any other
in order to fit the application requirements. Most of the

highly paraUel architectures have a fixed interconnection
topology between the processors due to the limitations of

eleclzonics for implementing highly parallel communications
(pin limitations, wire design and wiring problems). This

network rigidity confines them to specific applications. The
configurable architectures have introduced the network

flexibility : MPP (Ref. 3) and CHIP (Ref. 4). Nevertheless,

up to day, no one has been capable of configuring any kinds

of topology.

By its own nature, optics presents interesting
characteristics : the non-existence of crosstalk between two

optical links, the immunity to electxomagnetic radiations, the

possibility of using free space as a support of the data

transport and the intrinsic parallelism (photons don't

interact), should contribute to improve the communications

in a large parallel computer. It can provide an easy way to

implement large reconfigurable interconnection networks. In

a such context, the network can be configured to match the

communication characteristics of the performed algorithm.

Various implementations with the different optical media are

feasible : optical fibers (Ref, 5), integrated optics (Ref. 6) and

free space (Ref. 7). The basic idea of most existing systems

is that a crossbar network can be implemented by a matrix-

vector product system (Ref. 8).

According to this idea, we have been developing for

two years at O.N.E.R.A./C.E.R.T., a multiprocessor

prototype called MILORD, based on a such network to

interconnect electronic processors. This project aims at

developing an optical crossbar network to build a

reconfigurable highly parallel architecture dedicated to high

performance applications.

In this paper we first present optical network devices

and give the performances that can be expected. In the
following section, we describe the architectmal features of the

MILORD machine, software tools at system and user levels.

At last, we give a survey of applications well suited for

reconfigurable architectures using large networks builded with

optical components.

CH2649-2/89/0000/0437501.00 © 1988 IEEE
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OFrlCAL NETWORK DEVICES

Optics is well adapted to communications due to its
ions disumce capubilitics, the non-existence of crosstalk and
the three dimensional propagndon. The high bandwidth

permits the use of bit serial links rather than conventional
immllel ones. It reduces the number of communication

_mels, allowing mote processors for a given derezity limiL

For the last several years, optical fibers have been used
for long distance communications. From its widespread use

in telecommunications, they are being propelled into data

communications within and between computers. But optical
networks based on optical fibers suffer of the same limits as

electronic wires as a as reconfiguration is concerned. 2x2
fiberswitches are available, but with a too low switching

lime for ota"application ( > 1 millisecond ).

Otherdeviceshavebeenpmpu_ to implementoptical
aetworl_. Integrated optics projects aim an electro-optic
cm_x_int (Ref. 6), which could be faster than electronic
switches (picoseconds range). This device called directional

coupler, has two inputs and two outputs and a binary control.
With their two internal states ; straight and exchange, so that

my input can reach any outputs. In order to realize larger
aetwoAs, integrated optics must integrate more couplets on
I chip or connect the couplers between themselves with

optical fibers. The number of ways is limited by the chip

idze and pipout for the first solution and the coupler
attenuation)hal insertion loss for the second. Today, the
number of ways is limited to a few tens.

The optical free space transmission seems a more

promising technique to meet our requirements: flexibility,
broadcast capability, large parallel system and three-
dimension links.

Many optical devices have been described for
this approach (Refs. 7-9). The reference 10 analyses optical

mlutions to implen.ent crossbar network. Systems are
mainly based on matrix-vector product concept to implement
an optical crossbar switching network. The figure 1 shows

the most popular N 2 parallel matrix-vector product

implementation.

The design consists of a column of emitters (input

vector), a row of detectors (output vector) and a sandwich

crossbar mask (input matrix). Each emitter broadcasts on an
entire row of the mask, so that a binary I is represented by
light of a fixed intensity and a binary 0 is represented by a

zero intensity. Similarly, each detector is capable of
summing light from an entire column of the crossbar mask.
The summation and the spreading are accomplished in optics

by means of lenses.

El

ol

Input vector Crossbarmask Outputvector

Figaro t. N ' pm.tlkl Mwrix-Vecto_ Pmd_t Implementation

The mask can be viewed as an array of windows, which

are transparent or opaque. When the window of the column i
and the row j is transpment (value 1), the ith emitter can send

optical signal to the jth detector. In the case of opaque state

(value 0) light coming from the ith emitter is blocked : thus,

the mask disallows communications between the two

elements. The crossbar mask device is set up by the matrix
value with optical or electronic control depending of the

optical component.

This system can perform matrix-vector product or
implement a crossbar network. The crossbar mask acts indeed
as a switch at each window to permit or to block incoming

light at each position. The switches are commanded to

establisha connection, or a global interprocessor topology
configuration. For one to one communication, at most one
switch in each row and one switch in each column may be

oper_land all other windows must he closed.

It is interesting to note that this resulting optical
network has the broadcast capability (a row of opened
switches), added to the basic crossbar function. This
capability can reduce the complexity of parallel algorithms

The Spatial Light Modulator (SLM) is one of the
devices which can implement the matrix-product function.

Its role is to switch inputs to ouptuts (crossbar mask). It
may be either transmissing (as above) or reflective (input and

output vector on the same mask side). The table 1

summarizes the main parameters of the most interesting
SLMs.

SLMI

!_uid Cry=aJ
Light VaNe
(LCLV)

Delo_mable

MirrorDevice
!(DMD)

,PLZT

Non_

tnlwl_enliaJ

filters(NLIF)

Resolution Control

500x500 50 ms o_t_calpamtle_

128x128 30 jJ,s P. L L elect.'

I000xi000 400)_,

200_sI00xi00

Magnelo-optlc 512x512 0,5ps P. L L. elect. '

* P. L.L. : Parallel Line by Line with electrical control
Table 1 Parameters of some SLMs (Ref. I0)
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Most of the given SLMs are not currentlyavailable,

except the HUGHES Liquid CrystalLight Valve and the
Deformable Mirror Device. The othersare stillstudiedin

laboratories: thus,the given values are approximately.

Nevertheless,thislistgivesa good ideaof theperformance

thatwe can expected.Three parametersmainly definethe

characteristicsof the resultingnetwork :the resolution,the

responsetimeand tlmcontrol.

The resolution gives the number of pixels provided by
the SLMs. In this way it defines, according with the contrast

ratio and the efficiency of the SLM, the number of paths that

we can expected in a network. The practical fimits of SLMs
allow the implementation of moderately large networks (at
least 100xl00).

The response time is the time required by the SLMs to

adress a pixel (corresponding to setting up a window). It
therefore indicates the time to establish a connection between

an input and an output. We note in table 1 that the response

time is slow : the speedest modulator (magneto-optic) is still

too much slower than switching time in electronic
technology. The reconfignration time needed to establish all

the connections of a global interconnection topology, also

depends on the SLM control.

There are three modes of access to control the switches:

optical parallel, electrical parallel line by line and electrical

sequential. The optical control is the most interesting mode

because it permits to set up all the pixels at the same time

whereas the.second mode can simultaneously command only
a line of p_els. The sequential control adresses the pixels

sequentially. It is possible to evaluate the total
re.configurationtime depending on the controlmode : Tr

(parallel),N.T r(parallellineby line)and N2.Tr (sequential)

where T r istheresponse time and N 2 isthe number of

pixels.We note thatthe re,configurationtime in parallel

mode doesn'tdepend of the number of pixels.Then, a such

controlprovidesa reconfigurationtime,which can reachthe

performances obtained in large electronic networks

Moreover, the bandwidth of optical crossbar networks

is high. It is only limited by the response characteristics of

the optical detector array ( < 1 Gigahertzs). A large optical
network can be actually implemented with a high data rate.

Due to the slow switching time of the current optical

technology, it is unrealistic to change any connection at any

time. It is better to modify the interconnection topology (all

the connections) at pre-definexl points of the execution. At
these re,configuration points the right topoloy is required to

satisfy the most direct communications between elementary

processors.Considering the flexibility of the network, any

well known topologies (mesh, tree, hypercube...) or others

original topologies can be established. This operation is web

adapted to many applications like numerical and image

processing.

Let us now give a description of the MILORD

machine, which is composed of a such optical network.

ARCHITECTURE OF MILORD

Introduction

The MILORD project (Multiprocesseur Interconnect6

par Liaisons Optiques Reconfigumble Dynamiqumnen0 aims
at developing an optical interconnoation switch between

elementary processors to face the problem for which
electronics suffers fundamental limits. Such a switch allows

the parallel architecture to adapt a network configuration to a

specific algorithm. Based on this optical switch, we design a

massively parallel reconfigurable architecture dedicated to
high performance applications. We are building a prototype

now to prove the feasibility of such architectxwc. The design
of dedicated tools for re.configuration management is under
way and a survey of applications well adapted to

reconfigurable highly parallel architectures has been
undeaak_.

In this context, the network topology can be altered

between different algorithm executions or between different

steps of the same algorithm execution. Then, two

re.configuration modes can be taken into account : static and

dynamic. In a static mode, a program is wriuen for a luted

topology of the elementary processors. In a dynamic mode,

the topology can be dynamically modified at pro-detexminated

synchronization points of the program, so as to match the

different communication schemes required by the algorithm.

The MILORD machine, which is implemented in the second

mode may be characterized as a re.configurable architecture.

Today several types of parallel architectures have been

developped like MPP and CHIP. In contrast with their

networks, which can only configure a limited number of
topologies, the MILORD machine can realize any required
topology.

The architecture of the MILORD machine is mainly
composed of an execution unit, an optical crossbar network

and a control unit as described in figure 2. This machine is
connected to an host computer 0_ microcomputer), which
supports all the development tools

•..... co o , _.i.... , i

:[_..._.r ', t
ta
z

|

Figure 2. Architectureof the MILORD machine
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The execution unit

The execution unit is built with 8 IN_OS T414

Transputers connected to the optical crossbar netwoek. The

T414 Transputerisa new generation microlm3cess_ (Ref.
II). On a singie chip, there are a fast 32 bit mi_,

2 Kilobytes of fast static RAM and four high speed
communication links. In addition, the Transpem" can access

a 256 Kilobytes external memory. The four commun/c_on

links allow networks of Transputers to be constructed by
direct point to point connections. Some Transputer
interconnection topologies are given in the figure 3. In the
MILORD machine, the four links of each Transputer are

connected to the optical network and support a standard

operating speed of I0 Megabits/s.

Tf@@

3-cube

Figure3. Example= ofTrmtaputerinterconn_tion topologiea

OCCAM, the standard programming language of the

Transputer .permits the expression of parallelism between

processes _ef. 12). This OCCAM language has been
designed for using with multigm3cessor systems. ConcmTency

processes and message mode communications are deducted
from the concept of Hoare's CSP (Communication

Sequential Processes) (Ref,13). Communication channels are
an explicit part of the language and can be mapped direedy on

thehardwarelinksconnecting different Transputers.

In the MILORD machine, OCCAM programs are

decomposed in successive algorithmical sections, each one
referencing an optimal network configuration. Between two
sections a reconfiguradon point synchronises the processors
before to reconfigure the toplogy. These reconfiguration

points together with the required topology are explicit),
managed by the programmer using dedicated programming
tools.

Within a section, execution takes place in the MIMD

mode, cot_espoeding to the asynchronous nature of a set of
interconnected Transputers. However, the Transputers
involved in the execution of a section can execute the same

processes on different data.

The optical crossbar network

The opticalcrossbarnetwork isbasedon matrix-vector

concept,aspresentedabove.The opticalcomponent thatwe

have chosen istheLiquidCrystalLightValve (LCLV) from

HUGHES Coqxg_on because it is the only ones, which is
available commercially and it gives a good compromise

between contrast ratio (100) and efficiency (25 %). The
figure 4 shows the details of this component.

The network of the MILORD machine provides a 34

by 34 switch allowing any Transputer link to connect to any

other link without contention 0tel. lY). Two channels are
reserved for host communications and each Transputer has

four bidirectiounal channels to the network. The Transputer
output link is connected to a laser diode to send data to the

network and the Transputer input link is connected to a
photodiode to receive data from the netwm'k. The switch
settings are controlled by a parallel optical signal coming
from a Cathod Ray Tube (CRT), which is commanded by a

graph_beard.

Tbe rcconfiguration time of the netwedc, meaning the

total time needed to change the scttings of all switches,
dcpends especially of the LCLV response time plus the CRT
erasing time for taking off the old configuration pattern and

the CRT printing time for displaying the new pattern. The
total time observed is about 200 milliseconds (Ref. 16).

New LCLVs reduce this time significantly.

_;°_ -_ ! : ' '7.:

COUN_IQ L_U;D

Figm"e4. Hugh_ LkluidCrystal Light Valve (Ref.14)
The control unit

The control unit of the MILORD machine is

implemented on the host computer Beside the classical
functions, It assumes three functions :

-Load

- Synchronize
- Configure

The Transputer Development System is provided with
a Loader.which loads processes en the Transputers by means

of a pipeline topology. But we can modify the toed strategy

for profiting of the two host channels to the network by
loading in parellcl on the two channels.

The Synchronizer manages tbe synchronization points

before a configuration command takes place to establish a
new interprocessor topology. These rendezvous points are set

by the user inside the process of each Transputer. During the
execution, each Transputer receives a token from a neighbour
and sends it to another neighbour up to the host computer at

these points : then, the Transputers arc waiting for an
OCCAM channel read. When the new topology is set up, the
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host computer sends a message to the network, which is
spreaded to the Wocessors. Then, tbe Transpaters can resume
operation on the new topology.

The Configurer commands the setting of the topology

pattern demanded by the program. Due to the optical nature
of the LCLV command, a matrix pattern is generated on a

CRT to establish the required intew, onnection topology. We
use an INMOS graphics board, required by the host computer

for drawing the pattern display of the new topology on the
CRT. The predefmed patterns are compiled in a topology

library and stored on the host computer disc. This library
contains a set of conventional topology : ring, tree, mesh,

hypemube. With the Transputer Development System tools,
the user can also define and store others topology patterns

APPLICATIONS OF MILORD

In the field of numerical applications, a number of

algorithms could benefit of a _figurable architecture. For
example the JACOBI method which solve the linear system
: B • x = b by computing the vector x by means of a series of

asymptotically values. The algorithm can be written in this
form :

.J

Do 10 i=ltoN
N

Yi <-- 5" Aij • xj(p'l)

j=l

xi (P) <" (bi" Yi) / Vi

I0 z i <- xi(p) " xi(P'l)

until //z// < epsilon

where N is the matrix dimension, A the matrix

obtained by suppressing the diagonals of B and V is the

vector containing the diagonals of B.

We can split the algorithm in three sections, each one
requiring a specific interconnection topology (see figure 5) :

- The matrix-vector pmducL

- The Wanspo_ition of the vector y from the fast

column to the fast row and then the computation of x
andz.

- The computation of norm.

Considering N 2 processors and a NxN matrix, the

transfer of the fast section's data takes the following times :
O(21ogN) with the first topology of the figure 5 and

O(2(N-1)) with a mesh topology. The benefit of the

re,configuration is more obvious in the second section,

because the new interconnection topology minimizes the
number of data transfers and doesn't need any routing (only

direct connections). The norm between this current result

vector and the previous result of the last iteration is

computed in the third section. A binary tree topology on the
first Wocessor row gives the same result as the fast section.

dgr'e. 

t_Im 1 _gtlon 2 section 3

k_tttlx*vector multlplleallori transpo=ltlon Norm mmpuuttion

Figure 5. Topologies for the JACOBI method

Then, the flexibility of the netwoA decreases the data
transfers of the algorithm in comparaison with the luted

topologies. Moreover, it improves the section execution time
as shown by the table 2.

Section 1

Seclion 2

Seclion 3

Total

1 Iteration)

Reconfigta'able
network

2loon • T

+ (I_N + 1), C

T+(2'C I

fr+c)
(31ogN+ I). T

+ (210_N + 3). C

C : the average computation time.
T : the wansfer time.

Mesh

2(N-1) • T
+N.C

(2N -1) • T + 2 • C

(N-l) • (T + C)
(5N- 4). T

+ (2N -1). C

Table 2 : The execution times of the JACOBI

algorithm(Rd. 17)

It is to be noted that the performances of the JACOBI
method' with a reconfigurable network are better than those

obtained with the mesh topology. In this context, the

execution time of the algorithm depends of course on the

network reconfigumtion time. It must be compatible with the

transfer and the computation time.

The Gauss algorithm and some differential partial

equation problems can also be divided in several sections

corresponding to different intew, onnection topologies. Many
other reconfigurable algm'ithmscan be found in Reference 18.

Image processing requires growing power to process
increasingly larger images A reconfigurable network is well

suited to certain applications. The low level algorithms
(filters, histograms, correlation etc..) rather use mesh
topologies with four, eight or more neighbours than

pyramidal topologies adapted to high level pattern
recognition. The reference 19 shows that flexibility systems
are promising for increasing the image processing system.
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CONCLUSION

In this pape_ we have presented an optical network that
allows any link to be counected to any other link without

contention. Potentially, optical networks provide a high
bandwidth and a large number of ways. Taking into account
reconfigurable capabilities when coding parallel algorithm

may avoid limitation due to fixed nature of current massively

parallel architecture. The interconnection topology is
dynamically modified at pre-detenninated moments, so asto

match the different communication schemes required by the

sections of an algorithm. Then, high performance can be
achieved over a wide range of applicatious (image processing
and numerical applications) with a reconfigurable architecture
like the MILORD machine.

A such optical network takes advantages of the best
features of two technologies by using optics for

communications and electronics for computation. Massively
parallel architectures using large networks can he reasonably

envisaged with optical components.
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THE GAM II PYRAMID

Zahi Abuhamdeh
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Fairfax, Virginia

Abstract - The GAM II Pyramid is a hierarchical structure
with a total of 1365 processing elements. The sequencer

designed for controlling this structure is capable of
executing pyramid oriented primitives similar to an add
and subtract operations, as well as independent procedures
similar to convolution. The pyramid contains three control
buses embedded in the hardware in anticipation of a
future control system that will contain three independent
control units.

Keywords - Pyramid Data, Scalar Data, GAM I Pyramid,
GAM II Pyramid, Corner Turning.

1 - Introduction

The GAM II Pyramid is a six level pyramid, which
is a one level expansion of the previous GAM 1 Pyramid,
used for image processing applications [1][2][3]. Both

Host
PC/AT

Sequencer
Unit

systems were developed in George Mason University's
Advanced Computer Architecture Laboratory. The GAM

II Pyramid, figure 1, is a hierarchical Single Instruction
Multiple Data (SIMD) system.

2 - The Pyramid Structure

The GAM II Pyramid contains 1365 processing
elements, made up of 172 custom microcircuits designed
for the Massively Parallel Processor. The pyramid
structure is broken clown into the following sections: The

basic processing element organization, the daughter cards
that contain the processing elements, the back plane that

contains the daughter cards and the processing element
adder network.

Pyramid

MUX

|

Input &
Output Unit

The GAM II Pyramid System

Figure 1

CH2649-2[89/0000/0443501.00 © 1988 IEEE
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2.1 - The Processing Element

The GAM II Pyramid's processing elements are
identical to the Massively Parallel Proccssor's [4], with an
expanded inter level communication network, figure 2.
Each processing element is connected in a quad tree
architecture that is six levels deep. A level is an N X N
square mesh whose edges on the bottom three levels are
connected in a taurus topology and on the top three levels
connected to a logical zero, figure 3. A processing element
can communicate to four siblings (those to the the North,
South, East and West), four children (V, X, Y and Z) and
one parent. A Sum-OR circuit on each level signals if any
processing element has a value "one'.

2.2 - The Daughter Card

The six levels are built by using 45 identical
daughter boards developed at the Advanced Computer

Architecture Laboratory, figure 4. Each GAM II Daughter
board has four MPP microchips, and thus has thirty two
processing elements configured in an 8 X 4 array slice.
There are four Static Random Access Memory (SRAM)
microchips configured in an 8K X 8. Eight three-state
switch microchips are used to perform level transfers, two
per MPP microchip. The three-state switches are attached
to every processing element bus, and are enabled whenever
a level transfer cycle is performed. Once the switches are
enabled, the sending level performs a memory write to the
three-stateswitches and the receiving level performs a
memory read from the three-stateswitches.

2.3 - The Back Plane

The back plane of the GAM II Pyramid contains
three identical control buses and a communications
network that is unique to each card connector. The inter-
daughter card communication determines the logical
location of that particular set of processing elements. The
back plane is an active back plane that performs signal
buffering and some logical operations on the control
signals.

To Upper
Level

8Kblts

Mere

" V " " X " " Y " "

From LoNer

Level

Figure 2

P°E.

Level 0

Level I

Level 2

Level 3

Level 4
._,,55,w_5/###.)>"

U
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GAM II Pyramld Daughter Card
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One of the three control buses, controls the base
level, another controls the level above the base and the last
controls the top four levels, figure 5. Though currently
there is only one controller, the pyramid can handle up to
three controllers with each issuing a unique instruction at
the particular levels. Each control bus is buffered through
a set of latches that could be configured to be transparent
for debugging purposes or as part of an instruction
pipeline to facilitate higher clock speeds. Discrete logic,
on the back plane, has been added that allows for level
disabling when not in use and generates a dummy memory
read instruction whenever a level transfer operation is in

progress.

2.4 - The Adder Network

The Adder Network is a collection of high density

64K X 8 EPROM and binary adders. It is used to produce
a sum of 256 one bit inputs with a value "one". The
EPROM is programmed to produce the 5-bit sum of the 16-
input address bits that have a value "one". There are
sixteen EPROMs that each sum 16 bits for a total of 256
input bits and produce sixteen partial sums. The sixteen
partial sums are then added together in pairs by eight
binary adders to produce eight partial sums. The process is

repeated until all the partial sums are totaled and one
number remains. The addition is carried out in parallel
and the total delay is 400ns which is well within one cycle

of the 500ns targeted cycle time of the GAM II Pyramid
clock.

ControlBus A

ControlBus B

ControlBus C

%

.>

Figure 5
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3 - The Sequencer

The sequencer is the lowest instruction level
interface to the GAM II Pyramid arrays, figure 6. Remote
calls are issued to the sequencer by the Host. The calls
may request the sequencer to execute a primitive on the
pyramid structure similar to an addition or multiplication,
or to execute a full procedure that manipulates scalar data
as well as pyramid data [5]. The Sequencer Unit is capable
of issuing instructions to the pyramid at a rate of 2MHz.
The function of the sequencer is to handle program flow
control,global scalarcalculationand pyramid instruction
generation. The sequencer hardware is partitioned into
two portions: the Program Flow Sub-Unit and the Data
Execution Sub-Unit. The Program Flow Sub-Unit handles
the sequencing of program instructions. The Data
Execution Sub-Unit handles scalar data computation and
storage. Pyramid instructions are generated in coalition
with the two Sub-Units.

3.1 - The Program Flow Sub-Unit

This portion of the sequencer contains the next
address generator, the Micro Memory, the Pipeline Register
and the Condition Code register.

3.1.1 - The Next Address Generator

The Next Address Generator is based on Advanced

Micro Device's 2930, which is a bit-sliced program flow
control microchip. The Next Address Generator is
composed of four such microchips connected to form a
sixteen bit address bus of which only thirteen bits are
used. There is an adder module as well as four input

sources: an instructionpointer, an auxiliary register,an
external data bus and a 17 register deep stack. The
microchip can perform its full 32 instructions on the four
input sources to produce a straight-through address or an
offset branch address.

3.1.2 - Micro Memory

The Micro Memory is composed of a configurable
Static Random Access Memory. The memory is built using
gK by 8-bit with a 120ns access memory modules and
constructed to be addressed as an 8K by 96-bit memory or
as a 48K by 16-bit memory. The 96-bit wide memory is
used when executing primitives or procedures, during
which the memory is in a read only mode. However,
during host transfer operations, for example program load
time or when the system debugger is operational, the
memory is configured as a 16-bit data bus with read and
write capability.

3.1.3 - Pipeline Register

The Pipeline Register is a 96-bit register that holds
a sequencer instruction An instruction has four major
fields. The first is the K constant which is used as a
branch address or as a constant scalar for the Data
Execution Sub-Unit. The second field of the Pipeline
Register is used to control the Data Execution Sub-Unit.
The third is used to control the Program Flow Sub-Unit.
The fourth field is used for pyramid control.

3.1.4 Condition Code Register

The Condition Code (CC) register is a set of sixteen

flags that are used by the sequencer to perform branching
functions. The CC register contains the basic scalar flags
generated by the Data Execution Sub-Unit as well as flags
that are used to handle communications between the host
and the sequencer. The Sum-OR values from all the levels
of the pyramid arc also latched into the CC register.

3.2 - The Data Execution Sub-Unit

The Data Execution Sub-Unit is composed of three
basic parts. The General Purpose Registers and their
accumulator, the Special Purpose Registers and the Data
Memory.

3.2.1 The General Purpose Registers

There are sixteen 16-bit registers that are used for
general purpose data calculation. These registers are
attached to an Arithmetic Logic Unit and a Shifter. They
can be used to store results of addition, subtraction and
logical operations on scalars. An extremely flexible
function of these registers is the generation of pyramid
addresses. The registers can contain the address along
with offsets that could be loaded from the K constant or

the host, an addition or multiplication can take place and
a new address willbe generated. This same address can be
used in a post-increment or a pre-decrement mode to
support sequential address traversing for multiple-bit
pyramid data.

3.2.2 Special Purpose Registers

Sixteen 8-bitregistersare used for leveland child

select generation. These registers arc triple ported
registersthat can output the level mask pattern and the
child selectvalues simultaneously. Any of these register
valuescan be enabled to the Sequencer Data Bus.

3.2.3 Data Memory

This is a bank of 8K by 16-bits of Static Random

Access Memory connected to the sequencer's data bus. The
address of the memory is latched in a Data Memory
Address Register (DMAR) from the data bus. Data isthen
read or written to the memory also from the data bus.
This memory is used whenever a procedure runs out of

registermemory. This allows a compiled procedure, from
a high levellanguage, to contain largedata structures.

3.3 Array Instruction Generation

Array Instructions are generated by the different
portions of the sequencer. The basic processing element
operations are issued from the pipeline register. Array
memory source and destinationaddressesare stored in the
Data Memory and the General Purpose Registers where

their ALU is used to compute relativeoffsets,increment
and decrement operations. Level masking information as
well as an alternative set of child enable signals are

maintained in the SpecialPurpose Registers.
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4 - The Input and Output Unit

This unit is used to digitize analog input signals
from a video camera and to generate analog video signals
to display images from the pyramid, figure 7. An image
has a 128 by 128 pixei resolution and 6 bits of gray shades.
The unit has 128KBytes Image Memory that is capable of
storing up to 8 images. An image is stored in sixteen 32 by
32 pixel frames that are shifted in and out of the pyramid
by using the S-Registerson the base levelof the pyramid
(Level 5). The image memory storesdata in bit planes and
can communicate to the host, camera and the display
device through a corner turning interface of shift

registers. If a byte is needed from the Image Memory, a
block of eight bytes is written to the corner turning block

that in turn will be decoded for the appropriate byte.

5 - The Host System

The Host System is an IBM AT compatible system
that operates under DOS 3.3. The Host has a 40MByte hard
disk. Text is displayed on a Monochrome display terminal
and pyramid array graphics is displayed with 256 colors on

a Video Gate Array (VGA) display. The Host interfaces to
the pyramid by using a set of 32 8-bit registers. The Host

can control the Pyramid Arrays, the Sequencer Unit and
the Input and Output Unit.

Since an AT clone is used as a front end to the

pyramid, PC software is available for program system
development. Pyramid system software was developed

using C and PASCAL, some of which include: an
interactive micro assembly language with a simulated
micro sequencer (PYRASM), an interpretive high level
language called (Function IV) and a compiler that

generates microcode from a high level language similar to
C.

The Host was also extremely valuable in debugging
the pyramid. Since through software it can single step any
micro cycle. A state can bc stopped and restarted as
though it were running continuously. Special software has

also been developed, S_Bug for example, is a debugger for
the Sequencer Unit.

Corner I
Turner

Inout anO OUtl_t Unlt

Figure 7

Host

Cross _lg

Control Bus A

Control Bus

control Bus C

>

Multiple 51143 Controller Confi_ratlon

figure 8

6 - Future Control System Expansion

Connecting up to three sequencer type controllers is
being investigated for future expansion of the GAM II
Pyramid. If a single controller is used, it will be able to
clock only one level at a time, the remaining unclocked
levels will be idle. In such a situation, for every apex
clock there are 1364 processing elements that are idle. A
system being investigated contains multiple controllers that
can be dynamically attached to any of the three control
buses, figure 8. All array operations are memory to
memory reference operations. If a controller is allowed to
attach to a level and not be interrupted till it is done with
that level, no context switching is needed. The data
memory locations are pre-allocated at compile time, a
controller will attach to a level and read its own data
memory area, update the data with the desired operations

and restore the updated data back to memory. Another
controller can attach itself to that level at that time.

The controllers will be capable of running complete
procedures and thus enabling the parallelisation to occur

at the high level language level. Most of the program will
be executing on the Host system. Parallelism is achieved
by the use of Fork and Join operators that control the
asynchronous execution of the procedures.

A controllercan produce multiple levelrequests per
procedure. This feature is useful to facilitate data

transfers between levels and alleviating the problem of
deadlock. Any controller that wishes to perform a level
transfer will request two levels only when all its other

computations are complete and had already released its
current level. The next step is to request the two levels the
controller needs. Should there be a conflict that results in

deadlock, the controller attached to the level with the most
processing elements gets its request fulfilled while the
other controller waits till the two levels are available.
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ABSTRACT

This paper describes the design of a VLSI processing unit

for the histegramming operation. The processing unit is

composed of several bit-serial processing elements (PE'st

connected according to the odd-even network topology, in

this approach, histogramming is divided into two stages, the

counting process and the filtering process. The filtering

process is computationally inexpensive compared to the

counting and marking phases. The use of a histogramming

unit of fixed size to handle a large number of pixels is
considered.

Keywords: Vision Architecture, Parallel Processing, Bit-
Serial Architecture, Odd-Even Network, VLSI. MOS.

INTRODUCTION

This paper presents the design of a MOS [1] technology

based special purpose processing unit for the histogramming

operation. The architecture is composed of several

processing elements connected according to the odd-even

network topology [2]. The processing elements operate on

pixels bit by bit. As a result, this system is referred to as

parallel bit-level pipelined architecture [3,4]. The main

advantage of this approach is that the memory requirement

of each PE is very small and is independent of the input

size. The input operands are processed one bit at a time,
hence, the amount of hardware in each PE is reduced. As a

result, a large number of PE's can be integrated on a single

VLSI chip. The proposed design has several features that

are suitable for a VLSI implementation:

1) Simple PE's - The system is composed of one

type of simple processing element. Each PE

operates on data bit by bit. Thus, the design and

verification of the circuit will be easy.

2) Overlap of data UO and processing - The data

processing time is completely overlapped with

the inputting and outputting of data to and from
each PE.

3) Static interconnection network - For ease of

implementation a static interconnection between

the different PE's is preferred as compared to a

dynamic network. This will allow the system to

process several data su'eams in a pipelined

manner.

4) High throughput - This is achieved by the use

of several bit-serial PE's operating in parallel

and pipelined manner.

5) Low pin count - This property results from the

inputting and outputting of operands one bit at a
time to and from the PE's.

THE ALGORITHM

The histogramming operation has been divided into two

parts, the count and mark process and the filtering

process. The count and mark process is the process of

assigning to each grey level Gi, a count field Ci and a mark

bit Mi. The filtering process consists of discarding all

duplicate grey levels. Figure 1 shows an example of' the

histogramming operation. Eight pixels { (Ci, Mi, Gfl },

1_i_<8, are input in parallel to the histogramming unit. It is

noted that initially all mark bits and count fields are set to

1. In the first step, count fields and mark bits are

computed. In the example sequence there are only four

distinct grey level values. As a result, only four pixels will

be output with a mark bit set to 1. The second step is the

process of removing all duplicate pixels. This is done by

discarding all pixels output with a mark bit reset to 0. It is

noted that the filtering process is computationally

inexpensive compared to the count and mark process

duration. In this paper, we will be mainly concerned with

the design of a VLSI unit for the counting and marking

process. In Figure 2, an 8-input odd-even network is used to

count and mark the sequence of the earlier example. The

algorithm to be implemented by each PE (Figure 4 gives the
block diagram of a PE) is as follows:

Procedure COUNT and MARK [(Ci,Mi.Gi),(Cj,Mj,Gj)] Gj)]

//Two pixels (Ci, Mi, Gi) and (Cj, Mj, Gj) are input

to a processing element//

1. Begin

2. If Gi > Gj then

3. Begin OUtl<-- (Ci,Mi,Gi),

out2 _-- (Cj.Mj,Gj),end;

4. If Gi < Gj then

5. begin out 1 <'--- (Cj,Mj,Gj);

out 2 <--- (Ci,Mi,Gi_,end;

6. If Gi=Gj then

7. begin

8. If MiAMi = 1 then 1

1Throughout this paper A refers to the logical AND.
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begin out 1 <-- Ci+Cj,Mi.Gi_

out2<--(- 0.Gj), end;

10. IfMiA T =1 then

11. begin out I <--- _Ci,Mi,Gi);

out 2 <---I - ,Mj,Qi/.end:

12. else

13. begin out 1 <-'(Cj.Mj,Gj)

out 2 <--tCi,Mi,Gi), end;

14. End

15. End//output marked and counted//

PERFORMANCE ANALYSIS

We first investigate the processing time of our approach

under the assumption that the number of pixels to be

processed is no larger than the number of inputs to the

histogramming unit. In the following analysis, the relevant

parameters are:

k = number of bits in the grey level representation

p = number of bits in the count field

r = time (in seconds) to manipulate and pass one bit to

the neighboring PE

n = number of pixels to be processed.

In our implementation, the processing of the pixels is

completely overlapped with the inputting and outputting of

the pixels to and from the histogramming unit. Since the

longest path in an n-input histogramming unit is

togn(logn + 1)

, processing n pixels will take
2

logn(logn + 1)

H 1 = [ + (k+p+lilr
2

In [5] and [6], our approach is compared with the

implementation of the histogramming operation on the

Massively Parallel Processor (MPP) [7]. It is shown that our

approach manifests significant performance improvement

over the MPP implementation. For instance, for p= 14 hits,

k=8 bits, and n= 16,384 (128x128 image), our

implementation is 16.11 times faster than the MPP

approach. It is noted that unlike the MPP implementation

our approach allows for the pipelined processing of different

streams of grey levels. Suppose that I independent streams

of grey levels are to be processed by the histogramming

unit. The use of pipefining will reduce the processing time

from IH 1 to Hl+(I-1)(k+p+l)r (assuming that each

stream is composed of n grey levels). For instance, when

]= 10, n= 16,384, a speedup of 3.82 is achieved with the use

of pipelining. The use of pipelining not only reduces the

processing time but also allows for a more efficient use of

the processing elements.

The histogramming algorithm we have described is

internal. That is, the number of pixels to processed is

assumed to be no larger than the number of inputs (n_ of the

histogramming unit. In general, an entire image cannot be

processed internally by an odd-even based histogramming

unit (because of area and pin count limitationsL Figure 3

shows how to obtain a 2n-input histogramming unit from a

number of n-input histogramming units. This method is

very useful to increase the internal processing capability of

a histogramming unit. However, since VLSI chips are of

fixed size and the number of pixels is very large, the
application of the above method is impaired by financial as

well as technological constraints. When the number of

pixels is too large to be processed internally by a

histogramming unit, an external VLSI algorithm is'the most

practical solution. It is recalled that an external VLSI

algorithm is one that allows a chip (or a set of chipsl of fixed

size to process an input set of any size [8]. One approach to

this problem is based on an iterative use of a histogramming
unit of fixed size. The proposed algorithm is based on

successively merging histogrammed sets of pixels of
increasingly larger size.

The external VLSI algorithm will use a histogramming unit

of fixed size (n-inputs) in an iterative manner to process a

set of pixels whose size 2 N is larger than n. The external

algorithm is divided into two steps. During the first step, the

histogramming unit is used to generate histogrammed sets
of size n each. The duration of this step is

logn(logn + 1) N

[' + --(k+p+ 1)]r
2 n

In the second step, the histogramming unit is used as a two
N

way merger. The second step requires log-- phases. During
n

N N

the i-th phase, l_i_log--, (1/2) i-1 -- sets of 2i-ln

n n

N

histogrammed pixels are converted to (1/2)i- sets of 2in

n
pixels each. The merging duration is

logn(logn + 1) LogN/n

[ + ( Z ((2i+l-1)"2i)(k+p+l)]r
2 i=l

logn(logn + 1) N N N

=[ + (2--log-- --- + 1)(k+p+l)]r
2 n n n

When pipelining is used between the two steps , the overall

duration of the external algorithm is

logn(logn + 1) N N

H 3 = _ + (2,---log-- +l)(k+p+l)jr

2 n n

DESIGN AND VLSI IMPLEMENTATION OF THE

HISTOGRAMMING UNIT

Figure 4 shows a block diagram of PE. The PE contains five

flags (Fi,Fj.F1.F2,F3), a Control Unit (CU), a serial adder,

and a Bit Manipulation Unit (BMU_. It is recalled that pixels

are input, processed, and output one bit at a time. First, the

two grey levels Gin= { G_n G_n ...G_n }, m =ij, are input to

_;ithou_ loss of generality N is assumed to be a multiple of n.
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the PE bit by bit starting from the MSB's (G_ , Gk). Next,

the mark bits Mi and Mj are input followed by the count

fields Cm = { C_ C_n-1 ... C_ }, m = ij. It is noted that

unlike the grey levels, the count fields are input starting

from the LSB's (C_ , C_ ). In order for the algorithm to

work in proper synchrony, every bit must be passed to the

right including leading zeros. Note that the grey level

comparison, the manipulation of mark bits. and the updating

of the count fields are completely overlapped with the

inputting and outputting of the pixels to and from the PE's.

Two control signal s I and s2 are used for control and

synchronization. The control signal s 1, is a start signal, it is

logn (]ogn + 1)

applied to all PE's of column M, I_M_ , at
2

time instant t M_ 1. At time instant tM, PE's of column M

reset their five flags and begin the processing of the two

pixeis present at their inputs. The control signal s 2 is used

to indicate the completion of grey levels comparison. This

signal is applied to PE's of column M at time instant

tk + M. At the same time instant, the mark bits are input to

the PE of column M. From time instant tk+M+ 1 to

tk+M+p+ 1, the count fields are input to the PE's of
column M.

The serial adder is used to compute the count sum (S = Ci

+ Qj). The BMU compute the value of out 1 and out 2 as a

function of the result of the grey level comparison, the mark

bit value, and the count sum. The flags Fi and Fj are used to

store the mark bits Mi and Mj. The flag F3 is set by the

control signal s 2. This flag when set indicates that grey level

comparison has been completed. Finally. flags F 1 and F 2

are used to store the result of grey level comparison
according to Table 1.

The layout of a PE is given in Figure 5. Each PE is

composed of 255 transistors and occupies an area of about

0.2mm 2 (assuming a three microns technology (A = 1.5
_m)).

SUMMARY

In this paper, an nMOS processing unit for the

histogramming operation has been designed. The proposed

unit is composed of a number of bit-serial structures

connected according to the odd-even network topology. The

use of a histogramming chip of fixed size to handle a large

number of pixels has been considered.

REFERENCES

[1] Mead, C., Conway, L., Introduction to VLSI Systems,

Reading, Massachsetts: Addison-Wesley, 1980.

[23 Batcher, K.E., "Sorting Network and Their

Applications," AFIPS Proc. Spring Joint

Comput. Conf., Vol. 32, April, 1968, pp, 307-314.

[3] Batcher, K.E., "Bit-Serial Parallel Processing

Systems," IEEE Trans. Comput., C-31, 1982,

pp. 377-384.
[4] Hatamian, M., Cash, G.L., "Parallel Bit-Level

Pipelined VLSI Designs for High-Speed Signal

Processing," Proc. of the IEEE, Vol. 75, No. 9,

September, 1987, pp. 1192-1202.

[5] Abdelguerfi, M., et al., "Parallel Bit-Level Pipelined

VLSI Processing Unit for the Histogramming

Operation", IEEE Computer Conference on Vision and

Pattern Recognition, University of Michigan. June

1988, pp.945-950.
[6] Abdelguerfi, M., et at., "Parallel Bit-Level Pipelined

Processing Unit for the Histogramming Operation",

IEEE Trans. on Circuit and Systems (Submitted for

Publication).

[7] Kushner, T., Wu, A.Y., Rosenfeld, A., "Image

Processing on MPP:I," Pattern Recognition, Vol. 5,

No. 3, 1982, pp.836-840.

[8] Bonucelli, M.A., et at.. "External Sorting in VLSI",
IEEE Trans. on Comp., Vol. C-33, NO. 10. oct. 84,

pp. 931-934.

(I.1 8)_ '('"'*) .r'3 (i.!.9)
(1 ) ' ' ) ' ('"")• 1.7 .,a .,o ' (,,_)

_(3. i.e)

( 1.1.3)_k / :_,_(2.1.7l
:,:,, (-.o.])

(1.1 )
( 1. 1.3) L._' "_" 'LJ (-.0.3)

F_OO.EIAn Example

(Ci.MI.Gi)
(1,l.e) --

(1,1.7) --

( I. 1,9) -

(1.1.8) -

(1.I,3) -
( I, 1.7) --

(1,1 .O) -

(I,1.3)--

( Ci,Mt.Gi)
-(1.1.9) -

-(3.1.8) -

COUNTING -(-.0,0) -

& -(-,0,0) -

MARKING "(2.1.7) -
• (-,0.7) -

• (2, 1.3) -

• (-.0.3) -

(C,.G,)
-(I,9)

-(3,8)
-(2.7)

FILTERING- (2.31

- (-,-)
-(-,-)
. (-,-)

(-.-)

r,.... _. Parallel Implementation of
the Histogramming Operation

453



n12
n12 . i n12

.__L/I unit _,.; n/2
./2X n/2_n-1 it/-'_-

"¢, d \. o,
+-ln-input_ .12 3n-inpul[ './2

n/2-"_ unit _ unit I n12,

F..... +.Design of a 2n- input

Histogramming Unit

F I CONDITION

0 GI = Gj
0

I Gi > Gj

1 GI < Gj

TaBLei.Flip Flop Control States

sl
s2

(C i, Mi.Gi)

(C j, Mj.Gj)
Serial adder

F_o,_4.Block Diagram or

a Processing Element

OUT 1

OUT 2

F_GU"ES, LAYOUT OF A PE

454



THE FUNCTION OF A CONNECTION NETWORK BETWEEN HOST AND PROCESSING

ELEMENTS IN MASSIVELY PARALLEL COMPUTER SYSTEMS

Timothy Bridges

Computer Science Department

Indiana University

Bloomington, IN 47405

t bridg_iuvax.cs.indiana.edu

Massively Parallel Arch. Corp.

P.O. Box 954

Bloomington, IN 47402

(812) 339-3753

Abstract

Massively parallelcomputation systems are routinelychar-

acterized,identified, and studied based on the connection

topology of the processing elements (PEs). This method of

classification is flawed since massively parallel computation

systems are not stand-alone computers; they are invariably

packaged with a standard von Neumann host. This paper

examines the function of a connection network between

massive numbers of PEs and a single host by comparing the

Data Structure Machine (DSM), whose major connection

network is a computationally powerful binary tree with

the host connected at the root, and the Connection Ma-

chine, which provides a very rich and general PE to PE

connection network, but whose connection to the host is

little more than a buffered wire. The binary tree network
used in the Data Structure Machine can be utilized to

actfieve asymptotic improvements in speed for algorithms

that maintain, locate and exploit data parallelism in data

structures that can be characterized by a high degree of

locality. For example, SUM, MAX, LEFTMOST, and

INDEX are all constant time operations on DSM lists,

while corresponding Connection Machine algorithms can

require linear time to simply find and mark lists.

Keywords: SIMD, Massively Parallel, Connection Topol-

ogy, Host Interface, Connection Machine, Data Structure

Machine

1. Introduction

Of the two architectures being compared here, the

Connection Machine is widely known, understood, and

available as a commercial product. The Data Structure

Machine is clearly less known, therefore requiring the fol-
lowing introduction to the parent architecture, APSA, and

an overview of the DSM.

The Applicative Programming Systems Architecture,

APSA, extends the traditional von Neumann design by

including a special purpose functional unit that serves as a

Data Structure Memory, DSM [4,6,7]. The DSM is a mas-

sively parallel computing system that utilizes thousands, or

even millions, of processing elements in an SIMD paradigm

to exploit data structure parallelism. A custom VLSI pro-

totype containing 128 Processing Elements, PEs, has been

constructed and is under study at Indiana University (16

chips with 8 PEs/chip). The simple tree-based connection

topology used in this DSM allows for extending the system

by adding more chips of the same design or by increasing

the number of processors per chip. A single chip containing

upwards of 128 processors is feasible by using the denser

and more expensive technologies available today. Also,

the total number of PEs in the system does not affect the

specification of a individual PE nor does it increase the

complexity of the connection network wiring. A project is

underway to construct a DSM of an interesting size, 2K -

4K processing elements, and to implement bank switching

so that larger machines can be emulated for study.

Because of its simple binary tree connection topology,

the APSA DSM will benefit from economies of scale that

could lead to implementations containing over a million

processors in the near future. However, the use of such

a simple connection topology raises serious questions con-

cerning possible applications for such a machine. PE

PE communication is obviously limited by the bottleneck

at the root of the tree. What is less obvious, and what I

attempt to show in this paper, is that the tree topology

that is a bottleneck for PE _ PE communication pro-

vides an extremely rich Host 4--*PEs connection network.

Further, this network can be used to efficiently implement

algorithms of a 1 to many or many to I nature. I will

present examples of these algorithms and compare their

performance to Connection Machine [1], CM, algorithms.

The C/vl was chosen for this comparison because of its

rich PE _ PE communication capabilities and its relative

lack of a Host _ PEs connection network. Figures 1 and

2 depict system level layouts of the Connection Mackine
and the Data Structure Machine architectures.

2. APSA Data Structure Memory Overview

The original APSA architecture was designed for effi-

cient implementation of list processing operations by rec-

ognizing that most of these operations involve Host _ PE
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communication and computation [4,5]. In this context, the

major function of the APSA communication structure is to

support efficient operators that 1) find, or mark, a list in

the heap, 2) update marked lists, and 3) operate on marked

lists as if they were compact linear data structures.

Two simple regular connection networks combine to

support these three types of operations. First, a binary

tree of processing elements connects a leaf level, formed

by PE/ME pairs, to the Host processor connected at the

root. The store of the machine is mapped into the leaf

level of the tree. Only intermediate status information is

stored in the non-leaf nodes of the tree. Using the accepted

method of classifying massively parallel systems based on

the connection topology of the PEs, the DSM would be

classified as having a one dimensional array of processing

elements. The binary tree network would be ignored.

A second network connects the leaf level horizontally

across the breadth of the tree, allowing bidirectional shift-

ing of data. This second, linear, connection topology im-

plements limited PE _ PE communication, that when

combined with the tree network can implement a total or-

dering oil the data stored in the leaf level. In this context,

a total ordering on the data items in the leaf level means

that if a node, Ni, occurs before a node, N j, in a traversal

of the list, then the node Ni is physically stored to the

left of node Nj. The linear connections in the leaf level

are used to effectively shift a leaf cell from the avail pool,

in a single cycle, to a position that maintains the total

ordering.

Tile process of shifting data cells can destroy the valid-

ity of explicit, address based, pointers in the heap, which

could take significant time to update in a heterogeneous

system. APSA solves this problem by using unique labels,

instead of addresses, for explicit pointers. A pointer is

dereferenced by having all cells perform a match function

on the label. This content addressable pointer solution is

efficient since updating of pointers is not necessary after a

shift operation. A similar system ca_l be implemented on

the Connection Machine, but PE *-_ PE communications

Figure 2. DSM high level architecture

would then be based on a similar content addressable point-

er system which would render most of the CM's routing cir-

cuitry useless since explicit pointers would be dereferenced

by content-based addressing, while the CM router only

works with absolute location-based addressing. Though

implementable, such a system wastes most of the band-

width available, and paid for, on the Connection Machine.

In other words, an efficient emulation of the DSM can be

implemented on the CM, but fails to exploit the scaling

advantage of the tree topology and wastes much of the

CM's resources. For the purposes of the comparison in

this paper, the CM is assumed not to be running in a
DSM emulation mode.

3. Timing guidelines for SIMD algorithms

It is necessary to clarify the guidelines used for timing

comparisons of algorithms running on yon Neumann archi-

tectures with those running on SIMD architectures. This

clarification is needed because of the dual use of the time

complexity of a memory access/update operation on RAM.

Any computer scientist asked to analyze the time com-

plexity of the FETCH or STORE instructions for RAM

will quickly and easily return the answer O(log(n)). How-

ever, in analyzing algorithms running on these machines,

analysts invariably consider the time complexity of these

instructions to be O(1). Historically, this shortcut was

taken because all algorithms were run on yon Neumann

machines; by eliminating this extra log from all equations,

the comparison between algorithms was clearer. This tech-

nique has become so widely accepted that many computer

scientists forget that RAM instructions are not constant

in time. Several critics of the tree topology have wrongly

pointed out that the tree must pay a log cost for sweeps up
or down the tree. The router in the Connection Machine

has probably received similar baseless criticism. In both

of these cases the logarithmic delay is analogous to the

logarithmic delay for address decoding in RAM. A fair

comparison will treat time through the CM router and

up or down the APSA tree as constant time operations,

asymptotically equivalent to FETCH and STORE times.
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4. Examples
In thelimitedspace this short paper provides I will

present an analysis of two sample algorithms that realize

a performance gain by utilizing the Host *-* PEs network

of the APSA DSM. The first example shows an algorithm

to sum the elements of an array. The CM algorithm has

appeared [2], and works by building a tree, using pointers,

within the array to calculate and store intermediate results.

This example illustrates the use of the APSA DSM tree

as a purely computational network. The second example

computes the sum of the contents of a linked list structure
and illustrates the value of being able to utilize a total

ordering to support implicit pointers. For these examples
let n be the number of elements in the array or list, and

e be the number of explicit pointers in the CM list. Note

that e would be 1 for an APSA DSM list.

Example 1 - Summing elements of an array

Time Complexity

Operation CM DSM

1. Mark array in PEs 1 1

2. Build pointer tree log(n) --

3. SUM by pointers log(n) --

4. SUM by network -- 1

Total Algorithm log(n) 1

Example 2 - Summing elements of a list

Time Complexity

Operation CM DSM

1. Mark list in PEs e 1

2. Build pointer tree e + log(n) --

3. SUM by pointers log(n) --

4. SUM by network -- 1

Total Algorithm e + log(n) 1

The worst case time for the CM algorithm in Example

2 is O(n) for a severely fragmented list. Also the pro-

grammer may choose, for other efficiency reasons, not to

implement all APSA DSM pointers implicitly. It is possi-

ble to maintain a balance between the number of explicit

pointers and sharing between data structures. This can

be accomplished under programmer control at runtime.

These examples also assume that the CM is not running

as a virtual APSA DSM through emulation routines. As

mentioned previously, such an emulation could not use the

CM's address based routing circuitry for general PE ¢-_ PE

communication.

The decrease in the performance of the CM algorithm

for linked lists compared to arrays is the result of the CM's

inability to maintain locality with'in dynamic data struc-

tures. An array can be thought of as a list with predefined

length and all pointers represented implicitly. The CM can

store and efficiently operate on this structure, however, be-

cause the CM utilizes absolute location-based addressing,

and therefore cannot efficiently shift large blocks of data,

it must represent updates to lists using explicit pointers.

Dereferencing explicit pointers serializes data parallel op-

erations and accounts for the decrease in performance.

5. Other Architectures

The DSM unit of the APSA machine is the only ar-

chitecture described in the literature that devotes signifi-

cant power and circuitry to a structure that is not part of

the memory map. Other tree-based topologies have been

described, yet in each case long-term storage is allowed

at all levels. At first glance, this architecture may seem

similar to the FFPM [3} since it is a tree based topol-

ogy that uses a different design for processors for the leaf

level. However, there are two major distinctions. First, the

granularity of the FFPM is much bigger than that of the

DSM; FFPM processors are approximately two orders of

magnitude bigger than DSM processing elements. Second,

the tree network is not used as an interface to a host. In

fact the FFPM is an MIMD machine that could potentially

operate without a traditional von Neumann host.

6. Conclusions

It is clear that characterizing a massively parallel pro-

cessor solely on the connection topology between process-

ing elements is not sufficient. In this paper the linear

connection topology of the Data Structure Machine's pro-

cessing elements is able to outperform the binary n-cube

topology of the Connection Machine processing elements

by utilizing an additional connection network to the host.

In this case a binary tree network is able to maintain and

exploit locality properties within data structures stored in

tile array of processing elements at the leaf level.

Just as yon Neumann machines may be optimal for i

to 1 or Jew to few operations, and general communications

networks in massively parallel computer systems, such as

the Connection Machine, may provide great speedups for

many to many and many ( 1 to 1) operations, this work

shows that a limited topology, such as a tree, can yield

improvements for classes of 1 to many and many to I op-

erations. Algorithms that operate on data structures that

maintain a locality property are good candidates for inclu-

sion in this class, and can find an asymptotic speedup on

the DSM. We have recently extended this class to include

nested relational databases, circuit simulation, and low-

level image analysis operations. Further, the scalability of

the machine can lead to an extremely large PE per chip

ratio. This development would allow a moderate number

of processors in a very small space or could be used to

build a machine with an enormous number of processors.
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ABSTRACT

Analgebraicapproachtotheproblemofconstructinglarge
networksofboundeddegreeanddiameterisdescribed.Sub-
groupsofGL[2, n] are employed to provide a number of record-

breaking constructions in the range of potential engineering

significance for massive networks. These constructions, all

highly symmetric, can be viewed as belonging to a family

of constructions based on vector spaces and their automor-

phism groups that includes hypercubes and cube-connected

cycles as special cases.

Keywords: Cayley Graph, Symmetric Network, Hypercube,

Parallel Processing, Group.

INTRODUCTION

The problem of constructing large graphs of a given degree

and diameter (called dense graphs) has received much at-

tention, and is significant for parallel processing because it

models two important constraints in the design of massively

parallel processing systems: (1) There are limits on the num-

ber of processors to which any processor in the network can

be directly connected, and (2) The distance between any two

processors in the network should not be too great. Other

applications of dense networks include shared-key crypto-

graphic protocols and the design of local area networks. See

[3.,6.1for recent surveys.

In this paper we provide evidence that the table of largest

known constructions for small values of the two parameters

can be improved "almost everywhere" by methods based on

finite groups. In many entries the constructions we report

are dramatically larger than the best previously known and

many of these improvements are in the range of the num-

bers of processors currently being considered for large paral-

lel processing systems. See Table 1. Our main contribution

is the demonstration of the power of an algebraic approach

to this problem. For related work see [2.,4.,9.].

Entries improved or matched by our constructions are shown

in bold. Most have been obtained by a small amount of

searching by simple programs running on small computers

(such as an IBM PC). The success of the limited search we

have so far conducted seems to indicate that further compu-

tational exploration may improve many more entries.

A

A

2

3 I0

4 15

5 24

6 32

7 50

8 57

9 74

i0 91

7

3 184

4 1081

5 4368

6 13104

7 39732

8 89280

9 215688

10 486837

D

3 4 5

20 38 70

40 95 364

70 174 532

105 336 1008

122 480 2016

200 807 2880

585 1248 6072

650 1755 12144

D

8 9 10

320 480 728

2943 7439 15657

8736 25308 123120

50616 202464 682080

101232 911088 1822176

455544 1822176 3984120

682080 3019632 15686400

1822176 7714494 47059200

6

128

731

2734

7817

10546

39223

74906

132869

Table 1
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ALGEBRAIC SYMMETRY AS AN ORGANIZING PRIN-

CIPLE FOR PARALLEL PROCESSING.

There are important considerations apart from degree and

diameter that must figure in any choice of network topology

for parallel computation. Our approach yields symmetric

constructions, and we believe that in this lies their greater

value. Symmetry is one of the most powerful and natural

tools to apply to the central problem of massively parallel

computation: how to organize and coordinate computational

resources.

The symmetries of the networks we describe are represented

by simple algebraic operations (such as 2 by 2 matrix multi-

plications and modulo arithmetic). The main advantage of

algebraic networks is that the developed mathematical re-

sources of algebra are available to structure the problems of

testing, data exchange, message routing, scheduling and the

mapping of computations onto the network. The appeal of

hypercubes, cube-connected-cycles, butterfly networks and

others rests in large part on this same availability of easily

computed (and comprehended) symmetries. These popular

networks and those that we describe all belong to a class of

algebraic networks based on vector spaces and their symme-

try groups. For recent algebraic approaches to routing al-

gorithms, deadlock avoidance, emulation and scheduling for

algebraically described networks of this sort see [1.,2.,7.,8.].

The next section describes our basic approach and some ex-

amples of our constructions.

TECHNIQUE AND EXAMPLE CONSTRUCTIONS

A network is (vertex-) symmetric if for any two nodes u,v

there is an automorphism of the network mapping u to v.

Every Cayley network is symmetric (symmetries are given

by group multiplication). If A is a group and S C_ A is a

generating set that is closed under inverses, i.e., S = SUS -1,

then the (undirected) Cayley graph (A, S) is the graph with

vertex set A and with an edge between elements a and b

of A if and only if as = b for some stS. It is remark-

able (but, indeed, natural) that most networks that have

been considered for large parallel processing systems (in-

cluding hypercubes, grids, cube-connected-cycles and but-

terfly networks) are Cayley graphs. The degree of a Cay-

ley graph (A, S) is A = ISI and the diameter of (A, S) is

D = max_,a{mint:a = sl'"st,sieS for i = 1,...,t}.

Example 1 Degree 5, diameter 7 : 4368 vertices. (Best

previous : 2988.)

This is a Cayley graph on the subgroup of GL[2,13]consist-

ing of the matrices with determinant in the set {1,-1}. The

generators are the following elements together with their in-

verses.

[0101 [1,8]or er52[1,7 ']or erl,
Example 2 Degree 6, diameter 10 : 682,080 vertices. (Best

previous : 199,290.)

This is a Cayley graph on the group GL[2,29]. The genera-

tors are the following elements together with their inverses.

8 8 order 28 16 27 27 14

Example 3 Degree 10, diameter 5 : 12144 vertices.

(Best previous : 10,000.)

This is a Cayley graph on the group SL[2,23]. The generators

are the following elements together with their inverses.

[ 918180] °taler 11 [ 13182110] °rder 11 [90171°] °taler 22

[147] [1813]order 2419 3 order 22 17 20

Parameters

degree 5

diameter 7

degree 5

diameter 8

degree 5

diameter 9

degree 5

diameter 10

degree 6

diameter 4

degree 6
diameter 5

degree 6

diameter 7

degree 6

diameter 8

degree 6

diameter 9

Order Group Generators: order I
S=SUS -1 I

4368 index 6 in [0,1,1,0]:2

GL[2, 13] [11,2,8,12]:52

(det = r s) [11,4,7,5]:14

8736 index 3 in [8,8,10,5]:2

GL[2, 13] [0,3,9,10]:52

(det = r 3) [1,12,5,3]:4

25308 index 2 in [0,36,1,0]:2

SL[2,37] [34,26,34,1]:37

(/{+1}) [2,16,11,33]:37

123120 GL[2, 19] [0,1,1,0]:2

[16,11,2,0]:45

[11,16,0,15]:18

336 SL[2, 7] [1,6,6,2]:8

[0,3,2,51:14

[2,3,1,2]:8

1008 index 2 in [5,0,2,5]:42

GL[2, 7] [0,3,4,2]:24

(det = r 2) [3,1,5,2]:14

13104 index 2 in

GL[2, 131

(det = _)
50616 SL[2, 37]

index 9 in

GL[2, 371

(det = r °)

[10,12,10,9]:39

[12,3,9,8]:84

I8,11,5,01:84
[32,24,35,2]:19

[12,24,15,27]:37

[23,16,28,34]:36

[25,1,31,1]:36

[12,35,23,30]:76

[12,4,28,16]:152
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Parameters

degree6
diameter10

degree7
diameter4

degree7
diameter5

degree7
diameter7

degree7
diameter8

degree7
diameter9

degree7
diameter10

degree8
diameter5

degree8
diameter7

degree8
diameter8

degree8
diameter9

degree9
diameter8

degree10
diameter5

Order]
682080

480

2016

39732

101232

911088

1822176

2880

89280

455544

1822176

682080

12144

Group

GL[2, 29]

GL[2, 51

eLI2, 7]

index 2 in

SL[2,43]

(/{:1:1})

index 18 in

GL[2, 37]

index 2 in

GL[2,37]

(det = r2)

GL[2,37]

GL[2, 101

index 10 in

GL[2,31]

(det = r'°)

index 4 in

GL[2,37]

(det = r 4)

GL[2, 37]

GL[2, 29]

SL[2,231

Generators:order

S=SUS-'

28,10,8,8]:28

17,13,16,27]:28

3,4,27,14]:840

[0,1,1,0]:2

[4,3,2,0]:20

[3,3,3,4]:24

[0,3,1,1]:24

[0,1,1,0]:2

[6,1,6,4]:42

[5,1,1,4]:48

[2,2,5,0]:6

[0,42,1,0]:2

[18,16,38,41]:22

[8,28,14,33]:43

[34,2,37,6]:22

[0,1,1,0]:2

[21,1,4,2]:9

[27,26,4,81:74

[21,34,17,17]:6

[0,1,1,0]:2

[27,33,19,22]:684

[25,16,13,6]:36

[23,17,14,26]:18

[0,1,1,0]:2

[35,28,34,12]:456

[1,19,14,16]:17

[36,1,12,0]:18

[8,3,7,1]:24

[9,1,3,4]:24

[8,7,7 1]:60

[9,4,5,9]:10
[3,1,5,10]:30

[6,17,27,5]:30

[9,10,22,28]:15

[3,29,25,2]:6

[28,32,33,33]:171

[9,34,25,16]:342

[21,9,17,5]:57
[0,26,3,1]:171

[12,13,34,33]:18

[35,3,19,35]:684

[26,10,36,31]:1368

[36,6,20,10]:36

[0,1,1,0]:2

[5,22,18,26]:14

[17,15,21,4]:840

[2,5,10,21]:840

[23,12,11,21]:840

[9,0,18,18]:11

[13,10,18,21]:11

[9,10,0,17]:22

[14,7,19,3]:22

[18,13,17,20]:24

Parameters

degree 10
diameter 8

degree 12

diameter 5

Order

1822176

24360

Group

index 18 in

GL[2, 371

(det = r TM)

SL[2, 291

Generators:order

S = SUS-'

[35,10,17,:32]:684

[5,31,35,14]:684

[11,3,33,7]:1368

[9,12,6,26]:456

[21,12,22,5]:57

[1,18,3,26]:58

[17,20,14,8]:30

[15,6,20,10]:30

[23,28,28,19]:28

[26,14,11,16]:28

[16,7,28,25]:28
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ABSTRACT

Based on the advanced technologies, VLSI and HDI (High
Density Interconnection), a parallel processing system con-

sisting of 1024 processors is proposed. A special feature of

this system is the reconfigurability of data communication

channels between processors, achieved by using a hyper-
crossbar interconnection network which facilitates a multi-

processor system to operate as a SIMD, MIMD, MSIMD ....

etc. Each processor possesses two communication channels,

separately connected to a local crossbar network and to a

global crossbar network (which are sub-networks of the

hyper-crossbar network) for local communication and global

communication, respectively. Processors connected to the

same local network form a processor cluster for the execu-

tion of systolic-array-type algorithms. Primarily imple-

mented by LINC chips, the global networks are able to pro-

grammably hold or delay operation data to synchronize the

data flow for generic applications. With the operation speed

of 20 MHz, the system can reach a peak performance of 40

billion operations per second.

configured to operate as a SIMD, MIMD, MSIMD .... etc.

Furthermore, fault-tolerance capability can be enhanced by

this approach.

i

 °23
j I

L .......... D_b_dM_. _M,__j

t024-by-1024 Hyper-Crossbar Network

Keywords: Computer Architecture, Parallel Processing,

Crossbar Network, VLSI, HDI, Reconfigurability.

Figure 1. The system architecture

INTRODUCTION SYSTEM ARCHITECTURE

Due to the computation demands of the modem applications,

e.g. image processing, system simulation, real-time graphics

display etc., the computation power required has reached bil-

lion operations per second or even higher. Given a general

VLSI/CMOS operating clock speed, i.e. 10-40 MHz, it

becomes necessary to develop a system with over thousand

processors to achieve the required performance. Due to the

communication demands from thousands of processors, one

of the major bottle-necks existing in any multiprocessor sys-

tem, interconnection communication networks for such sys-

tems have been recently focused and heavily studied (Ref.
1-2).

The most flexible and simplest solution is to have every pro-

cessor connected to a global crossbar network which pro-
vides essentially a non-blocking communication link.

Because of the technology limitation, this type of network is

not feasible for a large scale system containing over

thousand processors. In this paper, an alternative approach,

i.e. a hyper-crossbar network based parallel processing sys-

tem, is proposed. Because of the hyper-crossbar network,

the proposed general-purpose multiprocessor system can be

The proposed parallel processing system has 1024 proces-
sors, a hyper-crossbar network, and a distributed main

memory, as shown in Fig. 1. Processors are addressed by
10 bit binary codes dgd 8 • •. did0. Each processor consists

of a node-level crossbar network, a processor controller, a
multiplier, an ALU, a shifter, and a register file, as shown in
Fig. 2. In the system, there are 1024 local memories which

are individually attached to 1024 processors. The collection

of all local memories forms the distributed main memory of

the system. Through the node-level crossbar network,

operands for the three operators, i.e. multiplier, ALU, and

shifter, are provided by four resources: register file (two

channels), operation results from previous clock cycle, local

memory, and external (through the hyper-crossbar network).

The operation results can be either temporarily saved in the
register file, transmitted to other processors, or stored in the

local memory.

Selectors in a processor provide an option for a half-word

operation, while registers hold operands for a certain period.

The controller which controls all operations in the processor

receives global commands from the external and selectively

CH2649-2/89/0000/0463501.00 © 1988 IEEE
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executes commands pre-stored in the local memory. The

local memory is partitioned into two banks to facilitate the

memory sharing and updating process. While one bank is

being used to serve for the processor control, the other can

be updated or read by other processors through the node-

level crossbar network at the same time. There are no dupli-

cated copies for information stored in the main memory to

avoid memory incoherence problems (Ref. 2).

z _c_

Register File Node ve

X-B_ Network _ __ --

SeI_tor

-lY Fo.t _r I

t T ] ControlSignals

Figure 2. The architecture of a node processor

There is a hyper-crossbar interconnection network connect-

ing all processors together. Instead of using a tightly-

coupled connection, the hyper-crossbar network is an accu-

mulation of many individual crossbar networks. The net-

works are partitioned into two groups, i.e. local network and

global network. Processors with the same four leading

address code dgdsdTd 6 are connected to a 64-by-64 local
crossbar network. Those processors which are connected to

the same local crossbar network form a processor cluster.

Processors with the same six trailing address code
dsd4d3d2dldo are also connected together through a global

16-by-16 network which consists of 4 sets of LINC chips
(Ref. 3) as shown in Fig. 3. Each set consists of four/eight

LINCs operating in parallel in order to provide 16-bit/32-bit
wide communication channels. All the 16 local crossbar

networks and 64 global networks are controlled by a host.

The host determines the connection patterns, depending on

the data flow specified in parallel computation algorithms.

The architecture of LINC chip is shown in Fig. 4. The chip
has eight 4-bit data-paths consisting of an 8-by-8 crossbar
network, either a FIFO or a programmable delay register for

each of its inputs, and a pipeline register file for each of its

outputs. The connection pattern between sources and desti-

nations (including broadcasting) is determined by the control

pattern register which is updated by the preloaded control

pattern memory. Wider data channels can be achieved by

combining more LINC chips together, while using the same

control signals. With the reconfigurability and programma-

bility, provided by LINC chips, data flow through a global

network can be synchronized and redistributed.

16-by-16 Global X.B_ Network

Prc_essor Clu_er m I Processor Clusler 1 2

Figure 3. The hyper-crossbar network architecture
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Figure 4. The LINC chip block diagram

IMPLEMENTATION CONSIDERATION

The area complexity of a node processor has been studied.

Using a 1.2 um CMOS technology, a node processor (Local

memory is not included.) occupies an area of 340-by-340

mil 2 (Ref. 4). In other words, a 4-inch wafer can accommo-

date more than 80 node processors. Thus, it is sufficient to

include one entire processor cluster on a single wafer. The

associated 64-by-64 local crossbar network may also be

incorporated on the same wafer to interconnect the node pro-

cessors as shown in Fig. 5. By using the strategy of device

redundancy, it is reasonable to assume that the network is
fault free.

The area required by a crossbar network is due to switching

circuits and data wiring. Although the area complexity of
the crossbar switching circuits is known to be O(N2), where

N is the number of network terminals, the actual area

required for the circuits is almost negligible (only N transis-

tors per channel as shown in Fig. 5). This is particularly

true when the switching circuits are compared with 100

thousand transistors in a node processor. It is estimated that

the wire routing area required for the proposed crossbar net-

work is 2W-B-N.S, where W, B, N, and S are the pitch
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width, the channel bits,the network terminals,and the pro-

cessor perirncterlength,respectively.For the case of W = 4

urn,B = 16 bits,N = 64, and S = 4 nun, the routingarea is

about 16 mm 2. which is much less than the 64-processor
area,i.e.64x4_ mm 2. Itcan be also shown thatthe multi-

stageinterconncctionnetwork requires2W.B.S.N.((IogN)-I)

routing area on a silicon. It is larger than the area of a

crossbarnetwork by a factorof log N.

plifyinstructionflow and to enhance data throughput. The

localnetwork in a clustercan be programmed not only to

emulate a mesh-connected network for neighborhood com-

munication, but also to provide directcommunication chan-

nels for global interactionswithin a cluster. Intermediate

results,generated by each pipeline segment (i.e.processor

cluster),can be re-directed,broadcasted,or delayed to main-

taina synchronized operand flow by the globalnetworks.
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Figure 5. An implementation of a distributed

local crossbar network

Other implementation alternative is to use the high density

interconnection (HDI) packaging technology (Ref. 5). HDI

connects signal I/O pins between bare chips (unpackaged

chips) with copper wires by using laser-patterned polymer

layer overlays laminated the chips mounted on a silicon sub-

strate. By using VLSI technology in conjunction with HDI,

a very reliable processor cluster embedded in a distributed

64-by-64 crossbar network (as shown in Fig. 5) can be

easily implemented in a package without any wire routing

problem. Similarly a global network could also be realized

as a network device. In this way, the system volume is

reduced, and the system structure is modulized to facilitate

the system expansion.

SYSTEM APPLICATIONS

In general, the system is designed as a general purpose

machine. The data links between processors can be

configured into almost any possible pattern for computation-

intensive applications.

Image Processing

By programming the connection pattern in the hyper-

crossbar network, the proposed system can be configured as
a array-type multi-processor system to process matrix opera-

tion or pixel computation for image processing applications.

In Fig. 6, an image processing algorithm is partitioned and

distributed into different processor clusters (MSIMD). Clus-

ters are pipelined together through global networks to sire-

Image Data

Figure 6. A pipeline configuration for image processing

Parallelized Looping

Besides the mesh connected pattern, the processors can be

configured as a multi-channel pipeline to compute multi-

level loop instructions in parallel as shown in Fig. 7. The

local networks provide communication links to pipeline the

inner loop instructions, while the global networks support

F_ j=lto.t Do

For i-ltol Do

I_; fl

12: I2 {If(i). I2(i-1))

13: f3 {I2(i.j-l}, [2(i))

I4: f4 (14{i_.l). 13{0)

End

End

• OUT

Clustu # 2 I3(i- } 140-2} ll(i*l) 12{i}

-- Global X-B_ Ntr_ork

Ihl)ce$1o¢ IN_

_ _{0 _1 _I2(i÷l) 14{i- 1) 11{i÷2)

Glob_ X-B_ Network

;2.2 ,.i
If{i*3) I2{i+2} ] I}{'÷ ) 14{i) ]

Initill Vllu¢ Initial Valu©

Figure 7. A multi-channel pipeline to execute multi-level

loop instructions
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data communication between different loops. Because of the

programmable delay registers (PDR) and the pipeline regis-
ter files equipped in LINC, which is the fundamental build-
ing block of the global networks, data synchronization and

dependency problems can now be easily resolved. Other

interconnection patterns or any combination of different pat-

terns may also be established to execute MIMD, MSIMD, or

other generic operations.

Object Domain Space Domain

PE 2

PE 3 PE 4

PE O0 PE Ol

:, -_

PE 10 PE II

Space Partition

Figure 8. Image object redistribution and 3-D image

generation

3-D Graphics Display System

An advanced real-time 3-D graphics display system has to

manipulate numerous 3-D image objects in a display win-

dow. It usually requires a computation capability in the

order of 10 billion instructions per second. Using parallel

processing, as provided by the proposed system, is the only

solution to enhance computation strength for satisfying the

requirement. A special space partition algorithm (Ref. 6) to

efficiently use multiprocessor elements for real-time graphics

display is developed and shown in Fig. 8. The algorithm

requires a flexible communication network to support its

adjustable space partition and processor assignment,

described in Fig. 9. Given the hyper-crossbar network of

the proposed system, a flexible environment can be esta-

blished to partition image space in various topologies which

are required by high performance 3-D graphics display

applications such as pilot training and mission rehearsal.

1

Processor Subspace

Figure 9. A 3-D cube architecture and the associated

image space partition

PERFORMANCE EVALUATION

The performance of the proposed system is evaluated in two

ways, computation capability and communication capability.

Operating at the speed of 20 MHz, each processor can per-

form 40 million operations per second. In total, the system

can provide the peak performance of 40 billion operations in

every second. It satisfies the speed requirement for most

modern applications. The network capacity is determined by

the number of channels, the channel width, and the network

speed. Given a regular CMOS operating speed, i.e. 20
MHz, a 64-by-64 local crossbar network with 32 bits wide is

able to transmit 40 billion bits in a second. In other words,

each processor can transmit or receive over 320 million bits

per second. Similarly, it can be easily estimated that a glo-

bal network provides each processor with the same commun-

ication capability.

CONCLUSION REMARKS

Operating at the speed of 20 MHz, the system can reach the
peak performance of 40 billion operations per second.

Because of the reconfigurability provided by the hyper-

crossbar network, the average performance can be easily

optimized to approach this peak performance. Systems with

more processors can be achieved by either expanding the

network size or introducing higher levels of crossbar net-

works. Furthermore, failed processors can be dynamically

by-passed, without interrupting the system service.
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ABSTRACT

In this paper we introduce the Hypetvomputer supercomputer, a recon-

flgurable, massively parallel architecture, a 9,072 processor prototype cur-

rently planned. The hypercomputer architecture family is based on arrays

of a simple and autonomous unit logic entity, the universal cell. Physically

wired in a uniform, eight-degree mesh, the universal cell is a pipelined, 8-

bit mlcroarchitecture that provides the logical manifestation of processor

elements, switch lattices, memory units, et cetera. In this sense, we say the

hypercomputer family is honeycomb reconfigurable. The mesh array is

supported by a separate 3D, parallel IO network which provides real-time

IO in the planar dimension and distributed configuration and

synchronization along the polar dimension. The programming model,

which is integral to our design, is based on a new concept we call computa-

tional holism whereby increasingly abstract and logically seamless clusters

of tightly coupled cell chunks or actors give rise to parallel and highly spe-

cialized centers of computational activity. The software realization of this

holistic approach is embodied in hyperwam, an object-oriented, visually in-

teractive environment for composing algorithmically specialized actors.

INTRODUCTION

Reconfigurable, parallel architectures offer much greater promise for

high performance over a diverse range of algorithms by restructuring
their logical resources to aceomodate the control or data characteristics

of the algorithm. However, in the context of massive parallelism, recon-
figuration places additional demands on efficient use of otherwise redun-

dant architectural resources. By simple extrapolation, the rationale for

building large machines is obvious: many computationally intensive

problems present an opportunity for attack by massively parallelism.

Traditional analyses of scalability have focused mainly on upward

scalability. Unfortunately, upward scalability does not account for non-

ideal circumstances (like routing collisions) in which large systems may

hampered by their size. Recently, a new scalabillty analysis called

downwardscalabilify (Ref. 1, 2) has emerged which provides design

motivations for architectures to "scale-down" into smaller, more efficient

subnetworks in which the overhead (e.g., communication delay) is propor-
tional to the size of the subnetwork. Thus, it can be shown that no multi°

stage network (e.g., shared memory designs) is downward scalable. On

the contrary, mesh and torus architectures (e.g., non-shared memory

designs) are indeed downward scalable since date pro_dmlty (i.e., locality)
can be exploited by nearest-neighbor communications.

Several recontr_urable architectures of this latter class, generically called

spat/a/arrays (Ref. 3,4,5), have been suggested in the style of Snyder's

seminal CHiP processor architecture (Ref. 6) and the more general type

architecture (Ref. 7). In both cases, the primary design goal is the estab-

lishment of subnetworks which correspond to algorithmically specialized

structures. When composed, these structures capture the natural locality

and regularity of the underlying problem. A significant advantage of this

approach to parallelism is that many VLSI and systolic algorithms can be

readily implemented. Physically, the spatial array design is characterized

by a two dimensional mesh of processor elements with an embedded

switch lattice either integrated in the mesh plane or in a separate, parallel

plane. Spatial arrays of this kind have been favored not only for their

downward scalability but their upward scalability and bounded degree

(i.e., modularity) all of which exploit the physical constraints of VLSI im-

plementation. In this paper, we introduce the Hypereomputer supercom-

purer concept, a 9,072 processor prototype planned for construction at

Plex Systems Research, Inc. in New York City. The Hyporcomputer fami-

ly represents an experimental extension of spatial arrays to their logical

extreme in both architecture and magnitude. What is new in this ap-

proach is that we marry the two concepts of reconfigmration and massive

parallelism in an utterly simple, and uniform design. We also suggest how

certain practical problems are solved in this framework with respect to

other spatial array designs: namely, architecture and programming.

ARCHITECTURE

Universal Cell Array Plane

At its foundation, hypercomputers are based on an eight-degree mesh of

an autonomous unit logic entity called the universal cell. Physically, the

universal cell is a microarchitecture with an pipelined, 8-bit data path, 48

g-bit general purpose registers, some control registers, flags and a 128x32-

bit control store. Although pipelining is not crucial to our design, we have

concluded that its performance (see Table 1) is well worth the small cost:

e.g., < 100 transistors of hardware-assisted support is required in the

microcontroller. We achieve this low cost by delegating almost all the

usual hardware features to software: the microinstruction firing control is

static, being computed at compile-time and encoded in the previous

microiustruction (Ref. 8). That is, each microiustruction contains a

horizontal 3-bit field which has the relative cycle tick on which the next
microinstruction is to be loaded from the control store into its cor-

responding microinstruction register. At compile-time, two software
modules called the linear accelerator and the horizontal accelerator

schedule the execution of each microiustruction based on local and global

flow analysis. The linear accelerator compacts the microcode temporally

by minimizing the pipeline delay and the horizontal accelerator compacts

the microcode temporally and spatially by collapsing the operationsand

reordering their sequence. Horizontal acceleration is based on the con-

cept of trace scheduling as used, for example, in VLIW architectures
(Ref. 9).

In the data path, stage 0 provides 1-bit shift (input A) and incre-

meot/decrement (input B) as preloading to the ALU, stage 1. The ALU

computes three binary functions with programmable feedback to stage 0.

The functions are add, b#-wise nor, and bit-wise and. Stages 2 and 3

provide increment/decrement (also with feedback to stage 0) and 1-bit

shift, respectively. With the exception of the single control microinstruc-

tion, branch which operates in one cycle, each microinstruction requires

four cycles (1 cycle/stage) and once an instruction begins execution (i.e.,

"fires"), it runs uninterrupted to completion. See Figure 1. Very long arith-

metic or VLA processing is a useful appfication of micropipalining.

CH2649-2/89/0000/0467501.00 © 1988 IEEE
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Table L Pipeline effects.
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Specifically, re_ter dw_ning is made possible whereby mutiple registers

are treated as a single multibytc register so that for example, by chaining

all 48 registers, a VLA 384-bit shift can be computed in 52 cycles (with

pipelinln8) as opposed to 192 cycles (without pipellning). We employ this

technique extensively for all 32-bit arithmetic, fixed and floating point.
Since the universal cell does not have an index register (pointing to its

own register file), we also use VLA for indexed, table processing where

for example, in the Fourier transform, VLA is used to retrieve entries

Figure 1. Universal cell pipelined data path.

from the "twiddle factor" table (ReL 10) and in CORDIC processing the

tan "i table (ReL 11).

A cell is interfaced to its eight neighbors through extensions of the data

path collectively called the _napse in which there are four bidirectional,
8-blt channels: alternatively, we can think of the synaptic channels as a

very small amount (four bytes) of edge-shared memory. Physically, the

synpatic channels are implemented as a two-bit serial shifter whose activa-

tion is controlled by a pair of mask registers, one for OR-parallel input

and one for AND-parallel output (i.e., local broadcast). By altering the

mask registers, a cell can dynamically configure its IO structure. Hence,

interprecessor communication is based on the value passing paradigm.

Because of the universal cell's generality, the manifest physical com-

ponents of other spatial arrays designs--namely, processor elements,

switch lattices and passive, extcrnal memory (or combinations therof)--

thcse items can be configured logically through the universal cell by

redefining the cell's operational micrescript. In this sense, hypercom-

puters are honeycomb reconfigurable (Ref. 15).

input-Output

Whereas the universal cell array plane is the focus of all compute-bound

and local IO, another connected but autonomous IO network is the focus

of global 10 to the array plane as a whole. This global IO network, generi-

cally called the global bus, is not a bus per se but is really two subnetworks

which support the array plane in three dimcnsious. One perspectivc of

the system architecture is depicted in Figure 2. Theplanar controller

drives real-time IO in the planar dimension: that is, along the peripheral

edges of the array plane. The polar controller drives configuration and

t C°"tr°"er ] [ c°"tr°"er ]
l l ..

SdsternBus

Figure 2. System Architecture.

synchronization through the polar dimension: e.g., setting the general pur-

pose registers, the IO mask registers and loading the control store. Also,

in the event that planar IO at the array edges cannot reach cells em-

bedded in the interior, the polar controller can perform real-time IO by

reconf_,,uring the general registers of these interior cells. Such a scenario

could arise if, for example, the embedded algorithmic structure is en-

folded in the plane to ma_mumize cell density.

Each IO controller serves a small subnetwork of Multiple Instruction

stream, Single Data stream (MISD) IO processors (lOPs) each con-

nected to one another and the controller through a high-speed broadcast

bus. It is these IOPs which actually communicate with the array plane.

See F'_gure 3. For example, the polar IOPs physically partition the array

plane into rectangular parallel sectors. The lOP can address the cells in

lOP

Figure 3. IO Ar_hiCecture.

the parallel sector discretely, cell by cell or globally through parallel sec-

tor-wide broadcasting. The planar lOPs physically partition the array

plane at the periphery into P linear parallel sectors or k-parallel sectors.

Thus, the host CPU controls the entire machine only indirectly through

the substantially fewer networked lOPs. Typically, the host will broadcast

a stream of spatial directives (i.e., high level commands) which describe

how to configure the logical regions of the array plane. All polar lOPs lis-

ten for directives which address their particular parallel sectors and ex-

ecote pre-compiled, locally stored mount scipts; these mount scripts may

in turn invoke other mount scipts or configure the cells under its parallel

sector jurisdiction directly. A similar process occurs for the planar IOPs.

This IO scheme solves two major practical problems each greatly mag-

nified in the context of massive parallefism. First, the problems of reliably

distributing global control signals--power, ground and cleck--is avoided.

Second, IO can also proceed in parallel, avoiding a bottleneck in host-

only operations.

PROGRAMMING

Computational Hoiism

The limitations of fixed parallel architectures become evident if we con-

sider that many real-world problems are analysed as a set of smaller,

cooperative subproblems each of which may be realized by different algo-

rithmically specialized organizations. In this model, parallel computation

is carried out cooperatively, without global control and using composed,

locally interactive agents. Synder (ref. 6) was the first to investigate this

technique by way of the CHiP processor architecture. However, coopera-

tive computation remained merely a useful, secondary mechanism to

program the CHiP processor: the primary mechanism was Poker (Ref.

13, 14), a process-oriented language developed to explicitly program each

of the machine elements, regardless of their numbers. Milutinovie and
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Milutinovic (Ref. 15) suggested the possibility of cooperative computa-

tion using multicell CPUs, memories and buses but carried their abstrac-

tion only to this level. Moreover, we have envisioned scenarios where the

collective behaviour of a cell group may express much more fluid charac-

teristics, perhaps being CPU-like for a while, then memory-like and so

on. In general, we believe above approaches become impractical in a mas-

sively parallel framework. We believe this provides sufficient motivation

for a disciplined approach to functional and hierarchical integration

which can specify abstract and arbitrarily complex computational be-
haviors.

We now introduce an approach which allows us to escape the grueling

details involved with large conglomerations of cells. In this model which

we call computational holism, objects or actors (Ref. 17) form hierarchies

of logically continuous compositions of cell ensembles or chunks which

cooperate as a single whole giving rise to parallel and highly specialized

centers of computational activity. At the lowest level, the primitive actors

which make a chunk are strongly interactive, communicating frequently

and efficiently, exploiting locality preserved by the cellular mesh. In turn,

these specialized, low level chunks participate in cooperative computa-

tion with one another and so on in a hierarchy. Thus, we achieve both

functional and hierchical integration. Moreover, this approach maps

directly to an object-oriented, visual programming environment we call hy-

perware. (In the next subsection, we discuss hyperware and how its maps

into the hypercomputer.) From the programmers point of view, hyper-

ware is more than a medium for expressing hypercomputer algorithms: it

is the hypercomputer, although the physical details of parallel sectors and

global communication are transparent. As such, the map from the

programmer input to hypercomputer semantics is direct: parallelism is

not inferred. The programmer actually makes full use of the machine effi-

ciently. In addition, the programmer can choose the level of abstraction,

suppressing details in one case and enhancing them in another.

Hyperware

The software realization of computational holism is embodied in a visual-

ly interactive environment called hyperware. From the user's point of

view, hyperware presents two abstract "window" spaces which interact

with the user: the composition space where actors are composed and the

work space where actors are staged for functional or spatial manipulation

prior to being 'chunked" in the composition space: that is, the work space

actor becomes part of a larger, tightly coupled assembly of other composi-

tion space actors. In one level of detail, the chunked actor relinquishes its

simpler, individual identity (e.g., its primitive cell characteristics) to col-

laborate in the expression of a more complex, logically seamless identity.

As a whole, the association consistutes another more abstract actor. In hy-

perware, all actors are first-class, regardless of their constitutions. Al-

though there is one actor per window, each space may have multiple

windows so that several actors can be composed simultaneously. Also,

each space is local with relative spatial coordinates in the mesh array

global, absolute binding takes place at configuration-load time. Program-

ming begins in one of two ways: either defining a new, primitive actor

(which maps directly to a physical cell) in the work space or alternatively,

retrieving a previously defined primitive or complex actor from a library

of actors. If the actor is new, we supply a script of microiustructious (i.e.,

a microscript) which defines the local computational and communication

behaviors. This level of detail is the "suppressed" and compiled so that we

deal only with an object having a set of input and output ports. These IO

port details can also be suppressed but at least one port must remain

"visible': after chunking the actor, the unsupressed ports are used to con-

nect other actors. This process continues until a new, more complex actor

is fully composed. The newly composed actor can be returned to the work

space for further manipulation including enhancing or suppressing port

details, spatial f_ation (i.e., rotating, flipping, tiering, growing, etc.). Al-

ternatively, the actor can be written to a library of actors to be used later.

These ideas are best illustrated with a simple example: in this section we

consider building a tree structure of actors. In the next section, "Applica-

tions", we show a much more complex, hexagonal actor and its applica-

tions. In Figure 4, the root of the subtree is already in the compostion
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Figure 4. Tree composition in hyperware.
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Figure 5. Rotation and chunking of work space actor.

space and a triple chunk is being prepared in the work space. In each

space, the lettered arrows represent output ports and the numbered ar-

rows, input ports. The goal is to compose the work space and composi-

tion space actors, creating a new actor. The user has only one simple

syntax rule to observe: that is, unsuppressed inputs must be connected to

complementary unsuppressed outputs or vice versa. Suppressed details

obey this rule implicitly. (Actually, the composition driver will inspect all

details in the final analysis.) If we chunk the work space actor, connecting

outputs (in the work space) to inputs (in the composition space), the com-

position driver will discover only one possibility, namely b---,l. (We

qualify the transfer as above, to constrain the possibilites the composition

driver will have to consider. The same effect could have been achieved by

suppressing the composition space actor's input ports.) Figure 5 shows

still another alternative in which the work space actor is first rotated by

_r/4 radlans (counter-clockwise) at the root then chunked.

APPLICATIONS

To date, a broad class of many algorithms with different configuration

demands have been tested in our design using the hypercomputer

simulator. These include novel algorithms for pattern matchining (Ref.

11), sorting (Ref. 12), the multidimensional Fourier transform (Ref. 10),

parallel arithmetic and matrix processing (Ref. 16). We anticipate that

other applications will also enjoy excellent performance on our architec-

ture including image processing, field interaction problems (e.g., discrete

hydrodynamic and Coulombic simulations), connectionist and artificial

neural systems. In this section, we present a complex, hexagonal actor as

an example for both matrix multiplication and LU-decomposition. We

analyse this actor and suggest how it can be architected using hyperware.

Matrix Multiplication and LU-decomposltion

The hexagonal systolic array due to Leiserson (Ref. 18) is the basis of our

hexagonal actor. Leiserson shows how this fixed computation and fixed

communication structure can be used for multiplying two matrlcies, A, B

such that C = A x B and for factoring a matrix A such that A = L x U where

L and U are lower and upper triangular respectively. Like the systolic ver-

sions, the primitive computational agents in our system is the inner-

product-step actor, flavors of which are shown in Figure 6. Since a
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Figure 6. Inner-product-step actors.

Figure 7. Hexagonal actor for matrix processing.

hexagonal array does not map directly into an octagonal array, we use two

other primitive actors: one to forward intermediate results along the inte-

rior oftbe array and one to forward external inputs.and final result out-

puts from and to the world outside the actor. Except for the latter tasks,

the two actors are the same. These three primitive actors are shown com-

posed (for matrix multiplication) in Figure 7 as the interior, unfdled cells,

the striped cells and the shaded cells embedded in a 72 cell, 9x 8 subar-

ray. All other ceils in this array are "dead', acting as data sinks. This com-

plex actor can also be used for LU-decomposition as per Leiserson (Ref.

18).

Since the actor is vertically symmetrical, the actor can be built in hyper-

ware quite easily:, compose the center column and the left hand side as

two separate actors. Compose the right hand side as a horizontal flip of

the left hand side. Then, compose the center, left and right hand sides as

one actor.

CONCLUSIONS

We have presented the central ideas of the design and architecture of the

Hypercomputer supercomputer concept. In this approach, we believe we

have solved not only several problems in its own technical design but by

paying careful attention to simple, feature principles, we have addressed

a number of critical problems in parallel processing as well. For example,

many researchers question the relative merits of free-grain parallelism as

opposed to course-grain parallelism for attacking real-world problems. In-

deed, each approach has its strengths and weaknesses. Our high lcvel

solution-computational holism--lies somewhere between of the two ex-

tremes and allows us to capture the power of course granularity without

losing the fie_'dbility of fine granularity. The performance of the computa-

tlonally intensive multidimensional Fourier transform on the hypercom-

puter is proof of this claim: see Reference 10. The level of parafielism is

another major issue of concern: some researchers maintain that paral-

lelism at the instruction level is simply too low level or too inefficient; al-

gorithm parallelism at a higher level is preferred instead. Again, our

solution attracts the benefits of both, one through the simple, uncon-

grained nanopipeline and the other, through reconf'_,uration. There are

other problems in parallel processing in general and massively parallel

processing in particular (e.g., programming) which we also address but

space does not permit us to debate the issues fully here. In summary,

however, we have seen that our integrated approach offers much greater

promise for high performance over a diverse range of issues, computation-

al, structural and architectural.

ACKNOWLEDGMENTS

This work has been funded in parted by Applied Concepts, Inc.: we ap-

preciate its generosity in supporting our worL We also thank the staff

members of Applied Concepts, Inc., Sally Huns, and Maria Gonzalez-

Coleman for their spirit of encouragement and assistance, and Haldun

Hadiminglu and the Polytechnic Parallel Processing Group for providing

insightful technical criticisms and invaluable feedback throughout the

evolution of many of the ideas presented here.

RIglglgRENCES

1. Ma, Y.E., et al, "Reconfgurable Special-Purpose Computers",

Second International Conference on Supercomputing, May 1987

2. Ma, Y.E., She.a, D.G., "Downward Scalability of Parallel Architec-

tures", Th/rd Intemutional Conference on Supercomputing, May 1988

3. Hancu, M.V., Smith, K.C., "DYPP: A VLSI Dynamic-Graph En-

semble Machine', 1988 lntemutional Conference on Supereomputing

4. Koren, I., "A Reconfigurable Fault-Tolerant VLSI Multiprocessor

Array _, 8th Annual Symposium on Computer Architecture, May 1981

5. Gollakota, N., Gray, G., "Reconfigurable Cellular Architecture", 1984

International Conference on Parallel Processing

6. Snyder, L, "Introduction to the Confignrable Highly Parallel Com-

puter*, IEEE Computer, 1982

7. Snyder, L., "Type Architectures, Shared Memory and the Corollary

of Modest Potential", Annual Review of Computer Science, 1986

8. Luslg M.E., "A (Linear) Scheduler for the Hypercomputer

Simulator", Department of Electrical Engineering and Computer

Science Project Report, Polytechnic University, May 1988

9. Colwell, R., "A VLIW Architecture For a Trace Scheduling Com-

piler", IEEE Transaction_ on Computers, August 1988

10. Coleman, R., Post, M., Waksman, A., "A Uniform and Recon-

figurable Framework for the Multidimensional Fourier Transform",

(companion paper), October 1988

11. Coleman, R., Post, M., "Pattern Recognition and the Multidimen-

sional Fourier Transform on the Hypercomputer", Polytechnic Paral-

lel Processing Group, Polytechnic University, April 1988

12. Coleman, R., Post, M., "Primary Computational Agents for Sorting

on the Hypercomputer", Polytechnic Parallel Processing Group,

Polytechnic University, November 1987

13. Snyder, L, "Parallel Programming and the Poker Programming En-

vironment', IEEE Computer, July 1984

14. Notkin, D., et al, "Experiences with Poker", ParalleIProgramming: Ex-

perience with Applications, Languages, and Systems, ACM/SIGPLAN
Notices PPEALS, 1988

15. Milutinovic, D., et al, "The Honeycomb Architecture", IEEE Com-

puter, April 1987

16. Lee, C., *Primary Computational Agents for Parallel Integer Arith-

metic On the Hypercomputer", Department of Electrical Engineering

and Computer Science Project Report, Polytechnic University, May
1988

17. Agha, G.,Actors, A Model of Concurrent Computation in Distributed

Systems, MIT Press, 1986

18. Leiserson, C.,Area-Efficient VLSI Computation, Ph.D. Thesis, MIT

Press, 1982

47O



A REDUCED DIAMETER

INTERCONNECTION NETWORK*

K. Ere

Center for Advanced Computer Studies

University of Southwestern Louisiana

Lafayette, LA 70504

P. Blackwell T. Shiau W. Slough

Computer Science Department

University of Missouri-Columbia

Columbia, MO 65201

ABSTRACT

Many interconnection networks have been suggested as the basis for

parallel computing architectures. In this paper, we propose a network,

based upon the hypercube, which we call the multiply-twisted cube.

This network preserves many of the desirable properties of the hyper-

cube, but has a diameter which is only [(n+ 1)/2] for an n-dimensional

multiply-twisted cube, a reduction of nearly fifty percent compared to

the ordinary hypercube. We discuss some of the basic topological prop-

erties of multiply-twisted cubes and present a routing algorithm which

produces optimal paths.

Keyworda: Interconnection networks, hypercube, parallel processing.

INTRODUCTION

An important component of a parallel computer is the interconnection

network. The designer is confronted with all overwhelming number of

choices, including cross-bar, shuffle-exchange, butterfly, mesh, hyper-

cube, hypernet and many others. Among these choices, the hypercube

has enjoyed popularity due to many of its attractive properties, in-

cluding regularity, symmetry, small diameter, strong connectivity and
relatively small link complexity. Other properties of the hypercube can

be found in [3, 5, 7, 9, 12].

The hypercube topology has received much attention in the llt-

erature due to its suitability for general purpose parallel processing

[2, 8, 10, 11, 13]. As a result of this focused attention, variations of this

topology have been discovered which improve upon the hypercube. For

example, Esfahanian et al. [4] introduced a class of networks denoted

TQ,_, for n _> 3, obtained by exchanging any two independent edges

in a shortest cycle of the n-dimensional hypercube Qn. Introducing
such a "twist" reduces the diameter from n to n - 1, preserving many

desirable properties of the hypercube.

Recently, Shiau et al. [14] introduced a method of systematically

exchanging multiple pairs of edges in an n-dimensional hypercube,

achieving a graph with diameter [2n/3] which has many of the prop-

erties of the hypercube. In this paper, we improve these results by

introducing an n-dimensional "multiply-twisted" cube MQ= with di-

ameter [(n + 1)/2]. We discuss some of the basic properties of this

topology and show that it too has many desirable properties of the

hypercube, including regularity, small diameter, and large vertex con-

nectivity. We also develop a routing algorithm which guarantees a

shortest path between any pair of vertices in MQ,.

PRELIMINARIES

In this paper, we use undirected graphs to model interconnection net-

works. We refer the reader to [6] for fundamental graph terminology.

Let G =-- (V, E) be a finite_ undirected graph. The distance between
vertices u and v, denoted d(u, v), is the length of a shortest path from u

"This research was fundedby a grant from the Research Council of the Graduate
School. University of Missouri-Columbia.

to v. The diameter of G, denoted D(G), is defined to be max{d(u, v) :

u, v E V}. The graphs we consider here, strictly speaking, are labeled

graphs. We will, however, often make no distinction between a vertex
and its label.

The verges connectivity of a graph G, denoted _(G), is the minimum
number of vertices whose removal results in a disconnected or trivial

graph. (A trivialgraph is one with a single vertex and no edges.)

The labels we use are binary strings and, by convention, an n-

bit string is indexed with the values 0 through n - 1, letting 0 index

the least-significant bit. The notation b" denotes the string with n

repetitions of the bit b. G b denotes the labeled graph obtained by

prefixing every vertex label in the graph G with b.

Two binary strings x -- zlz0 and y = YlYo are pair-related, denoted

x _ y, if and only if.(z, y) • {(00, 00), (10, 10), (01, 11), (11,01)}; ifz

and y are not pair-related, we write z -/. y.

Definition 1 The n-dimensional multiply-twisted cube, denoted M Q,_,

is the labeled graph defined inductively as follows. MQ1 is Ks, the com-

plete yraph on two vertices with labels 0 and 1. For n > 1, MQ,_ con-

tains MQ°_l and MQ__ 1 joined according to the following rule: the

vertez u = Ou,___".Uo from MQ° 1 and the vertez v = Iv,,_2"'Vo

from MQI1 are adjacent in MQ, if and only if

1. un-2 = v,-2 if n is even, and

$. for 0 < i < [(n - 1)/2], u2i+lu21 _ v2i+lv2i.

Figure 1shows Q,_,TQ,_,and MQ, forn = 3 and n= 4. For n < 3,

all three networks are isomorphic.

It follows from Definition 1 that every vertex in MQ,, with a leading

0 bit has exactly one neighbor with a leading 1 bit and vice versa. From

this fact and the recursive structure of MQ,,, the reader may verify that

MQ, is a connected, regular graph of degree n with 2" vertices.

BASIC PROPERTIES

In the ordinary hypercube, there is a simple rule which states when

an edge is present, viz. an edge is incident to vertices u and v if and

only if u differs from v in exactly one bit. We can provide a similar

characterization for edges in a multiply-twisted cube, albeit the rule is

somewhat more complex. The following lemma provides the details.

(See [15] for all proofs omitted from this paper.)

Lemma 1 For alln >_ 1, (u,_-l..'Uo, V_-l'"Vo) is an edge of MQ,_

if and only if there exists an t with

I. Un_I "• "Ul = Vn_ 1 "'"US,

_. lt.l_l _ Vt-t,

3. ut-2 = vt-2 if t is even, and

4. for 0 _< i < [(d- 1)/2J, u21+lu;i _ v2i+tv_i.

When conditions 1 and 2 of Lemma 1 hold, we say that u and v have

a le_most differing bit at position !- 1. When two adjacent vertices u

and v have a leftmost differing bit at position d, we say that v is the

d-neighbor of u and that the edge (u, v) is an edge of dimension d. We

refer to conditions 3 and 4 as the pairin# condition.

CH2649-218910000/0471501.00 © 1988 IEEE

471



Q3

TQa, MQa

I0 O'

IO 1 ¸

Q4

I0 01

)0 01

]0 11

TO,

o 10 01

30 01

)0 11

MQ4

Figure l: Q,_, TQ_, and MQ. for n= 3,4.

In order to facilitate a discussion of the topological properties of

MQ., it is convenient to introduce a mechanism for identifying induced

subgraphs. For this purpose, let F_,_(G) denote the subgraph of the

labeled graph G induced by the set of all vertices with prefix c_ or _.

We also use F_,(G) as an abbreviation for I'o,_(G).

An n-dimensional multiply-twisted cube contains a variety of sub-

graphs which are isomorphic copies of multiply-twisted cubes of lower

dimension. Lemmas 2 through 4 make this idea more precise,

Lemma 2 For all n :> 2, Fo(MQ,) -_ MQ_-I and FI(MQ,, ) ""

MQn z. Moreover, the isomorphisms are given by $he f_nction which

removes the leading bit from every vertez label in a labeled graph.

Lemma 3 For silk >_ 1, roo,t0(MQ2k) -_ MQa_-I and r0ml(MQ2_)
m MQ2_-t. Moreover, the isomorphisms are given by the function

which removes the bit at position (2k - 2) from each vertez label.

Lernma 4 For all k _ 1, F=,a(MQ_t+l ) _ MQ_-z for all c_,_ in

_[(001,111), (011,101), (000,100), (010, 110)}. Moreover, these i3omor-

phisms are given by the function which removes bits (2k- 1) and (2k-2)

from each vertez label.

The following lemma is useful for arguing about the diameter of

nmltiply-twlsted cubes. Roughly speaking, the lemma states that two

vertices u and v of a multiply-twisted cube are either contained in a

smaller dimension multiply-twisted cube or that u has a neighbor, u',

with the property that u p and v are contained in a smaller dimension

multiply-twisted cube.

Lemmn 5 For all n __ 2, if u and v are vertices of MQn then either

I. u and v belong to a subgraph of MQn which is isomorphic to G,

where G : MQ,_-2 if n is even, otherwise G = MQ,-a, or

2. u and v belong to a subgraph of MQn which is isomorphic to G,

where G : MQn-I if n is even, otherwise G : MQn-_, or

3. u has a neighbor, u', where u' and v are in a subgraph of MQ,_

which is isomorphic to G, where G = MQ.-z if n is even, oth-

erwise G = MQ.-3.

We are now in a position to state and prove that multiply-twisted

cubes have relatively low diameter.

Theorem 1 For k >_ l, D(MQ_k) : D(MQ3,+I) : k + 1.

Proof. To prove the claimed equalities, we show that k + 1 serves as

both an upper bound and a lower bound for the diameter of each of

MQak and MQ_k+1.

To prove k + 1 is an upper bound, we use induction on k. For k = 1,

the result is immediate. For the induction, assume D(MQ2i) < i + 1

and D(MQaI+t) < i+ 1 for 1 < i < k. Let u and v be vertices of

MQ2_ (or MQ2_+I). Lemma 5 applies, yielding three cases. In cases

(1) or (2), u and v belong to a subgraph isomorphic to either MQ_a-2

or MQ2t-a. In either case, the induction hypothesis applies, yielding

d(u,v) < k. In case (3), a neighbor of u, u', belongs to a subgraph

isomorphic to MQak- 1; hence d(u', v) <_ k by the induction hypothesis.

Since u and u' are adjacent, d(u, v) <_ 1 + d(u', v) <_ k + l.

To prove k + 1 is a lower bound, we first note that the characteri-

sation of edges of a multiply-twisted cube given in Lemma 1 provides

the following observation.

Observation 1 For any edge (u,v) in MQn, the number of even-

indezed bits of u and v which differ is at most one. Furthermore, if

there is some i with u_i _ v_i then u.__ ...u2i+] = vn-I "" "v_i+l.

Let u = 0 _k and v = 12_ be vertices of MQ_k. We show that any path

x from u to v has length at least k + 1. Each edge (w, y) of or causes

the vertex label w to be transformed to y in a manner consistent with

Lemma 1. The cumulative effect of these changes is to cause each bit

of u to be changed. There are k bits with even-numbered indices which

must be changed. From Observation 1, any edge in x can cause at

most one of these even-numbered bits to change; hence, x has at least

k edges. In addition, none of these k edges cause the most significant

bit of u to change, so there is at least one additional edge in x. Hence,

a" has at least k + 1 edges.

For MQu_+,, a similar argument prevails. Let u = 0 _+* and v =

1 u*+t be vertices of MQ_+_ and let r be any path from u to v. There

are k + 1 bits of u with even-numbered indices which must change. Any

edge of or can change at most one of them; hence, _r has at least k + 1

edges.

Vertex connectivity has been used as a measure of the "robustness"

of a network[l], where, informally, a network is considered to be robust if

its performance does not degradate much in the presence of processor

faults. The hypercube and the multiply-twisted cube have the same

vertex connectivity, as the following lemma shows.

Lemma 6 For alln > 1, g(MQ,) :n.

Proof. The proof is by induction on n. The removal of any vertex from

MQ_ yields the trivial graph; hence s:(._fQ_) = I. For the induction,

assume that _(MQn-_) = n- 1. Removing the n neighbors of any

vertex of MQ,, produces a disconnected graph; therefore, _( M Q,) < n.

We now show that removing fewer than n vertices does not disconnect

MQ_.
Let X be a set of n - 1 vertices to be removed from MQ,. Either

all vertices of X are from Vo(MQ_), all are from Fz(MQ,), or X has

vertices from each of Fo(MQ.) and Ft(MQ.). We consider each case

in turn.

Suppose all vertices of X are from Fo(MQn). Further, suppose the

removal of the vertices of X disconnects P0(MQ,_). There are, there-

fore, vertices u = 0u,_u •.. u0 and v = 0vn_u • •. v0 which are not joined

by a path which lies exclusively in F0(MQ,); however, they are joined

by a path which can be seen as follows. Each ofu and v have (n - 1)-

neighbors, u' and v'. Since no vertex of X is from Y_(MQ,), there is

a path from u _ to v _ which lles exclusively in F_(MQ,). This path,

together with the edges (u, u') and (v, v') demonstrate the existence of

a path from u to v. Hence, the removal of the vertices of X does not
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disconnect MQ_. A similar argument holds when all vertices of X are

from FI(MQ, 0.

Now suppose X has vertices from both ro(MQn) and rt(MQ_).
In this case, each of F0(MQ,,) and I't(MQ,) remain connected, by the

induction hypothesis. There are at least 2"-1 - (n - 1) > 0 surviving

edges with dimension n- 1 after the removal of the vertices of X; hence,

the resulting graph remains connected.

From a well-known result of Whitney [6, page 48] along with the

fact that MQn is n-regular, we obtain the following.

Corollary 1 Every pair of vertices in MQ_ is joined by ezactly n

vertez-disjoint paths.

One reason which accounts for the popularity of the hypercube

is that many other networks can be embedded, or nearly embedded,

within it. It is, therefore, reasonable to ask what other networks can

be embedded in the multiply-twisted cube. We briefly address this is-

sue by noting that a ring with 2 '_ vertices can be embedded in MQn
for all n >_ 2. We restate this result in graph-theoretic terms as follows.

Lemma 7 For all n > 2, MQ,_ has a Hamiltonian cycle.

Proof. We prove a statement which is somewhat stronger than the

lemma; viz. for all n _> 2, MQ, has a Hamiltonian cycle with the edge

(0 '_, 10"- 1). We proceed by induction on n. Since MQa is a cycle with 4
vertices, the basis holds. For the induction, assume the stated assertion

holds for MQn-1. In MQn, consider the two subgraphs Fo(MQ,_)

and I'I(MQn). By the induction hypothesis and Lemma 2, ro(MQn)
has a Hamiltonian cycle ao with edge (u, v) = (00 '_-t, 010'_-s). Also,

due to the isomorphism given by Lemma 2, a Hamiltonian cycle al in

Ft(MQ,_) may be produced by complementing the first bit of each label

in no. Note that (u', v') = (10 "-1, 110 "-a) is an edge of at and that,

by Lemma 1, (u,u') and (v,v _) are both edges of MQ,. By replacing
(u,v) and (u',v') with (u,u') and (v,v') in c,0 and at, a Hamiltonian

cycle in MQ_ is produced; moreover, this cycle contains the edge (u, u')

thereby meeting the requirements of the assertion. Hence, the lemma

follows.

SHORTEST PATHS AND ROUTING

A parallel architecture based upon the multiply-twisted cube should

support a mechanism which allows any two processing elements to ex-

change data. This may be achieved by finding a shortest path from thF.
source vertex to the destination vertex, taking advantage of the hierar-

chical nature of multiply-twisted cubes. In this section, we discuss an

algorithm which produces a shortest path between any two vertices in

a multiply-twisted cube.
As a matter of convenience, we present the algorithm as a sequential

algorithm. After this, we discuss some minor modifications which make

the algorithm distributed.

In order to find a route between two vertices of a multiply-twisted

cube, our algorithm makes extensive use of the topology of MQ3. Sup-

pose u = usUtUo and v = vsvlvo are nonadjacent vertices of MQ3

with u: ¢ vs. Since the diameter of MQs is two, there is a vertex w

which is a common neighbor of u and v. For example, the 2-neighbor

of 000, 100, is a common neighbor of 000 and 110. This vertex is not

unique; the 1-neighbor of 000, 010, is also a common neighbor of 000

and ll0. We can summarize this information by noting the dimen-

sions involved--a common neighbor of 000 and 110 may be obtained

by choosing a d-neighbor of 000, where d is an element of ,[1, 2}. Due

to the symmetry of MQ3, we can complement the leading bits of each
of u and v to obtain a similar statement--a common neighbor of 100

and 010 may be obtained by choosing a d-neighbor of 100, where d is

an element of {1,2],.

The table shown in Figure 2 summarizes this common neighbor

information for MQ3. If d is an element of MOVE(o,/3), then the

d-neighbor of ba is also a neighbor of b_.

Before presenting the details of the routing algorithm, we provide

an example of how a path between two vertices may be produced.

a \_ I 00 01 10 11

oo'[ - {2} {1,2} {o}

01 {0) {I,2} {2} -

10 {1,2) {0} - {2}

11 {2} - {0} {I,2}

Figure 2: MOVE table used in routing.

Example. Suppose a path from

u=lO 10010001 10

to

v=10 11 11 10 1101

is desired. (Note: The spacing between bits is present to aid readabil-

ity.) As a first step, locate the leftmost differing bit position ofu and v,

which occurs at bit 8. Imagine the bits to the right of this bit grouped

into pairs. Starting at the leftmost differing bit position, scan u and v

from left to right, comparing a pair of bits from u with the correspond-

ing pair of v, stopping at the first pair which is not pair-related. In this

example, this occurs at the second pair to the right of bit 8. We focus
our attention on the three bits from u and v thus identified:

u: 10 1[_]01[]01 10

v = 10 1[_ 11 [101 11 01

Viewed as vertices from MQ3, the bits under consideration represent

nonadjacent vertices with differing leading bits. The MOVE table pro-

rides a way to locate a common neighbor, but rather than use the values

orovided by thin table in an absolute manner, we use them as a rela-

":ve dimension--2 dictates the selection of the highest dimension from

ahong the three dimensions under consideration, 1 selects the next

lowest dimension and 0 selects the lowest dimension. Since MOVE(00,

10) = {1, 2} there are two choices; suppose we use 1. Consequently,

we select the 5-neighbor of u, yielding the first vertex of the path:

wt = 10 1001 10 11 10

By moving to wl, bits 6 through 11 remain unchanged and, in addition,

the pair of bits to the right of bit 6 from wl and v are now pair-related.

We repeat the scanning described above for wt and v, starting with the

pair to the right of bit 4, which yields

wt = 10 1[_] 01 10 ._ 10

v= 10 1_11 10 _iT] 01

As before, MOVE(ll, 11) provides two possibilitles--1 or 2. Suppose

we again choose 1. Selecting the 3-neighbor of wl yields the second
vertex of the path:

w2 = I0 1001 10 01 10

Continuing, we obtain

w2 = 10 1[_ 01 10 01 [-_

v : 10 1Wll 10 11

from which we select the 0-neighbor of w_, yielding

wa = 10 1001 1001 11

At this point there is no pair to the right of bit 8 which does not

satisfy the pairing condition; however, the 8-neighbor of wa is v, which
completes the path.

In the preceding example, the leftmost differing bit index, once

found, never changes. In general, however, this does not always happen.

If the highest of the three dimensions under consideration is used, the

leftmost differing bit index in the next step "migrates" to the right--

in fact, it will be one of the two remaining dimensions. After this
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migration occurs, all the bits to its left agree with the corresponding
bits of the destination vertex.

Another situation not illustrated by this example occurs when the

leftmost differing bit leaves an odd number of bits to its right. When

this occurs, imagine the bits paired from the right, leaving a single bit

to the right of the leRmost differing bit.

Figure 3 provides the details of the routing algorithm. The expres-

sion "choice(S)" evaluates to an arbitrary element from the nonempty
set S.

procedure EmitDimensions(u, v)

W:=U

t := LeftmostDifferingBitIndex(w, v)

if(l is odd) and (wt-t _ _/-I) then

d := choice({l, t - 1})

emit(d); w :-- d-neighbor(w)

if(d--l) thent:=t-lfl
fl

k := LU2J
while (k > 1) do

0 '.= W2k_lllJ2k_2

if (a _/9) then

d := choice(MOVE(a, 19))

case

d=0:

emit(2k - 2); w := (2k - 2)-neighbor(w)
d=l:

emit(2k - 1); w :-- (2k - l)-neighbor(w)
d=2:

emit(1); w :=/-neighbor(w)

if w__t 7_ v_-t then
l:: 2k- 1

else

l::2k-2

fl

fl

k:=k-1

od

emit(l)

Figure 3: Routing in a Multiply-Twisted Cube.

Theorem 2 For an_t two distinct vertices u and v in MQ,_,

EmitDimensions(u, v) produces a sequence of dimensions which speci-
fies a shortest path from u to v.

To perform routing of messages in a distributed fashion, each proces-

sor must be capable of performing "local" routing, whereby a processor

contributes to the routing of a message by forwarding it to a processor

one step closer to its destination. This decision can be made by inspect-

ing an appropriate pair of bits in the source and destination labels, as

in the sequential algorithm. In essence, each processor performs the

loop of the routing algorithm as previously described. However, rather

than simply emit some dimension d, the message is forwarded to the

processor situated at the d-neighbor of the given processor; this fulfills
the obligation of the processor in question. As a practical consider-

ation, in order to avoid rescanning bits, the values of t and k used

in the sequential algorithm can be passed along with the source and
destination.

It is also worth noting that the routing algorithm presented has

a certain bias in the way the dimensions are produced. There are,

however, many other ways in which the routing can be performed. In

particular, notice that a pair of strings a and B with a -_/9 is sought

by the loop of EmitDimensions in a left-to-right scan. This scanning

order is more specific than necessary--it is sufficient to find an,/such

pair to the right of the leftmost differing bit, so long as there are an

even number of bits to their right. Of course, if no such pair exists,

routing along the dimension of the [eRmost differing bit completes the

routing.

CONCLUSIONS

We have shown how to construct a multiply-twisted cube which has

many of the properties of the hypercube, but has diameter only about

half as large. This network is self-routing, in the sense that there is a

simple distributed routing algorithm which guarantees optimal paths

between any pair of vertices. This fact, together with other properties

such as regularity, symmetry, high connectivity, and a simple recursive

structure, suggests that the multiply-twisted cube may be an attractive

alternative to the ordinary hypercube for massively parallel architec-
tures.
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Abstract

This paper presents a new Interconnection Network, the Par-

titionable Spanning Mult-ibus Hypercube ( PSMH ). Our aim

is to provide an architecture for applications with spatially

distributed data. The data are embedded on the PSMH by

hierarchical data structures, the n-dimensional binary trees.

To reduce the scope of this article, we concentrate on a spe-

cial case of the PSMH, designed for the manipulation and

display of 3D objects. Based on the PSM:H features, as well

as on the properties of the data structure, we first derive a

routage algorithmj then show how we can pack the data, to

reduce the PSMH size.

Keywords" image processing, pyramid, 3D.

0. INTRODUCTION

From an architectural point of view, image processing

tasks can be divided into 3 levels, a ]owex one, a higher

one and an intermediate one. In the low level, we per-

form operations such as thresholding or convolution, on

an often very large amount of data, organized in a very

regular and structured manner. This class of problems

is clearly best processed by SIMD architectures. On the

other hand, high level processing, i.e pattern recogni-

tion, involves a much smaller set of data, for which 1lo

unique data dependency graph can be easily found. As

a consequence, this processing stage frequently uses a

very dense Interconnection Network ( IN ), such as the

binary Hypercube or even crossbar, with a set of more

powerful processors operating in MIMD mode. Between

these 2 processing stages, the transition is much less un-

derstood : no clear scheme has emerged until now. Here

again we can distinguish 2 main directions. The first

one emphasizes the SIMD approach. An example of this

is given by the CAPP ( Content Addressable Parallel

Processor r). This system is a 3 level pyramid in which

the bottom is a mesh dedicated to low level processing,

while an intermediate level is constructed with a reduced

mesh of more powerful processors, with the top being a

small set of symbolic processors. Clearly this scheme

has the advantage of simplicity and speed. However, its

]ack of flexibility may waste a lot of processing elements

( PEs ), which becomes redhibitory in higher dimension.

Another possible direction is to consider a flexible net-

work, such as the binary Hypercube ( see for instance 3 ).

The problem here is reversed. Instead of wasting PEs,

this solution may waste links, as the cube's dimension

is higher than the problem's dimension. The aim of the

PSMH is to find a trade-off between these 2 extreme

eases. The plan of this article is as follow. After a brief

definition of the PSMH ( _1 ), we present a basic routage

algorithm in ]2. We then show in _3, how we can com-

pact the data on the PSMH, to reduce its size. As a

consequence of this compaction, we finally introduce a

neighbor finding technique ( _4 ).

1. DEFINITIONS

We define a PSMH, as a D-dimensional lattice of width

w in each dimension, with N = W D nodes. Each node

is connected to B buses over each dimension, but may

select only 2 out of the D x B available ones. One is ded-

icated to reception, while the other is in charge of the

emission. Both emission and reception can take place

simultaneously. Each bus is a bidirectional wire, with

no controller. To the usual global control scheme is sub-

stituted a local scheme, where each PE is in charge of

its segment of the bus. A node can either receive from

the left or the right part of a bus, and partition it or

not. This definition leads to a network diameter of

D, meaning that any 2 PEs can exchange messages in

fl(D) time. This is useful for operations where we need

a rapid propagation of an information to a PE. However,

when all the data may be potentially moving, this bound

doesn't hold anymore. We get a new bound by using a

wlre-cuttlng argument 0. If we slice the PSMH in the

middle, we have _ PEs, i.e potential senders, on each

side, while only W D-: x B available buses. This gives

us a new bound of o(W_).

As a by-product of the bus partitionability, the PSMH

heavily rely on divide-and-conquer methods. This natu-

rally leads us to the choice of hierarchical data structures

to embed the data. Among them, the n-dlmcnsional bi-

nary trees ( or 2'_-ary trees ) have been developed with

the aim of obtaining a systcmatlc way to represent n-

dimensional objects. To reduce the scope of this article,
we concentrate on the 3 dimensional case with the linear

octree 1 ( cf figure 1 for the Linear Octree of a planar

object ). In the rest of this paper we will consider a
PSMH of dimension D = 2. This choice is of interest

because it opens the way for an easy VLSI as well as

WSI implementation. To embed our linear octree onto

the mesh, we use the shuffle row major order, i.e the

linear quadtree order ( ef figure 2 ).
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Fig. 1 Example of Linear Octree

For the sake of simplicity of presentation, we first assume
that each voxd get a PE. This will be changed to one
obel per PE in _3 for the list compaction.

y, or z. Although the wire-cutting argument of _1 tells
us that a sorting/routag¢ algorithm should take O(_),

the cost of this operation will be much less because the
data are sorted. The principle of the algorithm is to
partition the data in disjoint sets, and to perform the

routage within each of these sets in parallel. Followir.g
the definition of the linear octree, such sets can be easily

created by 'unshufl_ing' the obels. The result is what we
call the octal planes. An octal plane of level i for the
_is axis, is the set II(i,_is) = {o _ A / (At ^ .42)),
with A_ : (+mis, = 1,ns _> i > 1), A2 : (axisk = O,i >
k > 1), where A is a linear octree of resolution _s and
a_iak is the _:+_ bit of the a_ig-coordinate of an obel O.

II(i,a=is) is the set of planes which are perpendicular
to azi8 and whose distance to the origin on this axis is
equal to (2_+ 1)2 _-1. For instance the II(1, axis) is the

set of planes at distance 2k + 1 of the origin over their
respective axis. They correspond to the middle planes
of all the octants of volume 81 ( ef figure 3 ).

.I, ,I.
--0 -- --1 --

is 17 z4 Ii

--2 -- --3 --

"1 .... I"

?

Fig. 2 Embedding on the Mesh

2. ROUTAGE ALGORITHM

Our aim is now to get the basic operations of a regular
pyramid on the PSMH. Clearly, any semigroup operation
can be performed on the PSMH with the same cost as on
a pyramid, by using the recursive doubling 4. Another

basic requirement is to be able to shift the data by 1 in

any direction. In other words, we want to send a message
from one PE to its neighbor at distance 1 in direction x,

o_,.
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Fig. 3 Octal Plane II(1, a_)

The algorithm proceeds one octal plane at a time. Poz
each octal plane of level i, all the octant of volume 8_can
perform their internal communications, i.e through the
middle plane, simultaneously, as each octant corresponds
to an independent set of PEs. Now that we have parti-
tioned the data, what we have left is to route the data
within each octant. We operate in bottom-up/top-down
fashion. The reason for this choice is twofold. Firstly

this divldc-and-conquer approach will allow a partition
of the buses. Secondly, by progressively moving the data

we get more and more buses to work. The algorithm is
as follows : first, we recursively sort/balance the load
over the octant. Starting with the suboctants of volume
8_, we sort the data in raster order, then balance them

so that each row gets the same number of data. The
reason for sorting is that it facilitates balancing. We
then repeatthiswith the suboctantsof volume 8_,and

so on, untilthe whole octantisbalanced. Once at the

top,we go down unsorting/unbalancing,but according

to the destination index. The details of the routage will

not be given here. The interestedreadermay find the

476



whole algorithm in :. Because we have at most 4_ active
PEs within each octant of volume 8_, the cost is min-
imal if we have B = N_ buses per row/column. The

algorithm is then of order O(log3(N)).

3. A PYRAMID OF FRACTIONAL DIMEN-
SION

Following the routage, we want to compact the list to
reduce the PSMH size. In fact, an interesting property
of the octree is that the number of obels is proportional
to the object's surface _. This means that we should be

able to expect s significant decrease in the PSMH sise if
we compact the list. The algorithm is mainly dictated

by the constraints from the previous routag¢ algorithm.
They are twofold. Rule 1: no octant should interfere
with another one, so that we ca;1 partition the buses.
Rule 2: the load has to be well balanced over the mesh.

This last requirement, although not vital , is important
as it will minimize the bottlenecks, therefore maximizing

the system's performances.
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Fig. 4 figure 1 octrec's embedding

To take advantage of the compaction, we will now use
only one PE per obel. Clearly this is not a problem
when a bigger obe] needs to communicate with a group

of smaller neighbors. The other way is less easy, as 1
PE may have to handle several incoming messages. The
solution is to make the neighbors cooperate to present

only one message. This cooperation is easy because these
ncighbors form an interval. We define as interval a set
of PEs which are consecutive for a given order traver-
sal. In the present case, we consider the raster order

which we get from the bottom-up phase of) for instanter
the routage algorithm. In the neighbor's case, the inter-
val consists in fact of more than the neighbors, but the
other PEs are inactive and can be bypassed by the buses.
The problem is then reduced to either a broadcast or a

semJgroup operation within the interval.

The compaction algorithm is composed of 2 parts. We
first compute the new position of each obel and then

move them to destinationusinga modifiedroutageal-

gorithm.The computation of the new positionsisdone

inbottom-up/top-down fashion.Startingfrom the bot-

tom of the octree) i.e with the octants of volume 81, we

try to merge theirsuboctants.Two suboctantscan be

merged if(a)the receiverhas enough PEs left,(b) its

communication quota isnot exceeded.This quota isthe

number of PEa that may communicate slmultaneous]y
per octant. As we proceed one direction at a time, it
corresponds to the surface of an oetant's side, i.e 4_. Be-

cause we do not actually move the data until the second
part, merging only means that we add to the commu-

nication requirements. Once level i is done, we go up
to level i + 1, and so on. It should be noticed that, to
enforce Rule 1, each suboctant has to be considered as

an unbreakable entity: we can't merge part of it. The

cost of p_rt 1 is of orde, O(logpV)).
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Fig. 5 figure 1 octree's packing

We give an example of packing in figures 4 and 5. The
figure 4 represents the embedding of figure's 1 octree on
a 64 × 64 mesh. The dashed areas correspond to the PEa
which would have been used with the original assump-
tion of 1 PE/voxc]. The 4 meshes of figure 5 are, from
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top to bottom, the level 1, 2, 3 and 4 of the packing. For

the sake of presentation we show the updated positions

at each level although the real algorithm waits until the

end to move. The dotted lines delimit the octants of

volume, respectively, 81, 82, 8s and 84, i.e also the bus

segments. Once each obel knows its final destination, the

obels are routed to their final destination with a slightly

modified version of the previous algorithm. The basic

difference is that we do not work with one octal plane

at a time, but consider the whole mesh. Then, while

we still sort/balance the data in the first phase, we only

unsort in the second phase. Because we may have up to

N data to move, we get a cost of order O(N_ log2(N))

with B = N a, buses per row.

4. NEIGHBOR FINDING

After the compaction, the obels are still in shuffle row

major order. However, we can't get their position by a

simple computation. Hence we have to perform a neigh-

bor finding operation before we can route any data. We

now present an algorithm that performs this search for

all the obels in parallel. For the same reasons as previ-

ously, we work one octal plane at a time, so that each

octant can proceed independently. The principle of the

search is to reverse the usual binary search approach.

While the binary search goes through a list, looking for

one value at a time, our search makes each PE broadcast

its value on a bus in turn, while the others are listening.

For the sake of simplicity we assume that we have half

as many available buses as we have of active PEs. The

idea is to start with the median PE, which broadcasts its

value on the median bus. Because all the other PEs are

listening, each of them now know where to look the next

time. Then the median PEa of the 2 halves broadcast

their values, and so on. After log steps, each PE will

have found what it was looking for.

The neighbor finding algorithm is as follows : we proceed

in 4 stages for each octal plane. Let AR and As be re-

spectively the receiversand senders listfor one octaat of

volume 8i. The firststage consists of sorting/balancing

the octant likefor a routage. After this,both listsare

spread over the octant, with at most N _,active PEs on

each row. The second part performs a preliminary search

by asking the firstactive PE of AR on each row to go on

the diagonal and broadcast its value on the column in

turn, following the binary search pattern defined above.

The resultisthat allthe PEs of As get to know on which

row their neighbor should be in O(log(N)) time. The

third stage is to send thisgroup of obcls on the row oi

each As's PE, then to perform a search among the group.

This is always possible because we may have at most

O{N2) groups of P¢-_ values to be sent on each row of

width Wo = N# (where No is the surface of the octant).

Finally the fourth part unsorts/unbalances in order to

send the result back to the original PEa. The globai

cost of this algorithm is the same as for the routage, i.e

of order O(logS(N)), with the assumption of B = N _.
buses.

5. CONCLUSION

We have presented a new Interconnection Network, the

Partitionable Spanning Multibus Hypercube. Its aim is

to offer a cost efficient solution to problems with spatially

distributed data. To reduce the scope of this article we
concentrated on the 3-dimensional case. We introduced

a divide-and-conquer routage algorithm which takes ad-

vantage of the existing data ordering to reduce the algo-

rithm cost. Because a static allocation map wastes the

PEs, we derived a compaction algorithm which respects

the constraint of the routage algorithm. As a conse-

quence we derived a neighbor finding technique, based

on broadcasting techniques. Most of the operations that

need to be performed on the PSMH take either a con-

stant, logarithmic or polylogarithmic time, if we have

B = N, _ buses per row/column.
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ABSTRACT

The problem of routing permutations through an _ net-

work connecting a set of processors is studied in the frame-

work of linear algebra. The class of linear permutations is

defined, and it is shown that any linear permutation can be

routed through the 12 network in two passes. Furthermore,

the address of the intermediary processor for the routing can

be found in O(n 4) time, where n is the size of the address of

a processor. The class of linear permutations contains the

class of Bit Permute Complement permutations, and the

address of the intermediary processor for routing Bit Per-

mute Complement permutations can be found in O(n) time.

1. INTRODUCTION

Lawrie [3] has proposed the f_ network, which can be

used as a vehicle for establishing communication among a
set of N = 2n processors, where each processor is identified

with a unique n-bit binary address. The f/network enables a
source processor to establish communication with any other

processor, which is called the destination processor, and we

consider the case in which each processor acts as both a
source processor and a destination processor. The commun-

ication pattern may be viewed as a permutation of the

addresses of the processors, where the address of each

source processor maps to the address of its destination pro-
cessor.

Parker [6] showed that any permutation can be realized

in three passes through the 12 network. The Benes network

[3,4] consists of a reverse 12 network followed by an 1"2net-
work. Parker [6] also showed that any permutation can be

realized in only one pass through the Benes network; how-

ever, the Benes network has twice the hardware as the f't net-

work. We show that by finding the addresses of intermedi-

ary processors, the class of linear permutations can be real-

ized in only two passes of the i2 network. An important sub-

class of the linear permutations is the Bit Permute Comple-

ment (BPC) permutations studied by Nassimi and Sahni [5]

and by Yew and Lawrie [7]. The class of BPC permutations

includes three of Lenfant's five families of frequently used

permutations [4]. An algorithm for routing BPC permuta-

tions through the 12 network also appears in [7]; however,

ours is distinct in both its technique and results. Moreover,
if n is the number of bits in an address, our algorithm finds

n formulas for the bits of the address of the intermediary

processor in time linear in n. Our algorithm for the more

general class of linear permutations is O(n4), and no such

algorithm has appeared in the literature. Furthermore, our

approach lies in linear algebra, in contrast to that used in [6]

and [7].

2, THE 12 NETWORK

The fl network for N--2 n processors consists of n

stages of N/2 switches. Each switch has two inputs and two

outputs, so there are N wires entering and leaving each

stage. Each collection of N wires may be labeled with n vec-

tor of n bits so that the following conventions hold: for

source processor sls2...s,_ to communicate with destination

processor dld2...dn, the message must be put on wire

Si+lSi+2...Sndld2...di after the i-th stage of switches. For

source processor SlS2...s n and destination processor

dld2...dn, we define the i-th window as the n bits

Si+lSi+2...Sndld2...dl. Clearly, there is a conflict between two

source-destination pairs for the same wire if and only if for

some i, 1 < i < n, their i-th windows are identical. Thus, a

permutation is conflict-free if and only if for each i,

1 < i < n, the i-th window of each source-destination pair is

unique.

Lemma 1. If a permutation P' is obtained from a per-

mutation P by complementing a subset of the bits of the

addresses of all destination processors, then P is conflict-

free if and only if P' is conflict-free.

Proof. For 1 < i < n, the i-th windows of two source-

destination pairs of P are identical if and only if the i-th win-

dows of the two source-destination pairs of P' are identical

for the same two source processors.

3. LINEAR PERMUTATIONS

In this section we define the classes of linear permuta-

tions and Bit Permute Complement permutations and place

the problem of routing them through the f_ network in the

framework of linear algebra. In what follows, + denotes
exclusive-or. Note that + is associative.

CH2649-2/89/0000/0479501.00 © 1988 IEEE
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Definition. Let SlS2...s n denote the address of a s_ur.e

processor, and let dld2...cl n denote the address of its destina-

tion processor. A linear permutation is a permutation in

which for 1<i< n, each d i =s;_l+sj[ +...+si'h , where sT_t

denotes either sk_ or its complement _kt"

Definition. Let sis2...s n denote the address of a source

processor, and let dtdz...d n denote the address of its destina-
tion processor. Let _r be a permutation of {1,2,...,n}. A B/t

Permute Complement (BPC) permutation is a permutation in

which for 1 < i < n, each d i -- s_(i), where s_0 ) denotes either

st(1) or its complement g_(i).

Definition. Let s#2...s n denote the address of a source

processor, and let dld2...dn denote the address of its destina-

tion processor. An uncomplemented linear permutation is a

permutation in which for 1 < i < n, each

di = sii.t+sj_2+...+sj_ h.

Definition. Let slsz...s D denote the address of a source

processor, and let dldz...d a denote the address of its destina-

tion processor. Let lr be a permutation of {1,2,..,n}. A B/t

Permute (BP) permutation is a permutation in which for

1 < i < n, each di = s_o ).

Let P be a linear permutation in which for 1 < i < n,

d i = s[l+s;_ 2+...+s;_. We define its uncomplemented version

to be the permutation P' in which for l<i<n,

d i = sh.l+sjt, z+...+sji, h.

Theorem 1. A linear (BPC) permutation is conflict-

free if and only if its uncomplemented version is conflict-

free.

Proof. Let P be a linear permutation in which for

l<i<n, each di=sT_+s[,+...+s._ _. Because _ffix+l,

1+1 = 0, and x+0 = x and because exclusive-or is associative

and commutative, each d i can be rewritten as either

sj_+sj_z+...+sj_ h or sjL+si_z+...+sj_+l. Thus, P may be

obtained from its uncomplemeuted version P' by comple-

menting a subset of the bits of the addresses of all destina-

tion processors. By Lemma 1, P is conflict-free if and only
if P' is conflict-free.

Thus, to show that all linear permutations can be

routed through the f_ network in some number of passes, we

need only show that the class of uncomplemented linear per-

mutations can be routed in that many passes. The same

observation holds true for BPC and BP permutations.

It can be seen that the variables sl,sz,...,s a and the con-

stunt zero combined with exclusive-or is the vector space of
those variables and the constant zero over the field of

integers modulo two. Exclusive-or is both associative and

commutative. Furthermore, zero functions as the identity,
and each vector is its own inverse.

Because the variables Sl,S 2..... sa and the constant zero

form a vector space under exclusive-or, the class of conflict-

free uncomplemented linear permutations can be character-

ized in terms of linear independence. Let S#z...s a denote

the address of a source processor, and let dtdz...d_ denote

the address of its destination processor, where each d i is a

linear combination of the si's. If D, ={dl,d2,...,dn) is

linearly independent, then for each actual destination

address, the bits of the address of its unique source proces-

sor may be recovered. If, however, D_ is linearly depen-

dent, more than one source processor must have the same

destination processor. Thus we have a permutation if and

only if D n is linearly independent. For 1 < i < n-l, let

D i = {Si+l,Si+2,...,sn,dl,dz...,di}. For 1 < i < n-l, if D i is

linearly independent, we can determine the bits of the

address of a unique source processor using a given wire after

the i-th stage. If for some i, 1 <i <n-l, D i is linearly
dependent, then the i-th windows of at least two source-

destination pairs axe identical. Hence an uncomplemented

linear permutation is conflict-free if and only if for

1 < i < n, D i is linearly independent.

4. A TWO-PASS ROUTING ALGORITHM FOR LINEAR

PERMUTATIONS

We present a two-pass routing algorithm for the class of

uncomplemented linear permutations, which implicitly pro-
vides an algorithm for routing all linear permutations in two

passes. Let stsz...s n denote the address of a source proces-

sor, and let dld2...d n denote the address of its destination

processor under some uncomplemented linear permutation.

We present an algorithm for finding the address of an

intermediary processor zlz2...z n such that the permutations

SlS2...S n --4' Z1Z2...Z n and Z1Z2...Zn "-'*dld2...d n are both

conflict-free. For 1 < i <: n, z i is either si or si+s i for some

sj. For 1 < i < n, let Z i = {si+l,si+2,...,Sn,Zl,Z2,...,zl}, and let
D i = {zi+l,zi+ 2.... ,zn,dl,d2,...di}. The permutation

sls2...s n --* zlz2...z n will be conflict-free if and only if, for

1 < i < n, Z i is linearly independent. Furthermore, if D i is

linearly independent, we can determine the unique address

of the original source processor sls2...s n using a given wire

after the i-th stage. Thus, if Z n is linearly independent, we

can find the unique address of the intermediary processor

zlz2...z n using the wire. If, however, D i is linearly depen-

dent, there are at least two original source processors that

must use the same wire during the second pass through the
network. Thus, the two permutations are conflict-free if and

only if for 1 < i < n, Z i and D i are linearly independent.

The process of determining each z i is accomplished by

examining D i. Since SlS2...s n ---4.dld2...d n is a permutation,

D_ is linearly independent. At each stage we find z i such

that Di_ 1 is linearly independent if D i is linearly independent.

We finally find z z such that Z n is linearly independent if D 1

is linearly independent. For 1 < k < n-i, let vk = zi+k, and

for l<k<i, letvn_i+ k=d k.Thus,D i={vj [ l<j<n}.If

{si,vl,v2,...,Vn_l} is linearly independent, then z i = si. If,

however, {si,vl,v2,...,vn_l} is linearly dependent, then

zi = Si+Sj, where sj is one of the terms appearing in v n = d i.

The choice of sj is governed by Theorem 2 below.

Lemma 2. Let V = {vl,v2,...,vn_l} be linearly indepen-

dent, and let W = V LJ {w} be linearly dependent. There
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exist ci, 1 < i < n--l, such that

11--1

W = _ CiV i.
i-1

Proof. Since W is linearly dependent, there exist ci,
n--1

1 < i < n, such that at least one c i #0 and %w + _clv i = O.
i-1

n-1

Since V is linearly independent, c n = 1. Thus, w = _-_ civ i.
i-1

Theorem 2. Let V = {Vl,V 2 ..... Vn}, where

Vn ---_Stl-+-St2+...+Stk. Let V' = {si,vvv2,...,Vn_1}, and for

1 <j __ k, let Wj = (si+sVvl,v2,...,vn_l). If V is linearly

independent and V' is finearly dependent, then for some j,

1 __ j < k, Wj is linearly independent.

Proof. Assume that for 1 __j <k, W i is linearly

dependent. Since any subset of V is linearly independent,

we have that by Lemma 2, for 1 < j __ k, there exist ci, m,
n--1

1 < m < n--l, such that si+s h ---- _ Cj,mV m. Consider
I_1--1

k n-1 k

E (si+s,) = E ( E Ci,m)v_.
j-1 m-1 j--1

However,

k k k k

E (Si'+'St_) = E Si-kY_ = E Si+Vn"
j-1 j-I j-1 st_ j-1

k n-I k

If k is even, _ s i = 0. Thus, we have vn = _ ( _ Cj,m) vm,
j-1 m-1 j-1

and the linear independence of V is contradicted. If k is
k

odd, _ si = si, and we have
j-1

n-I k

Si+Vn = E ( _ Cj,m) Vm
m-1 j-1

or

n-1 k

Vn=Si+ E ( ECj,m) Vm-
m-1 j-1

Because any subset of V is linearly independent and V' is

linearly dependent, by Lemma 2 there exist constants din,
n--I

1 < m < n-l, such that s i = _ dmvm. Therefore,
m-I

n-i k

vn = _ (din+ _ Cj,m) Vm, and the linear independence of V
m--1 jml

is again contradicted. Thus, at least one Wj, 1 __ j < k, is

linearly independent.

We have just shown that if D n is linearly independent,

then Di, 1 < i < n-l, and Z n are linearly independent. We

now show that for 2 < i < n, if Z i is linearly independent,

then Zi_ t is linearly independent. We first need the follow-

ing lemma.

[,emma 3. Let V = {Vl,V2,...,Vi_l, si+sj, Vi+l,.-.,Vn},

where j #i and for 1 <k <n and k#i, either vk=s t or

vk = Sk+Smx for some Sink# st. Let V' = {Vl,V2,...,Vi_l,

Si,Vi+l,...,Vn}. If V is linearly independent, then V' is linearly

independent.

Proof. We show that if V' is linearly dependent, there

must exist an infinite, nonrepeating sequence of vectors v_,

m>l, where xm#i and vx --sx+sx,+t, with xl-- j.

Assume V' is linearly dependent. Since any subset of V is

linearly independent, by Lemma 2 there exist %, 1 < k < n

and k#i, such that si= _%v k. The remainder of the
k-1

k,,i
proof proceeds by induction on m.

Basis (m-l). Either vj = sj or vj = si + s_2 for some sx.

If vi ----sj, then si + sj = vj + _ ckvt, and the linear indepen-
k--1

k,,i

dence of V is contradicted. Thus, vj ----sj+s_2. -Furthermore,

x2 # i; otherwise, the linear independence of V is again con-
tradicted.

Induction. Assume there is a nonrepeating sequence

V_k= Szk+S_k.t for 1 < k < m--l, where xt # i for 1 < k < m.

Note that

m--1

Vx k
k--1

m--1

m-1 "-1

sx_ + k__t Sxk÷lk-1

m-I
Sx k + Sx k

k-1 k-2

Sx 1 + Sx,a

=sj +s_.

Either Vx= = sx_ or v,_ = sx_ + sx_+_ for some sx_+t. If

vx =s_, then si+s j - _CkVk+ VXk, and the linear
k-I k-I

k#i

independence of V is contradicted. Thus, vx= = sx=+s,.=+ _.

Furthermore, if Xm+1---i, then s i+s i= _ Vxk, and the
k-1

linear independence of V is again contradicted.

Assume vx==Vx=__ for some i, l<i<m-1. Then

xm = Xm__, and s,.= = sx=.. Hence, we have

m-1 m-1

E vx,= _ (%+%+)
k-m--i k--m-i

: Sx___ + Sx_

---- Sx= + Sx=

-0.

Again, the linear independence of V is contradicted.

Theorem 3. If Z i = {si+l,si+ 2 ..... Sn,gl,Z 2 ..... zi}

I/nearly independent, then

Zi_l = {si,si+ 1 ..... Sn, Z_,Zz..... Zi_l} is linearly independent.

is
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Proof.Either zi = s i or z i = si+s i for some si _ si. If

z i --- si, there is nothing to prove. If z i = si+s j, then Lemma

3 applies with v k=z k for l<k <i-1 and v k=s t for

i+1 <k <n.

Theorem 4. The vectors zi, 1 < i < n, can be found in

O(n 4) time.

Proof. The linear independence of n vectors can be

determined by Gaussian elimination in O(n2). For each of

the n vectors z i, at most n--1 tests for linear independence

must be made.

5. A TWO-PASS ROUTING ALGORITHM FOR BPC

PERMUTATIONS

We present a two-pass routing algorithm for BPC per-

mutations. As mentioned before, we need only demonstrate

that the class of BP permutations can be routed in two

passes. A similar algorithm appears in [7], but ours is dis-

tinct and O(n). The algorithm of the previous section also

applies to this case, but that algorithm is O(n2). Let sls2...s n

denote the address of a source processor, and let dld2...d n

denote its destination processor under some BP permuta-

tion, where d i = s_(i) for some permutation rr of (1,2,...n}.

Definition. An integer i starts a cycle of the permuta-

tion rr if _(i) >__i for all k > 1.

Again we find the address of an intermediary processor

zlz4...z n such that the permutations stsz...sa _ zlzz...zn and

ZlZ2...z n ---*dld2...dn are conflict-free. For 1 < i < n, z i = si

if i starts a cycle of rr, and z i = si+S_r(i ) if i does not start a

cycle of rr. Again, let D i = {zi+l,zi+2,...,Zn,dl,d2 ..... di} , and

let Z i = {Si+l,Si+2,...,Sn,Zl,Z2,...,Zi). Since for 1 < i < n,

di = s_(i) , D n is linearly independent. We again show that for

2 <i< n, Di_ 1 is linearly independent if D i is linearly

independent and that Z n is linearly independent if D 1 is

linearly independent. For 2 <i < n, the linear indepen-

dence of Zi_ 1 follows from the linear independence of Z i by

Theorem 3.

Let V = {vj [ 1 < j <__n}, where vj = dj = s_o ) for

1 <j <i-1, v i=si, and for i+l<j <n, vi=sj ifj starts a

cycle of tr and vi = si+s,(j) if j does not start a cycle of lr.

Lemma 4. If i does not start a cycle of rr, then V is

linearly dependent.

Proof. See [2].

Lemma 5. If i starts a cycle of 7r and V - {si} I.J (di} is

linearly independent, then V is linearly independent.

Proof. See [2].

Theorem 5. For 2 < i < n, if D i is linearly indepen-

dent, then Di_ 1 is linearly independent, and if D 1 is linearly

independent, then Z n is linearly independent.

Proof. See [2].

Theorem 6. The vectors z i can be found in O(n) time.

Proof. Given rr, the integers that start cycles in 7r can

be found in O(n) time. Once the integers that start cycles

are found, each of the n zi's can be found in constant time.

6. CONCLUSIONS

We have studied routing the class of linear permuta-

tions through the fl network within the framework of linear

algebra. Each linear permutation can be routed through the

f2 network in two passes, and a formula for each bit of the
address of the intermediary processor can be found in O(n 4)

time. Furthermore, for the subclass of BPC permutations, a

formula for each bit of the address of the intermediary pro-
cessor can be found in O(n) time. It remains an open prob-

lem to show that either any permutation can be routed

through the f2 network in two passes or there is a permuta-

tion that requires three passes to be routed through the f_
network.
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The Associative String Processor (ASP) is a

homogeneous, reconfigurable and prograganable,

massively parallel processor which offers step-

function advantages in cost-performance and

application flexibility, due to its unique

architecture and its exploitation of state-of-the-

art microelectronics. This paper briefly describes

the ASP architecture, its implementation and

reports the results of an evaluation of its

applicability to image processing tasks. In order

to provide a realistic demonstration of the above-

mentioned advantages, a set of independently

defined such tasks (viz. the DARPA Image

Understanding benchmark) was chosen for the

evaluation and the results are used to compare the

performance of the ASP architecture with the

performances of other parallel computer

architectures when applied to the same computer

vision tasks.

INTRODUCTION

Comparing different parallel processing

architectures is a very difficult task. Most

cor_nercial purveyors promote their machines by

quoting only the most favourable performances.

Moreover, analysis of parallel algorithms and

systems shows that there are always overheads,

detracting from performance, which are rarely

quoted. Indeed, it is commonly accepted that users

can expect parallel processors to provide a speed-

up of only O(logN), where N is the number of

processing elements.

The field of image processing in general, and

computer vision in particular, provides a strong

incentive for massively parallel processors; due to

the large data volume, high data-rate and

algorithmic complexity of its computational tasks.

Indeed, researchers, involved in the areas of

algorithm and system development for real-time

image understanding, need high performance which is

easy to use (including programming) and cost-

effective. Not surprisingly, therefore, the image

processing workers were among the first to attempt

the establishment of a realistic benchmark for

massively parallel processors. Early computer

vision benchmarking attempts included the Abingdon

Cross problem (1982) and the Tanque Verde benchmark

suite (1984).

A more recent attempt to construct a computer

vision benchmark emerged from the DARPA Image

Understanding coramunity in 1986, when the

University of Maryland defined a set of

representative low and intermediate-level vision

tasks [i]. High-level vision (such as recognition)

were not included, because it was felt that

proposed algorithms were too ill-defined to

properly evaluate parallel architectures.

The benchmark was intended to achieve an initial

understanding .of the general strengths and

weaknesses, for computer vision applications, of

the growing number of parallel computer

architectures and to project the need for future

development of parallel architectures to support

this field.

This DARPA benchmarking activity has been the most

successful to date. Moreover, a second DARPA Image

Understanding benchmark suite, based on the

experience of the first benchmark and defined by

the University of Massachusetts in collaboration

with the University of Maryland, has been recently

announced [2].

This paper reports the results of the evaluation of

the Associative String Processor (ASP) [3], a

massively parallel processor emerging from research

at Brunel University and being developed by Aspex

Microsystems Ltd., for the first DARPA benchmark.

TSE BENC_L%RK

The first DARPA Image Understanding benchmark,

defined in reference [I] and discussed in reference

[4], includes the following computer vision tasks.

A. Edge detection within a 512 x 512 pixel image

AI. ii x ii Laplacian

A2. zero crossing detection

A3. border following.

B. Connected component labelling within a 512 x

512 pixel image.

C. Hough transform computation within a 512 x

512 pixel image.

D. Geometrical constructions for a set of I000

planar points.

CH2649-2/89/0000/0483501.00 © 1988 IEEE

483



E°

F.

DI. convex hull

D2. Voronoi diagram

D3. minimum spanning tree.

Visibility for a set of I000 opaque triangles

in 3-D space.

Graph navigation

FI. Finding subgraphs of a given graph (I00

vertices, each with I0 edges) that are

isomorphic to another given graph (30

vertices, each with 3 edges).

F2. Finding the minimum cost path between two

vertices of an edge-weighted graph (I000

vertices, each with i00 edges).

ASP_

As indicated in Figure I, an ASP system [3]

comprises a dynamically reconfiqurable parallel

processing structure of communicating ASP

sub-strings, each supported with an ASP Data Buffer

(ADB), an ASP Controller and an ASP Data

Communications Network.

Each ASP substring is a parallel processing

computational structure, comprising a string of

identical APEs (Associative Processing Elements),

as shown in Figure 2. Each APE is connected to an

Inter-APE Communication Network (which runs in

parallel with the APE string). All APEs share

common bit-parallel Data, Activity and Control

Busses and a single feedback line (Match Reply,"

MR), which are maintained by an external ASP

Controller, which also maintains the Link Left and

Link Right ports (LKL and LKR) of the Inter-APE

Communication Network.

Each APE incorporates an n-bit Data Register and an

a-bit Activity Register, an (n+a)-bit parallel

Comparator, where the values of n and a are in the

ranges 32-128 and 4-8 respectively, depending on

the application class for which the ASP is
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optimised. Moreover, the APE includes a single-bit

full-adder, 4 status flags (viz. C to represent

arithmetic Carry, M and D to tag Matching and

Destination APEs and A to activate selected APEs)

and control logic for local processing and

communication with other APEs.

In operation, each ASP substring supports a form of

set processing, in which the sub-set of active APEs

(i.e. those which match broadcast data and activity

values) support scalar-vector and vector-vector

operations. The Match Reply (MR) line indicates

whether none or some APEs match. Matching APEs are

either directly activated or source inter-APE

cormm/nications to indirectly activate other APEs.

Scalar data are directly broadcast or received by

the ASP controller via the bit-parallel Data Bus.

Input-output vector data could also be exchanged

(viz. output dumped and input loaded in a single

step) APE-sequentially via the Data Bus with the

bit-parallel Primary Data exchanger (PDX) shown in

Figure 2. However, the Vector Data Buffer supports

a much faster APE-parallel exchange facility, in

which the bit-serial Primary Data exchanger (PDX)

performs the task at a very high data rate, thereby

minimising loss of parallel processing efficiency.

Similarly, but at a lower data-rate, the Secondary

Data exchanger (SDX) provides a bit-parallel vector

data exchange between the Vector Data Buffer and

the external ASP Data Buffer (ADB), which is

overlapped with parallel processing and, therefore,

does not present a sequential processing overhead.

The Inter-APE Communication Network implements a

globally-controlled and dynamically-reconfigurable

tightly-coupled APE interconnection strategy, which

supports cost-effective emulation of coramon network

topologies with two modes of inter-APE

communication:

circuit-switching: asynchronous bi-directional

single-bit communication via

multiple signal paths, dynamically configured

(programmer-transparently) to connect APE sources

and corresponding APE destinations of high-speed

activation signals, implementing a fully-

connected permutation and broadcast network for

484



APE selection and inter-APE routing functions

packet-switching: synchronous bi-directional

multi-bit communication via a

high-speed bit-serial shift register, routing M-

tag patterns along each APE substring, for

data/message transfer.

In order to preserve continuity at the two ends of

the Inter-APE Communication Network, the LKL and

LKR (shown in Figure 2) allow activation or M-bit

signals to be injected and sensed by the external

ASP controller and act as the left and right

neighbours of the leftmost and rightmost APE in the

associative string processor respectively.

ASP IMPLEMENTATION

The ASP concept is particularly well matched to

both the opportunities and constraints of VLSI chip

fabrication; owing to its high APE packing density,

its highly compact inter-APE communications network

and, especially, because its I/O requirement is

independent of the string length. The feasibility

of a 256-APE VLSI ASP chip was demonstrated in 1986

and Aspex Microsystems are developing 256-APE VLSI

ASP chips for ASP substring implementation [3].

Moreover, the ASP is highly amenable to

defect/fault-tolerance; owing to its construction

from a large number of identical APEs, lack of

location-dependent addressing and simple inter-APE

interconnection. Consequently, as reducing feature-

sizes and increasing chip sizes drive VLSI chip

fabrication technology towards the prospect of ULSI

chips and WSI devices, the ASP architecture offers

consistency and becomes increasingly more cost-

effective. Indeed, research at Brunel University

has indicated the potential integrating complete

ASP systems with 2,048-APE ULSI chips and 8,192-APE

WSI ASP devices.

EVALUATION

In practice, ASP system configurations may be

tailored to suit application requirements; the

minimum number of APEs being 256 (see above) and

the maximum being limited by implementation cost.

Two ASP system configurations were chosen for the

DARPA benchmark evaluation [4]:

DARPA ASP:
Number of ASP substrings = 512

Number of APEs per substring = 512

Data Register storage = 96 bits

Activity Register storage = 5 bits

Implementation complexity

32 WSI ASP devices

or 128 ULSI ASP chips

or 1,024 VLSI ASP chips plus data

communication network, ADB and

ASP controller boards

Clock rate = 20 MHz

ASP:
whichever ASP system configuration

offers optimum performance for the

particular benchmark task.

Assuming a clock rate of 20 MHz, the benchmark

evaluation results for these configurations are

reported in Table i.

Comparison of the results of Table 1 with those of

Tables 2 through 4 indicates the consistency of the

performance advantage of the ASP. It is interesting

to note the superiority of the two associative

architectures. Unfortunately, the DARPA benchmark

neglects volume and cost factors, for which highly-

compact 1000MOPS/S1000 ULSI/WSI ASPs would excel.

OTHER ARCHITE_

Brief details of

architectures which

to the first DARPA

are given below [4].

other parallel computer

have been evaluated according

Image Understanding benchmark

Medium-grain MIMD multiprocessors (see Table 2

for the reported benchmark results)

BB&N BUTTERFLY: 128 shuffle-exchange

connected PEs; each 16 MIPS PE comprising a

Motorola 68020 32-bit microprocessor, an AMD-

2901 bit-slice processors for memory

management, a custom-designed VLSI switch

circuit supporting 32 Mbits/sec inter-PE

communication and up to 4Mbytes of local

memory with a 64Mbytes/sec bandwidth. The

multiprocessor incorporates 512 I/O channels,

each supporting a data rate of 16Mbits/sec

operating with a 16MHz clock.

Caltech CUBE and MOSAIK: 256 and 16,384

hypercube connected PEs; each 8 MIPS PE

comprising Intel 80286/80287 32-bit

microprocessors and up to 4.5Mbytes of local

memory with a 32Mbytes/sec bandwidth. The

multiprocessors are designed to operate with

an 8MHz clock.

Medium-grain systolic arrays (see Table 3 for the

reported benchmark results)

CMU WW-WARP and PC-WARP: i0 linearly

connected PEs; each i0 MFLOPS PE comprising a

wire-wrapped or printed-circuit board 255

chip implementation of input queues,

crossbar, 32-bit processing elements

(including a floating point processor),

register files, 32 Mbytes of local memory

(with an 80Mbytes/sec bandwidth), address

generator and microengine. Inter-PE

communication PEs can be achieved at 80

Mbytes/sec and the I/O data rate is

40Mbytes/sec. The linear arrays are

controlled by an interface unit, comprising

264 chips, which can communicate with the

host system through two I/O clusters, based

on Motorola 68020 microprocessors. The arrays

are designed to operate with an 20 MHz clock.

CMU iWARP: 72 linearly connected PEs; each 16

MFLOPS PE being targetted for integration on

a single chip being developed in

collaboration with Intel Corporation.
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Fine-grain SIMD array processors (see Table 4 for

the reported benchmark results)

0 Columbia NON-VON: up to IM tree-connected

PEs; each PE being based on a custom-designed

VLSI 1-bit (or 8-bit in version 3) array

processor chip. In version 3, the tree

communication network also incorporates mesh

interconnection between its leaves. The array

processor is designed to operate with a 10MHz
clock.

0 Thinking Machines CONNECTION MACHINE: 65,536

mesh connected PEs; each PE comprising a l-

bit ALU, 8 status flags and 4Kbits of local

memory with a 4Mbits/sec bandwidth. 16 PEs

are implemented with a custom-deslgned VLSI

chip incorporating a 4 x 4 processor array

and one router of a 16Kbytes/sec packet-

switching hypercube-connected conTm/nications

network (overlaying the mesh and implemented

separately) and 4 16K-bit static RAM chips.

The array can support an I/O data rate of

30Kbits/sec/channel operating with a 10MHz
clock.

Fine-grain MIMD/SIMD array processor (see Table 4

for the reported benchmark results)

0 UMass IUA (Image Understanding Architecture):

266,304 three-level mesh connected PEs;

comprising a 64 x 64 array of custom-

designed VLSI CAAPP (Content Addressable

Array Parallel Processor) chips implementing

a 512 x 512 array of 1-bit PEs (each

incorporating 320 bits of local memory, with

a iMbits/sec bandwidth) at the lowest level,

a 64 x 64 array of Texas TMS 320 16-bit DSP

chips at the intermediate level and an 8 x 8

array of Motorola 68020 32-bit

microprocessors at the highest level.

Overlaying the mesh connected communication

network, the Coterie Network allows high

speed communication between remote processing

elements. Data I/O (at the lowest level) and

communication between the three processing

levels is achieved through dual-port video

RAMs. The entire array processor is designed

to operate with a 10MHz clock.
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A1

A2

A3

B

C

D1

D2

D3

E

F1

F2

DARPA ASP ASp

0.80 ms

3.9 us

4.1 us - 5.5 us

6.5 us - 2.4 ms/cmp

140 ms

2.4 ms

ii ms

82 ms

0.1 - 128 ms

0.68 ms/iteration

15 us - 15 ms

0.70 ms

0.7 us

0.9 us - 5.2 us

6.5 us - 2.4 ms/cmp

140 ms

0.2 ms - 0.4 ms

II ms

82 ms

0.1 - 128 ms

0.68 ms/iteration

15 us - 15 ms

Table i. Specified ASP system and optimum

configuration for each task

A1

A2

A3

B

C

D1

D2

D3

E

F1

F2

Table 2.

Butterfly CUBE

2.9 sec i00 ms

? ?

? ?

7.2 sec 14 ms

7.4 sec 1.8 sec

? ?

? ?

? ?

4.2 sec ?

? ?

? I0 ms

Medium-grain MIMD multi

2.5 ms

?

?

6 ms

i0 ms

?

?

?

?

?

1 ms

)rocessors

A1

A2

A3

B

C

D1

D2

D3

E

F1

F2

WW Warp

430 ms/367 ms

170 ms/179 ms

n/a

5.6 sec

n/a / 2 see

9 ms/ 18 ms

n/a

n/a /160 ms

830 ms/400 ms

n/a

1.4 sec

PC Warp

350 ms

50 ms

i.i sec

980 ms

340 ms

9 ms

290 ms

160 ms

400 ms

1800 s/sec

69 ms

iWarp

7.8 ms

7.8 ms

690 ms

470 ms

60 ms

4.3ms

140 ms

43 ms

40 ms

19000 s/sec

25 ms

Table 3. Medium-grain systolic arrays

Non-Von _i IUA

msA1

A2

A3

B

C

D1

D2

D3

E

F1

F2

Table

2

?

?

1 sec

400 ms

?

?

40 ms

I00 ms

?

40 ms

3 ms

?

?

400 ms

700 ms

200 ms

?

2.2 sec

1 sec

?

50 ms

0.2 ms

?

0.2 ms

8 us

27 ms

15 ms

50 ms

0.4 ms/124 ms

70 ms/290 ms

?

I ms

• Fine-grain SIMD array processors
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Abstract

Differences in switch architecture can have a significant effect

on both latency and throughput in interconnection networks. We

assess improvements in performance which can be obtained by

adding buffers to a crossbar switch, by changing the configuration

of the buffers, and by adding the capability of combining messages
to the buffers.

Four basic k x k crossbar switch types are described:

unbuffered; k-input buffers, one per output port; one-input buffers,

one per input port; and one-input buffers, k buffers per output

port. We review previous analytical work and simulation studies of

some of these switch types and extend the analysis to the other
types. An analytical model for simple "hot spot" traffic is

presented and simulation results are shown for different kinds of

message combining.

Keywords: lntereonnection Network, Crossbar Switch, Shared

Memory Muhiprocessor

INTRODUCTION

The basic system model under consideration is N independent

processing elements (PEs) connected to M shared memory modules

(MMs) through a logarithmic interconnection network. Examples
of this architecture include the NYU Ultracomputer 14], the BBN

Butterfly [20 I, and the IBM RP3 [19].

In this model, traffic through the network consists of requests

from PEs to MMs and responses from MMs to PEs. Requests and

responses are typically sent as messages of at most a few hundred

bits, divided into packets of the same s_e as the data path width
from switch to switch within the network. Packets within the same

message are pipelined.

Overall system performance for very large numbers of proces-

sors critically depends on the message throughput that can be

achieved by the interconnection network. In practice, message

throughput is limited not only by the theoretical bandwidth of the

network hut by its latency, the time from the generation of a

request until a response is received. Though processors can be

designed to tolerate some latency [6], a processor will eventually be

unable to generate new requests until it has received the response to

some previous request.

Delta networks [15] connect N = a" PEs to M = b" MMs via

an n-stage network composed of a x b switches. In this paper we

study latency and throughput of square delta networks, with M = N

and a = b = k; in particular we will concentrate on omega networks

(a sub-class of square delta networks with perfect shufl]e

connections [11]) composed of 2 × 2 switches.

Using the fetch-and-add synchronization primitive, the NYU

This work was supported in part by the Applied Mathematical Sci-

ences Program of the U.S. Department of Energy under contract

DE-AC02-76ER03077, in part by the National Science Foundation

under grant DCR-8413359, and in part by I.B.M. under joint study

agreement NfI0039-84-R-0605(Q).

Ultracomputer project has developed operating system and applica-

tions software designed to avoid critical sections and scale to

thousands of processors 131151.Good network performance in the
presence of synchronization "hot spots" is required for the efficient

implementation of such code. We have studied ways of combining

messages as they traverse the network to avoid a hardware critical

section at memory and to prevent the degradation of performance

in the entire network [181.

NETWORK SIMULATOR

Networks composed of 2 x 2 switches under various assump-

tions of switch architecture, PE request generation and memory
behavior are modeled in the simulator. Output statistics include the

average request latency, average bandwidth, average queue length
per stage and total number of combines that occur.

Switches with 2 two-input buffers, 4 one-input buffers and 2

one-input buffers can all be simulated. Buffer size at switches can
be varied. Different clear-to-send protocols can be tested, and

different combining alternatives corresponding to different hardware

implementations can be specified.

PE request generation can be modeled in two ways: (1) gen-

erate a request with some fixed probability whenever permitted by

the first stage of the network or by the capacity of a finite I'E

request queue; (2) generate a request with some fixed probability

whenever a PE "wants to," which requires the simulation of an

infinite request queue at the PE. In the first case, the offered load is

the probability of generating a request on any cycle when the l'E is

not blocked. The effective throughput will be less than the offered

load. In the second case, messages accumulate latency in the request

queue at the PE, but as long as that queue reaches a steady state,

the effective throughput will be equal to the offered load.

Our results show little difference between the two models of

PE request generation, except when the network is very congested.

With uniform traffic and a heavy offered load, both latency and

effective throughput are greater with an infinite request queue.

When hot spot requests induce congestion, a system modeled with

a finite PE request queue, operating at maximum offered load, will

show increased latency without a corresponding increase in effective

throughput once the buffers are larger than a certain size [21. With

an infinite PE request queue, the same throughput can be achieved

at a much lower offered load; in this case, latency decreases as

switch buffer size increases. A system imposed limit on the PE's

maximum request rate might be desirable in a real system, to avoid

loading the network above the capacity at which it functions well.

PE request generation can also simulate a processor which is

allowed only a small number of requests outstanding before it must

quit generating requests.

Memory behavior is modeled with both a cycle and an access

time. The cycle time is used to determine whether or not the

memory will accept a message; the access time is used in computing
total latency from processor to memory. Cycle and access times

may vary for loads, stores and other operations. The intervention of

CH2649-2/89/0000/0487501.00 © 1988 IEEE

48"7



the memory makes delays on the forward and return paths asym-

metric, and must be included for accurate system modeling.

SWITCH ARCHITECTURES

Consider a k × k crossbar switching component in a delta net.

work. Its basic function is to forward messages from any of its k

inputs to any of its k outputs. It may include buffm's to hold mes-

sages in case of conflicts for the output ports or blocking from later

stages. These buffers may be associated with either input or output

ports.

In this section, performance comparisons of the different

switch configurations are based on a traffic model in which

addresses are uniformly distributed among the MMs, and the

interarrival time of requests at the first stage of the network is

geometrically distributed. The network is assumed to be an N × N

square delta network, composed of k × k switches, with log_ (N)= n

stages.

In the simplest unbuffered switch design (see Figure la), a

protocol must be used to 1611 messages in case of conflict. Lost mes-

sages must be retransmitted. The probability of an output at a

switch in the i th stage is pt = l-(I-pi_l/k) _, where po=p is the

offered load on an input port to the network [15]. This can be

approximated by p, =2k/((k- l)n +2k/p) (see [71). Thus for a

square delta network with N PEs and N MMs, the throughput at

each output port of the network is O(1/logN), holding k and p
constant. The overall bandwidth of the network is then

O(N /IogN).

(a) (b)

l C- _
(c) (d)

Figure I. (a) Unbuffered Switch. Co) k-Input Buffers, One per Output

Port. (c) One-lnput Buffers, One per Output Port. (d) k-Input Buffers, k
per Output Port.

"I'he latency of a message, measured from the time a processor

makes a request until it is satisfied, is difficult to estimate because of

retransmission. Suppose the processor can actually generate requests

at a rate b, independent of any responses it receives. Over time, if b
is less than the maximum bandwidth of the network, retransmis-

sions will accumulate until the offered load on the network p minus

the rate r of rejected messages gives the desired b. At this point, the
offered load should stabifize at p = b + r. For a given b =p, the

output probability equation for stage n can be solved for p, b/p

will give the probability of a message being accepted, and p/b the

average number of trials until it is accepted. If we assume that the

transit time in switch cycles of a message accepted by the network is

n + m - I, where n is the number of stages and m is the number of

packets per message, and that a rejected message is retransmitted

after twice this amount of time (when no response or a negative

acknowledgement is received), then the expected value of the round

trip latency [s 2 × (plb) x (n + m - 1),

A hardware buffer capable of accepting k inputs in one cycle

can be used to construct a switch with one buffer per output port

(see Figure lb). This is the type of switch that has been most

thoroughly analyzed in the literature, especially in 18]. According to

that analysis (see also [171), if the queues at each switch may grow

without bound, ("infinite buffers") then the average switch delay at

the first stage is 1 + m2p(l - l/kin)/2(l-rap) where m is the

number of packets in a message, and the average switch delay at
subsequent stages is approximated by the expression

1 + (1 + 4mp/5k)(m2p(1-1/k)/2(l-mp)). The initial I

corresponds to the time required for a message to be transmitted

through a switch without being queued (the switch service time).

The average network traversal time (in one direction) is the sum of

the individual stage delays plus the setup time for the pipe, i.e,

(m-t).

Note that the network has a capacity of lira messages per

switch cycle per PE. That is, each PE cannot enter messages at a

rate higher than one per m cycles, and, conversely, the network can

accommodate any traffic below this threshold. Thus, the global

bandwidth of the network is theoretically proportional to the
number of PEs connected to it.

Using the above formulas, Table 1 compares the analytical

performance predictions for a 1024 PE network containing

unbuffered switches with a network containing switches with k-
input buffers. The
heavier loads.

Request

rate

.I

,2

.3

.4

.8

advantage of buffered switches increases for

Unbuffered

26.7 t 12.3

40.0 t 12.3

Buffered

21.1 I 10.5

22.5 [ 11.2

24.5 I 12.1

27.2 t 13.4
___ 31.6

Fable 1. Round-trip Latency. 1024 PEs, analytical predictions, buffered
and unbuffered switches, different crossbar sizes.

The configuration using k-input buffers is somewhat difficult
to realize in hardware. For a simpler hardware implementation,

one-input buffers, one per input port, may be used. Outputs of the

buffers are multiplexed, and a buffer may be blocked on output by

another buffer (see Figure lc). In 191this arrangement was called

"buffers between the switches." Recent work 116] has shown that

the effective throughput of this type of switch cannot exceed .75

messages per cycle per port, but that for rates under .75, the queues

are stable and output rate equals input rate. Recurrence relations for
the queue length probabilities have also been developed, and have

been used to compute the data in Table 2.

Switch ][ Request rate ]
architecture _.2 .4 .6 .8 [

._ _c)_ ..11.o14 __.o_.i.o__i __ j

Table 2. Expected Queue Length. Single stage, "'infinite buffers," labels as
in Figure I.

Using only one-input buffers, the performance of the k-input

buffers may be approximated using k buffers per output port (see
Figure ld). A packet leaves an output port whenever any of the k

associated buffers has data; if more than one has data, arbitration

must occur, in [91, this configuration was called "buffers within the

switches" and showed better performance than the "buffers between

the switches," especially for high load,
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Byanalyzing the k buffers associated with an output port as a

single queueing system with a service rate of 1 per cycle, the

expected waiting time in the first stage can be seen to be the same
as that of the k-input buffer, tlowever, the service discipline within

the queueing system is no longer first come, first serve, so the vari-

ance of the waiting time may differ. "I'his in turn may affect the

result at later stages.

Table 2 compares analytical results for the three types of

buffered switches, showing the expected queue length at the first

stage, assuming "infinite buffeTS."

Simulations for this section were carried out with one packet

messages, a large buffer size per output port (40 packets), and no

delay at memory. We use a finite PE request queue (in the simula-
tions below, of size 0) as a more realistic model, since actual proces-

sors cannot to generate requests indefinitely when blocked. All

results given here are for a 1024 PE omega network composed of
2 × 2 switches.

Figure 2 shows the latency of different buffered switch types at

different effective throughputs. As in the analytical results for a sin-

gle stage, switches (b) and (d) show equivalent delay, while (c) is
not as good, especially at higher loads. Even in a system where the

average load is expected to be light, the switch types with better

performance at heavier loads may make the network more robust to

bursty traffic.

DELAY

(cycles)

i I-input buffers

60

1-input buffers

4O

2-input buffers

20

0.0 0.2 0.4 0.6 0.8 !.0

THROUGHPUT

(messages/cycle)

Figure 2. Comparison of Three Buffered Switch Architectures. Simulation
data, 1024 PEs, single-packet messages, buffer size 40 packets.

"HOT SPOT" TRAFFIC AND COMBINING

The above results assume that memory reference patterns are

perfectly uniform. As shown in [10 l, "hot spot" traffic can be par-

ticularly damaging in a buffered network. We develop a model of

hot spot traffic which gives an estimate of the maximum amount of

such traffic that can be handled for large numbers of processors,

describe how combining memory requests can be used to mitigate

the effects of hot spots, and show simulation results for different

combining aitematives.

A model for single "hot spot" traffic

Suppose each PE issues two types of requests: hot spot

requests directed to a particular MM and other requests uniformly
distributed among all N MMs. Assume the uniform requests have

request rate W, and the hot spot requests rate R. Each PE issues

p = W + R requests per cycle. The paths of the hot spot requests

produce a traffic tree rooted at the hot MM, and spanning all the
PEs as leaves.

In 114] it is shown that each switch node in a delta network
with a single hot spot has the same traffic distribution on all its

inputs. We denote the input probabilities as Pj,l- I where t is the
stage of the node, and j is the number of stages the traffic at this

input has conflicted with traffic directed to the hot spot.

For an unbuffered network, if the switch node is in the "hot"

traffic tree, the probability that a "hot" output has a message is:

p/j= l-[(l-rj_lpj_ld_l-(l-r:_l)pl_td_l/k]_'

and the probability a "cool" output has a message is:

Pj-Ij = i -I1 -(1 -9_Op:_lj_dkl k

where,

RkJ

rl Rk j + W j=O,l,...,n.

For nodes not in the "hot" traf_c tree,

pgj-- 1-(1-p_d_t/k) k"

Take a 45 x 4 s delta network as an example. At the outputs of

the last stage, traffic can be divided into 6 classes: Ps.s, the "hot"

trat_c, one output only; P4,s, traffic that conflicts with the "hot"

traffic for 4 stages, and has 3 outputs; P3,s, 3 stages conflict, 12 out-

puts; P2,s, 2 stages conflict, 48 outputs; Pl,s, 1 stage conflict, 192

outputs; and P0,s, traffic that has no conflict with the "hot" tra/lic,

768 outputs.

The effects of "hot" trat_c on the other five classes of traffic

are shown in Table 3, with throughput under uniform traffic as a

comparison.

I°a[_._Po.L__PLL Pzs Pa:s P_.5__ Uniform 1

[ .2 [[ .139 [ .137 I .131 [ .ll0 [ .061 [ 1.00_ ,144

I .4 II'2161'2121'1961.1481-06611,001 ,222 1
I .6 [[ .263 I .257 { .233 1.165 [ .067 f 1.00 I .269 I

t .8 II.294 [.285[.255/.173 [.067 I 1.00I .299 I
l_ 1.0 II .315 1__.305 1.269 [.177 [.067 I 1.00 I .320 [

"Fable 3. Throughput in 42 x 45 Unbuffered Delta Network. 5% hot spot.

For buffered networks, assuming infinite buffers, the network

is non-blocking and every request is able to get into the network. If

the network has a stable state for a given offered load,

Pi,i = W + Rki, i=O,l,...,n

and

PI,_ = W, i >j, i = 1,2,...,n.

For the network to be stable, we must have

W+NRgI.

which severely restricts the amount of hotspot traffic which can be

handled without combining for large N.

Combining messages

The NYU Uitracomputer project has proposed combining
fetch-and-add operations as well as loads and stores at the switches

[1][4]. The fetch-and-add operation, useful as a synchronization

primitive and in many parallel algorithms, is an indivisible add to

memory; its format is F&A(X,e), where X is an integer variable

and e is an integer expression. The operation is defined to return

the (old) value of X and to replace X by the sum X + e.

When two fetch-and-adds referencing the same shared vari-

able, say F&A(X, e) and F&A(X, f), meet at a switch, the switch

forms the sum e +f, transmits the combined request F&A(X,
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e +f), and stores the value e in its local memory. When the value

Y is returned to the switch in response to F&A(X, e +f), the
switch returns Y to satisfy one request, F&A(X, e), and Y + e to

satisfy the other, F&A(X, f).

Since combined requests can themselves be combined, any

number of concurrent memory references to the same location can

be satisfied in the time required for one shared memory access from
a single PE.

Different Combining Strategies

The NYU Ultracomputer's current hardware design uses a
systolic implementation of "palrwise combining," in which a mes-

sage may combine with only one other message at any given stage.
Other researchers [12][13] have shown that for very large intercon-

nection networks, pairwise combining may not be sufficient to

prevent network degradation due to hot spots. They suggest "k-way

combining," where k = 3 means a message may combine with two

other messages at a stage. According to simulations in [13], 3-way

combining has performance almost as good as unlimited combining.

Our own simulations show acceptable performance for two-

way combining, even for systems with 1024 processors. A simple

extension of our current systolic queue design will give "two-and-a-

half way" combining, in which a message may combine with two

other messages as long as they each come from different input ports
at that stage. Table 4 compares no combining with pairwise, two-

and-a-half way, and 3-way combining.The results for 3-way com-

bining assume larger return path queues, as in [ 12].

Throughput(%) 1 Latency(cycles)

[loadOfferedI ° 2 2.,/2 3 Illl° 2
l Z

l 701707.2I 69.9I 69.9I 69.9II16sI 21.6-!21.01 21 - 4.7I,_,67130.  0.7
Table 4. Latency and Throughput for Different Combining Strategies.
Simulation data, 128-PE network, single packet messages, 2-input queues,
10% hot spot rate.

For a 128-PE network, the differences among all three
schemes are small. Three-way combining with the same return path

buffer size is actually worse than two-and-a-half way combining,

with latency of 31.3 cycles and throughput of 77.8% at 90% offered

load. We are currently running simulations of larger systems to see

at what size system a more complicated combining scheme becomes
worthwhile.

FURTHER WORK

We are continuing work on analytic solutions, in particular for
the output distribution, and on finite buffers. We are interested in

developing analytic models that include the effect of routing reversal

at memory on the round trip performance. Better analytic solutions

are needed to judge initial proposals for network design; simulations

can be most usefully conducted only after a design has been ela-
borated.

We are also carrying out simulations under more complicated

traffic models, with multiple hot spots and varying hot spot fre-
quencies and locations. Since the usefulness of increased switch

functionality is heavily dependent on the patterns of network load,

further work must concentrate on characterizing that load. We are

gathering traces from parallel programs to be used in conducting

trace-driven simulations of the network. Our goal is to integrate the
network simulator into a system simulation environment that can

simulate increasingly complex models of processor and memory, as
well as switch behavior.
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Abstract

This paper examines the problem of locating and allocating large

fault-free subsystems in multiuser massively parallel computer

systems. Since the allocation schemes used in such large systems

cannot allocate all possible subsystems a reduction in fault toler-

ance is experienced. We analyze the effect of different allocation

methods including the buddy and Gray-coded buddy schemes

for the allocation of subsystems in the hypercube and in the

2-dimensional mesh and torus. Both worst case and expected

case performance is studied. Generalizing the buddy and Gray-

coded systems, we introduce a new family of allocation schemes

which exhibits a significant improvement in fault tolerance over

the existing schemes and which uses relatively few additional

resources. For purposes of comparison, we study the behavior

of the various schemes on the allocation of subsystems of 2 t8

processors in the hypercube, mesh, and toms consisting of 2 m

processors. Our methods involve a combination of analytic tech-

niques and simulation.

Keywords fault tolerance, allocation, hypercube computer,

mesh,toms, buddy system.

1 Introduction

Parallel computers incorporating thousands of processors must

be able to tolerate faulty processors and communication links

if they axe to achieve a usable mean-time-to-failure. In these

large systems, processor allocation is needed for both multiuser

environments, such as is provided with the NCUBE series of hy-

percubes, and for single user systems with multiple subtasking

capabilities. In such a computing environment the problem of lo-

cating and allocating large fault-free subsystems is computation-

intensive and, in practice, some allocation scheme which recog-

nizes only a subset of the existing subsystems is used. The allo-

cation scheme often has a dramatic effect on the fault tolerance

of the system, thus forcing a trade-off to be made between space

and computation time devoted to the allocation scheme versus

minimum acceptable level of fault tolerance of the system.

In this paper we examine allocation schemes for large sub-

cubes of a hypercube and large subsquares of a two-dimensional

mesh and torus, considering worst case and expected case fault

tolerance of the interconnection network, and the reduction in

fault tolerance caused by the fact that the allocation scheme

used cannot allocate all subsystems. We focus on the alloca-

tion of large subsystems because we believe that most massively

"Partially supported by Nationa.[ Science Foundation grant CCR-8808839

IPar tinily supported by National Science Foundation grant DCR-8507851

and an Incentives for Excellence Award from Digital Equipment Corporation

parallel maxhines are purchased in order to support large tasks

as opposed to hundreds of simultaneous users with small tasks.

For comparative purposes we analyze allocating a subcube or

subsquare of 2 TM processors in a machine of 22° processors.

In a d-dimensional hypercube there axe (_)2d-q subcubes of

dimension q, called q-subcubes, and each processor belongs to (_)

of them. Thus in a hypercube of 22° processors a faulty processor

makes 190 of the existing 760 18-subcubes faulty. The smallest

number of faulty processors which makes all subcubes contain-

ing m processors faulty in a hypercube containing n processors

is denoted by Qw(n,m). Analogously, the expected number of

processor faults which makes all subcubes of size m faulty is de-

noted by Qe(n, m), where we assume that faults are independent

and uniformly distributed. We find that Qe(n, rn) is significantly

larger than Q,o(n, m) and, in particular, Q,o(22°, 2 TM) = 8 while

Qe(22°,2 Is) _ 24.5. A discussion of these functions and their

analogs for the 2-dimensional mesh and torus is included in Sec-

tion 2.

Current hypercube allocation schemes do not allocate all

q-subcubes but instead employ some form of the buddy sys-

tem approach, where the only q-subcubes allocated are those

consisting of all processors determined by arbitrarily fixing the

high-order d - q address bits. There are only 24-q such q-

snbcubes and each processor is in exactly one of them. Using

Bto(n, m) and Be(n, m) to denote the worst case and expected

case number of faults needed to make all the buddy system sub-

cubes of dimension [lg rnJ faulty, one has B,o(2 _°, 2 TM) = 4 and

B_(22°, 2 TM) _ 8.3. Thus the use of the buddy system allocation

scheme results in a considerable reduction in fault tolerance. In

Section 3 we discuss the fault tolerance properties of the buddy

system along with severaJ variants including a double buddy sys-

tem (DB), a Gray-coded buddy system (G), and a double Gray-

coded buddy system (DG) defined for the hypercube, and the

2-dimensional mesh and torus.

In Section 3.3 we introduce a new family of allocation schemes

which generalizes both the buddy and Gray-coded buddy sys-

tems and exhibits improved fault tolerance with relatively little

increase in search time. The best of the schemes considered

in our simulation studies, denoted DA 2, allocates only 48 sub-

cubes of dimension 18 in a 20-dimensional hypercube, and yet

DA_(22°,2 ts) _ 15. Thus DA 2 achieves more than half of the

fault tolerance of the hypercube in which all 760 subcubes of

dimension 18 axe allocable.

For purposes of comparison, we include in Section 4 simula-

tion results for the hypercube with 22° processors and the various

schemes for allocation of subsystems possessing 2 is processors.
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2 Subsystems

Throughout, lg means log_. We use n to denote the total number
of processors in the system, and for convenience of notation,

suppose n is an even power of two. Let Yt4(n) denote a two-

dimensional square mesh with &,rid points {(z, y) : 1 _< z, y _<
_/_'}, where two grid points are connected if and only if their
coordinates differ by one in exactly one coordinate position. The

correeponding _ × _ two-dimensional torus wiU be denoted
by T(n). It has the same grid points as A4(n), and includes
the connections of .Ad(n), but in addition its boundary points

(z,l) emd (x,_/-n) axe adjacent as are (1, y) and (v/-n,y) for 1 _<
z,1/_< V_. We will denote by Q(n) the d-dimensional hypercube
with n = 2d nodes which are the binary d-tuples and where two

d-tuples are connected if and only if they differ in exactly one

position.
The mesh A4(n) has (v _ - _ + 1) 2 subsquares of size

v/m × vfm, the torus T(n) has n such subsquaxes, while the

hypercube Q(n) has (_ . 2d-q subcubes of dimension q, where

d = lgn. Thus we see that both _4(n) and T(n) have O(n m's)
square subsystems whereas Q(n) has 0(3 d) = O(n ls3) subcubes.

Let us now examine the worst case and expected case 'fault

tolerance when all subsystems of a given size are allocable. De-
note by Mw(n, m) the smallest number of fanlty processors which

The mesh .Ad(n) has (v/'n - _ + 1) 2 subsquares of size
× vfm, the torus T(n) has n such subsquares, while the

hypercube Q(n) has (_ • 2d-q subcubes of dimension q, where

d = lgn. Thus we see that both ._l(n) and T(n) have O(n l"s)

square subsystems whereas Q(n) has 0(3 d) = O(n Is3) subcubes.
Let us now examine the worst case and expected case fault.

tolera_xce when all subsystems of a given size axe allocable. De.

note by M_(n, m) the smallest number of fanlty processors which
make all subsquares of M(n) with m processors faulty, and let
Me(n, m) denote the ezpected number of faulty processors which
must occur before all subsquares with m processors are faulty,

assuming that faults are independent and uniformly distributed.

The expressions Tw(n, m) and To(n, m) denote the correspond-

ins quantities for the torus T(n) and Ow(n,m) and Qe(n,m)

denote the corresponding quantities for the hypercube Q(n).

It is straightforward to establish that the functions M(n, m),

T(n, m), and Q(n, m) are monotone non-decreasing functions of
n and monotone non-increasing functions of m. We state these

results without proof in the following.

Proposition 2.1 If n _ > n, d_ > d, m _ > m, and n >_ m' then

(i)

(ii)

( i. )

(_)

M_(n',m) > M_(n,m), and Mw(n,m t) < M,_(n,m),

M_(n',m) > Me(n,m), and M_(n,m') < M_(n,m),

T_,(n',m) > T_(n,m), and Tw(n,m') < T_,(n,m),

Te(n',m) > T_(n,m), and Te(n,m') < T_(n,m),

O,,,(d',m) >_O,,,(d,m), and 0_(d,m') < Q,_(d,m),

Q,(#,m) > Q,(d,m), and 0e(d,m') < Q,(d,m).

The values of Mw(n, m) and T_(n, m) are relatively easy to
determine. To illustrate for m = n/4, subdivide the _ ×

mesh into four V_ x V_ submeshes, designate a faulty pro-

cesmr P0 in one of the submeshes and designate its translate
as f_nlty in each of the other submeshes. This results in every
square submesh of size n/4 being faulty, and the same fault pat-

tern also makes every square submesh of the torus T(n) faulty.
On the other hand, since the 4 subsquares are nonoverlapping,

at least 4 faulty processors are required to cause them to be
faulty. Using this reasoning, it follows that

M,(n, n/4 i) = T_(n, n/4 i) = 4 i

for any natural number i.

In the case of the hypercube the function Q,_(n,m) is much

more difficult to compute. However, it is known [1,2] that 0.(re, n/4)

is the minimum positive integer r such that ,-1(t,/_J-1) > lg n
which yields

0_(n, n/4) = 8,

Thus, while in a square mesh or torus of 1024 x 1024 proces-
sors, as few as 4 faulty processors can make every 512 × 512

submesh faulty, in a 20-dimensional hypercube consisting of the
same number of processors, at le_t 8 processors must become

faulty before all 18-dimensional subcubes become faulty. As the

number of processors increases, this difference becomes more
pronounced since it has been shown [1,2] that

1

Q,_(n,n/4) = lglgn + _ Iglglg n + 0(1).

We used simulation to investigate the expected number of

faulty processors that make the analogous subsystems faulty.

The 1024 × 1024 mesh and torus was approximated by the con-
tinuous unit square, and the 512 × 512 submesh by a continuous

× _ square. In each trial, faults were successively generated
ra_dondy and uniformly in the unit square until no fault-free

subsquare of size ½ × ½ remained. The results of 100,000 trials
yidded the following:

M_(2_°,2 TM) _ 13.54, and Te(22°,2:8)_ 19.89.

For the 20-dimensional hypercube we used a simulation with
10,000 trials and found that

Q_(22°,2 TM) _ 24.50.

The program developed for this simulation, which will be de-

scribed in Section 4, can also produce mean-time-to-failure val-

ues by incorporating a given probability distribution for the
faults.

3 Allocation Schemes

comparison with the 2-dimensional mesh and torus, the hy-

percube displays a high degree of fault tolerance with respect

to large subsystems. However, this advantage is lost when only

a small subset of the existing subsystems are allocable. In this

section we will describe a few analytic results that indicate how

the buddy system, and other allocation schemes, affect the fault

tolerance properties of the hypercube, mesh, and torus.
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3.1 Allocation Schemes for Hypercubes

Most allocation schemes for the hypercube employ the buddy

system approach, where the only q-suhcubes allocated in Q(2 d)

are those of the form ala2 .. • ad-q *... *, that is, the high-order

d - q address bits are fixed in each allocable q-subcube. There
are 2d-q of these subcubes and they form a partition of Q(2d).

We will use BQ_(n, m) and BQ_(n, m) to denote the worst case
and expected case number, respectively, of faults needed to make

all the buddy system subcubes of size m faulty•

To obtain a good upper bound for BQe(n,m), we consider

the following model: balls are tossed at random into z identical
boxes until each box contains at lea.st one ball. Suppressing de-

tails, we can show that the expected number of balls required is
x-1 x

_j=0 7s7-j' The balls correspond to faults, and the boxes repre-
sent the disjoint subcubes allocated by the buddy system. Thus

x = n/m. The number of balls required is a slight overestimate

of the number of faults required because a subcube with one or

more faults is slightly less likely to acquire another fault. From

this model we have the following•

Theorem 3.1 For n >_ m >_2 and both n andre even powers

of 2,

( i ) BQ_(n,m) = n/m,

(ii) BQ_(n,n/2) <_3 andlimd_BQ_(n,n/2) = 3,

(iii) BQ_(n,m) <_ n/m(ln21g(n/m)+O(1)).

[]

Several allocation schemes which are more fault tolerant than

the buddy system have been proposed. For example, two "or-

thogonal" buddy systems, which we call double buddy systems

(DB), can be used to allocate m-subcubes of the form a_a2.., ad-,*
.... and *... * a_+_ ..ad . With twice the number of sub-

cubes allocated and roughly twice the overhead in the alloca-

tion algorithm we shall see an increase of approximately 25% in

fault tolerance. In general, multiple buddy systems use multiple

permutations of the index set {1,2,... ,d), and for each per-

mutation _r they allocate m-subcubes by fixing index positions

_r(1)... _r(d - m) and varying the remaining m indices.
Another class of allocation schemes for the hypercube involve

the use of the Gray code numbering of the nodes of C2(n). Let

gd denote the binary reflected Gray code map from {0... 2d - 1}

to d-bit strings. A single Gray-coded buddy system, denoted

by G here, allocates q-subcubes that arise as pairs of (q - 1)-
subcubes of the form {al ...ad-q+l * ...*,bl ...bd-q+l * ...*},

where -1 ..• gd_q+l(bl, ba-q+l) are con-gd_q+x(al ..ad_q+l) and -1

secutive rood 2 d-q+1. An approximate analysis of the behavior

of the Gray-coded buddy system can be obtained through the
use of a model in which x identical boxes are arranged in a ring

and balls are tossed at. random into the boxes until no two adja-

cent boxes are empty. Here x = 2d-q+1, which is the number of

q-subcubes allocable by scheme G. While it is straightforward
to show that limd_ GQe(2 _, 2d-k) is trapped between 2kk In 2

and 2k+l(k In 2 + O(1)), we can obtain a more exact description.

Let p(x, i) denote the conditional probability that there are two

adjacent empty boxes, given that i balls have been tossed at
random into the boxes. We have evaluated p(x,i) which, in

turn, gives an explicit expression for the limiting behavior of

GQ_(n, m) as stated in the following.

Theorem 3.2 For n >_ m )_ 2 and both n and m even powers

of 2,

( i ) GQ,_(n,n/4) = n/4,

(ii) GQ_(n,n/2) <_3_ andlim,_GQ_(n,n/2) = 3_,

(iii) OQ_(n,m) <_ E_-_ p(x,i)_-__j, ,_ .... I,n.,_*,i)(_ =
t¢ i i-I z- •(,)-(.._J-(.._,_,), ._lim.__,, GQ.(n,n/.) = }7_.__z,*).-_'7-_'

t-I

Multiple Gray-coded buddy systems combine Gray codes

with the multipleindex permutations of multiplebuddy sys-

tems. We willuse DG to denote the double Gray-coded buddy

system which allocatesq-subcubesfrom pairsof(q- 1)-subcubes

inwhich thefirstd-q+1 index positionshavebeen fixedtogether

with the pairsof (q- 1)-subcubesin which the lastd- q + 1 in-

dex positionshave been fixed.Chen and Shin [4]have suggested

DG as an improved allocation scheme for Q(n).

To obtain corresponding analytic results for DB and DG,

we can use the same model but the analysis involves the consid-

eration of many special cases. We have resorted to simulation to

help us understand the performance of these schemes and will

report the results in Section 4.

3.2 Allocation Schemes for the Mesh and Torus

A buddy system for the allocation of square submeshes contain-

ing m nodes in .,Ll(n) is analogous to that described for hy-

percubes. There are n/m suhsquares of dimensions _ x vim

allocated and these are of the form {(x,y) : (j - 1)v/m + 1 _<

x <_jx/-_,(k- 1)v/-_ + 1 _< y _< kv_ } for 1 < j,k < x/'_.

So, for example, if m = n/4, there are only 4 allocable square

submeshes containing n/4 processors. In the worst case we see

that only 4 faulty processors are needed to make every buddy

system submesh of size n/4 faulty. Assuming the faults are ran-

domly and uniformly distributed, the expected number of faulty

processors needed to make every buddy system submesh of size

n/4 faulty can be found by considering the same model as that
used for the buddy system for hypercubes. This gives an ex-

pected value of approximately 8_. The same arguments hold for

the torus, as we state in the following.

Theorem 3.3 For n > ra > 2, and both n and m even powers

of 2,

( i ) BM,_(n,m) = BT_(n,m) = n/m,

( ii ) BM,(n,m) = BT,(n,m) <_ (n/rn)On(n/m) + 0(1)1.

[]

The Gray-coded buddy system for Jt4(n) and T(n) is the

same as the double buddy system DB here. M(n) is partitioned

into square submeshes consisting of m/4 nodes each and G allo-

cates a square submesh of size ra when that submesh arises as a

2 x 2 array of the smaller m/4 submeshes in the partition. Thus

G allocates a total of (2_ - 1) 2 m-node square submeshes

for M(n) and a total of 4n/m for 7"(n).
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When n/m is an integral power of 4 the buddy systems are al-
ready worst-case optimally fault tolerant for the mesh and toms,
and hence also GMw(n, m) = GT_(n, m) = n/m. To obtain an-

alytic estimates of GMe(n, m) and GT_(n, m), the same proba-
bility model as used in the ease of the hypercube can be utilized

here. However, the number of configurations to handle becomes

large and we have not carried the computations out but rather

have resorted to simulation studies instead. In the study, we

approximated .A4(n) and T(n) by the continuous unit square,

and the x/_ x _ submesh by a continuous _ x ½ square as

we described in Section 2. The results of 100,000 trials gave

GM_(n,n/4) _ lO.OandGT_(n,n/4) _ 11.7.

3.3 A New Family of Allocation Schemes

We will describe here a new family of allocation schemes for the

hypercube and note that an analogous family can be described
for the 2-dimensional mesh and torus.

Let k > 1, and consider an allocation scheme A k that, for

a given d and q, will allocate q-subcubes whose nodes are d-

tuples in which the last q - k bits are arbitrary and the first

d - q + k bits are the nodes of a k-subcube in Q(2d-q+k). For
example, A 2 will allocate 18-subcubes in Q(22°) of the form
ala2a3a4 *...* in which the last 16 components are *'s and

where two of the ai have values 0 and 1 and the other two ai

are equal to .. Thus, A 2 allocates 24 subcubes of dimension

18. The double A 2 family, denoted by DA 2, allocates a set of q-

subcubes of {_(n) which consist of the set of q-subcubes allocated
by A 2 together with a corresponding set in which the first 16

components are *'s and the last four components are chosen

in an analogous way to the first four components for A 2. In

general, A k allocates (d-_+k)2d-q subcubes of dimension q in
Q(2 d) and DA 2 allocates twice this number. In the families A k

and DA k, increasing k clearly increases the number of allocable

subcubes and hence increases the fault tolerance, at a cost of

increased search time. Analytic results for these families, similar
to those for the buddy and Gray-coded buddy systems has not
been done as yet. However, simulation studies we have done on

these schemes show them to yield a significant improvement in
the fault tolerance of the hypercube as we will see in the next
section.

4 Simulation Results

We illustrate in the table below the results of simulation stud-

ies of the buddy (D), double buddy (DB), Gray-coded buddy

(G), double Gray-coded buddy (DG), the new allocation fam-

ilies (A 1) and (A2), and their doubles (DA 1) and (DA2). We

include the results for the scheme (E) in which every subcube
is allocable, as well as including the worst case results and a

listing for the number S, of subcubes allocated by each scheme.
These schemes were used in the allocation of subcubes in Q(22°)

of size 2 TM. The values for Qe shown in the table were obtained

from 1000 trials. In e_h trial, a list of random faults sufficient

to make every 18-subcube faulty was generated. For each allo-
cation scheme X, the list was scanned to identify the first fault

on the list that resulted in all of the 18-subcubes allocated by

X being made faulty. Although we have not done so, we could

easily modify our program to compute mean-time-to failure for

each of the allocation schemes once a probability distribution for

faults was specified. The expected case values in the table are

based on the assumption that faults are randomly and uniformly

distributed with respect to the nodes of the hypercube Q(2_2°).

Table: Expected and Worst Case Behavior of Allocation
Schemes

E B DB G DG A 1 DA 1 A _ DA _

So 760 4 8 8 16 12 24 24 48

Q_ 8 4 4 4 4 4 4 5 5
Qe 24.6 8.1 10.1 9.8 11.9 10.7 13.0 12.8 15.4

5 Conclusion

Our results show that simple allocation schemes such as those
baaed on the buddy system lose much of the fault tolerance of

the system, but that much of this loss can be regained by a more
sophisticated allocation scheme such as the new family DA k that

we described. Results of our simulations indicate, for example,
that by using the allocation scheme DA 2 on the hypercube of

dimension 20, we can roughly double the fault tolerance of that
provided by the buddy system. Moreover, very little overhead
is involved in the implementation of DA _. As a final note, we

observe that the hypercube is significantly more fault tolerant
than the mesh or torus, and that the use of the buddy system
for large subcube allocation reduces the fault tolerance to that
of the mesh.
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Abstract

Numeric processing governed intelligently, per-

mits achieving solutions at a much faster rate

than by normal procedures. )In architecture that

has knowledge of the processes it controls and

the power to alter the course of the process using

expert resources, enables quicker solutions of
numeric and symbolic problems. Algorithms

written in a mix of numeric and symbolic com-

putation would perform better as they parallel

the expert mind more closely than exclusively

numeric or exclusively symbolic algorithms. The

architecture presented, while MIMD massively

parallel, is an optimum parallel environment for
real-time applications (OPERA), and follows

the idea of intelligent processing to create a

coupled system to support real-time simulation
and control tasks.

1.0 Introduction

Continuous simulation on computers, has been

one of the modes to study the mechanics of var-

ious physical systems. The first step is to repre-

sent these systems as closely as possible in

mathematical forms, to create models. The study

of the behavior of the system is then conducted

by subjecting the described model to various ex-

ternal influences and observing its response. To

understand certain models, a qualitative design,

which uses little or no mathematical description

and which has the least of assumptions in de-

scribing the model in its component parts, is

better than a quantitative model. In most mod-

els, the understanding of both the physical and

logical relationships provides a more fertile area

for study.

The complexity of certain applications, or the

flexibilty needed by them for accurate results of-

ten balks the speed and performance of existing
machines.

This research was funded in part by Electronics Associates Inc.

and The Alabama Research Institute. The opinions expressed

in this paper though, are wholly those of the authors.

Besides having the knowledge of the type, size

and scope of the simulation to be processed

within the processing environment, the know-

ledge of the systems resources and their capabil-
ities is essential. There are occasions where an

expert is willing to compromise a certain degree
of accuracy to obtain a satisfactory result. This

could be in the control of input-output actuators
or sensors, in the replacement of a block of

computation by a fixed value, or in the rear-
rangement of computation itself. There are also

the situations where a certain set of computa-

tions may be unnecessary or against the grain of

the computation being performed. At times

these irregularities are difficult to detect, or
completely imperceptible, and may be more eas-

ily detected by a run-time supervisor. There are

also the expert applications themselves, that have

a great numeric orientation; in which experts
have a great dependency on extensive math-

ematical computation to arrive at conclusions.

The University of Alabama's proposed OPERA

architecture seeks to provide a good balance in

hardware support to both of these applications
[1-4]. In the initial proposal the target lan-

guages are the Advanced Continuous Simulation
Language (ACSL, not as a preprocessor to

FORTRAN, but on its own) and LISP. Further

changes and expansions are being investigated.

2.0 Software Considerations

ACSL [5] as currently implemented, is a pre-

processor to FORTRAN. It provides most

functions necessary in continuous simulation,

and special facilities for input-output functions

that permit control and communication from and
to the external world. The major modules of an

ACSL program are the INITIAL, TERMINAL
and DYNAMIC blocks. The INITIAL block

serves to establish preprocessing conditions, by

performing tasks such as setting up initial values

of variables. The TERMINAL block performs

all output jobs and minor processing that may

be necessary at the end of a run. The DY-

NAMIC block is the main module that performs

CH2649-2/89/0000/0495501.00 © 1988 I EEE
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theiterativecomputation on the model; period-

ically communicating vital statistics to the ex-

ternal environment. ACSL has provisions to

perform various integration algorithms, permit-

ting the user to alter the algorithm between dif-
ferent simulation runs.

Many of the ACSL simulation benchmarks have

been executed at the University of Alabama us-

ing C, LISP and assembly language. The advan-

tage of parallel technicjues over their sequential
versions was studied [6-13], and was found to

be beneficial to the applications. The main

strategies employed in creating the parallel ver-

sions were, the decomposition of equations to

create suitable parallel versions, and the direct

application of parallel algorithms to the problem.
Extensive simulation showed that neither one of

these stategies was superior to the other, but that

the combination of the two produced more fa-

vorable results. During these simulations, the

allocation was performed using a random allo-
cation process to arrive at the best fit. In the

final form it is intended that the expert system

select or suggest one of many allocation algo-
rithms that will be available to the user[-14-16].

At certain points the deviation in accuracy had

to be compromised, because of the greater ap-

proximations that resulted because of parallelism.
In situations such as these expert judgement was

required to decide if the sacrifice in accuracy of

computation would actually compromise the va-

lidity of the result. On occasions Where an
enormous combination of runs had to be con-

ducted to arrive at a result, an expert system

could have restricted the problem space to only

the actually necessary combinations to reach the

target. The variations which could cause devi-

ations in real-t/me control tasks may also be

eliminated. The parallelism possible in the ex-

pert system itself was studied to speed up expert
resource use [4,17-20].

3.0 Architectural Configuration

The design of the architecture allows for hierar-

chical levels of parallelism, that enable the ex-

ploitation of parallelism in the application at
different grain levels. Specifically, the environ-

ment is designed to suit two levels of parallelism,

the grain of which have been selected giving

consideration to factors such as processing ele-

ment capabilities, software decomposition facili-
tated, and networking performances.

Granularity at the expression level or construct

level is termed fine, and granularity at the pro-

cedure level or program level is classified coarse.

To address the problem at the lower level of

granularity the architecture provides processing

elements capable of performing independently as

nodes. These processing elements themselves

are designed as complements of processors, each

dedicated to a specific detail of the node's total
capability. Sixty four such processing elements

are grouped to constitute a cluster. Fifty six of

these processing elements are assigned to the

task of processing, four are dedicated to com-
munication and the four others remain in a hot

stand-by mode to aid in reconfiguration. Sixty

four such clusters are interconnected to make up
the entire system. The clusters attend to the

parallelism classed as coarse-grain. The selection

of the number sixty four is based on the inter-

connection network delays and optimal

parallelism considerations. This hierarchical

treatment is applied in both the hardware and the
software of the architecture. In many parallel

architectures the parallel architectures the

parallelism is controlled at an operating system

level. This form of control is limited to a very
low level, allowing control at program level to

be emphasized.

3.1 Processing Element

The processing element is a module capable

of performing any task independently and also

being capable of performing a task in unison

with any other processing elements involved.

The major elements into which the processing
element (PE) at the node can be broken down

are; a symbolic processor, a numeric processor

and data control [4,20]. The Mega-chip archi-

tecture of TI is currently chosen to represent the

symbolic processor. Another heavily branch

oriented virtual processor is also being recom-

mended for the same purpose. The numeric

processor which is a stand alone processor is

implemented in a custom design. It is con-

structed to perform high-speed 32-bit floating

point operations such as, 32×32 bit multipli-
cation in a cycle to produce a 55-bit result. Data

control is a functional unit which encompasses

all aspects that relate to data transfer. It includes

the cache and cache-controller system, the array
and table handling unit, and an external commu-

nications unit which operates on its own. The

design of this processing element is very mem-

ory intensive. The idea which was spurred by

the design of the Megachip achieves modularity

in computational packages that permit the main-
tenance of all code and data in PE memory, and

thereby avoiding any run-time reference to

main-memory. This alone stands to saves enor-
mous amounts of computational time. The

random-accessing of complex data-structures is

implemented in hardware to speed up memory

accesses. Accessing of array subscripted vari-

ables for example, relative to accessing a simple
data object is very tedious, and burdensome

when the number of dimensions of the array in-
crease. The hardware access scheme decreases

the access time, and directly improves the facili-
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tiesfor problemdefinitionof high-speedreal-
timemodels.Detectionanddiagnosticsare
minimalinthehardwarelevel.

A very efficient communication system which

offers separate communication facilities for

memory access and inter-processor communi-

cation, is implemented internal to the processing
element. The numeric and symbolic processors

may, and usually operate concurrently within the

PE. The symbolic processor serves as the expert

to monitor the process of the numeric algorithm,

and/or accomplishes some symbolic processing

of its own. The differences in data type between

the two processors are handled by specialized

interfaces. Partitioning of algorithms take place

at two levels. First, into modules small enough

to be contained in individual nodes throughout
the process and second, as independent or semi-

independent subprograms with limited coupling
between them. Communication is conducted on

a priority basis if the usage is not very intense.

If traffic does become dense, a polling routine is

employed. The I-O processor handles the
error-detection and correction, encoding, decod-

ing, serializing and deserializing of data. It has a

small local memory addressable by other

processors.

4.0 Networking

There are two levels of interconnection that

are considered in this architecture. They are as-
sociated with the intra-cluster and the inter-
cluster level of communication. The network as

was judged from an applications point-of-view
necessitated tight coupling between elements,
and is constructed using delta-networks [24].
At the cluster level of communication, the net-

work is designed using a 64 x 64 delta-network
which has buffers built into the switches to re-

duce blocking and increase throughput. At this
level the communication is more in short and

rapid bursts of messages and to maintain a real-

time speed of communication, having a high
transfer-rate across the network is essential. The

delay caused by the inclusion of buffers is mini-

mal but the the throughput of the network in-
creased tremendous, which definitely justifies the
inclusion of buffers. At the inter-cluster level of

communication, the communication technique is
varied a little to accommodate the intra-cluster

format. It is also extended to accommodate

varying and larger formats in communication

packets, restricted only by a maximum size.
Buffering is not considered here because of the
larger size of communication packets. A flag is

used to prevent switch blocking at this level.

Summary

An architecture to provide for the expert con-

trol, of numerical control was described. Simu-

lations run to explore the possibility of the

exploitation of parallelism have shown positive

results, in both the area of numerical processing

and expert symbolic processing. Research to

study the positive blend of expert control in this

architecture is being conducted.

Example applications towards which such an

environment is directed are real-time aerospace,

nuclear system modelling, and simulation. An-

other application class which is being considered

is, expert systems which require a heavy load of

numerical computing to analyze or synthesize
their results.
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REGULAR PROCESSOR ARRAYS

Allen D. Malony

Center for Supercomputing Research _.:_d Development
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ABSTRACT

Ref_lar is an often used term to suggest simple and uniform structure

of a parallel processor's organisation or a parallel algorithm's opera-

tion. However, a strict definition is long overdue. In this paper, we
define regularity for processor array structures in two dimensions and

enumerate the eleven distinct regular topologies. Space and time

emulation schemes among the regular processor arrays are con-

structed to compare their geometric and performance characteristics.

The hexagonal array is shown to have the most ef_cient emulation
capabilities.

Keywords: regularity, processor arrays, emulation, intereonnection
networks

INTRODUCTION

The most widely debated topic in parallel processing research is

how to interconnect multiple processors. The arguments take place

across many different cost/performance criteria such as algorithm

mapping, scalabillty, reconfigurability, communication efficiency,

graph embedding, fault tolerance, and VLSI implementation.

Mesh connected processor arrays were among the first processor

interconnection structures proposed for parallel processing [1] [7].
Their distinguishing feature is the connection of processors only to

immediate neighbors where the connection degree is uniform

throughout the array. The original motivation for mesh topologies

came from their ability to easily represent the natural data flow pat-

terns found in many algorithms [8] [7] [13] [18] [171 [27].

The thought of interconnecting thousands of processors brought

on a wave of new processor interconnection structures aimed at pro-
viding cost-effective solutions to certain key scalability issues such as

mean internode distance, communication traffic density, connections

per node, link visit ratios, and fault tolerance [21] [28]. The processor

arrays proposed included the torus, X-tree, chordal ring, R-ary N-

cube, cube-connected cycles, spanning bus hypercube, and dual bus

hypercube, in addition to the standard bus, crossbar, ring, and tree

architectures [28]. Although favored for their regular geometry, uni-

form communication and simple extension, the mesh connected pro-

cessor arrays were generally less desired because of the fact that inter-
node communication delays increase as the square root of the number
of nodes in the system.

Systolic array research approached the problem of designing
processor arrays by concentrating on requirements for an effective

VLSI implementation of a parallel algorithm [11] [9] [10]. Chip area,
time and power required to implement an algorithm in VLSI are

dominated by the communication geometry of the algorithm [25].
The effects of the area and time parameters of VLSI can be reduced to

a large degree if very simple and regular patterns of interconneetions

between elements are used [16] [26]. The regularity requirement

imposed on interconnectlon structures, in a broad sense, deals with

This work was supported in part by the National Science Foundation under
Grants No. US NSF DCR8t-10110, the U. S. Department of Energy under Grnnt
No. US DOE-DF-,-FG02-SbER25001, the U.S. Air Force Office of Scientific
Research Grant No. AFOSR-F49620-86-C-0136, and the IBM Donation.

the layout of the communication geometry in a two-dimensional area

[22]. Simple and regular interconnection geometries that are two-

dimensional and plane filling lead to cheap implementations and high

chip density. Also, parallel algorithms with simple and regular ¢om-

munication and data flows are more appropriate for VLSI implemen-

tation and will result in higher performance.

The choice of processor array design to achieve good generalised

communication performance conflicted with the simple processor

arrays favored for specialised VLSI systems. If only the more sophis-

ticated communication topologies were implemented in VLSI, then

their communication efficiencies could be combined with the faster

VLSI speeds. However, several recent results suggest that mesh-

connected arrays" have comparable, if not better, general

communication efficiency and performance when implemented in

VLSI as compared to other networks [15] [19]. In addition, there has

been much work done on making regular mesh arrays more flexible

[3] [23] [4] [21 [201.

In this paper, we consider the question of what are the simple

and regular processor array topologies? The primary contribution of

this work is the enumeration and analysis of the "regular" two-

dimensional processor array topologies using a geometric definition of

regularity. Several topologies are shown that have not appeared in

the computer science literature previously. Our analysis of the regu-
lar processor arrays is based on their ability to emulate the other

members of the class. We consider both space emulation (processors

of the host array are combined into "logical" nodes of the target

array) as well as time emulation (the interconnection geometry of the

target array is provided by time-multiplexing the links).

REGULARITY

Intuitively, the term regular implies simplicity and uniformity

in space. A more quantitative geometrical definition of regularity can

be formulated from the extensive mathematical literature on graphs

[5] [5] [12] [24]. Although regularity can be defined for multiple

dimensions, our discussion is restricted to graphs that are two-

dimensional, i.e. planar. A second requirement is that the graph have

a simple description and be uniformly extensible following a basic set

of construction rules. By the graph being uniformly extensible, we

mean that the properties of the vertices and edges do not change as

the number of nodes is increased; e.g., the length of an edge. Another

requirement for regular graphs is that the vertices have equal degree.

The final requirement is that regular graphs be plane filling. That is,

the infinite graph completely covers the two-dimensional plane.

The requirements placed on regular graphs are not without

mathematical precedence. Justification comes from the old geometri-

cal problem of determining those convex polygon figures that tessel-

late the plane [5] [6]. In particular, the problem is to construct tillngs

of the plane where a single convex polygon of r sides is used. Based

on Euler's theorem v - e + f =1 (v vertices, e edges and f faces of a

polygonal network of tiles) and basic Diophantine analysis, it is a

simple consequence that 3<r<6 [5].

Although there are eighty--one types of isohedral tilings in the

plane [5], there are ONLY eleven topologically distinct types of Lave_

CH2649-2/89/0000/0499501.00 © 1988 IEEE
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_tet_ [12] (also called regldar or Subnikov nets [24]) which are the

"skeleton" graphs consisting of tile "vertices" (where three or more

tiles meet), and tUe "edges" where two tiles intersect. Figure 1 shows

the eleven Laves nets along with symbols denoting the valences of the

vertices as the teesellatins r-ton is traced; e.g., 32.4.3.4 describes a

pentagon teaseUation where the pentagon meets 3 other tiles, then 3_

4, 3, and finally, 4 other tiles. The geometry of the distinct tesselin-

tion topologies can be described from this simple vertex valency syn-
tax.

Tesse]latlon structures embody the requirements set forth for

regular graphs: they are two-dimenslonal, they have a shnple descrip-

tion (tile vertex valency syntax), all tiles used in a tessellation have

the same number of edges (r-son), they are uniformly extensible, and

they are plane filling. If we associate a tile to a processor array node

and the links to tile intersections (tile edges), the resultant intercon-

unction topology will embody the same regular properties.

The regular proceuor interconnection graphs can be generated

by taking the d_/of the Laves nets, i.e. the faces (tiles) are mapped

to vertices, the tile vertices are mapped to faces, and tile edges map

to edges between the new vertices [5]. Because the graphical duality

mapping is isomorphic, there are exactly eleven distinct regular pro-

censor array topologies. These topologies are also known as the

familiar nearest nslqAbor topologies because all vertices are of equal

degree and each vertex connects to that many of its nearest neigh-
bors.

Definltlon: A graph is regular if it is two dimensional, all vertices

have equal degree and the dual of the graph is a tessellation.

Definition: A processor array is regular if its interconnection topo'-

ogy is a regular graph.

In the next section, we consider emulations among the regular

processor arrays. In particular, we focus on the triangular (6s), the

orthogonal (4 t) and the hexagonal (3 s) topologies. These have been

defined to be strongly rcgtdar because they form a set closed under

duality: the triangular graph is the dual of the hexagonal and vice

versa, and the ortbogona] graph is the dual of itsel, t [14].

REGULAR PROCESSOR ARRAY EMULATION

Although the number of regular processor arrays is finite, it

would be cost inefficient to include each array in a parallel processins

system and use an array only when there is an appropriate match

between an algorithm's communication geometry and that array's

topology. Instead, we would like to design the system with a single

processor array that offers good performance across a wide range of

algorithms. The versatility of a processor array is measured not only

by the range of algorithms for which it is specifically suited but also

by the ease to which other algorithms can be mapped to its communi

cation geometry [2], and the ability of the array to reconfigure it

communication geometry to that of the algorithms or other array

topo]ogles I3] [4] I23]. We evaluate the regular processor arrays based

on their ability to emulate other regular arrays.

Emulation Philosophy

The goal of emulating a target regular array by a host regular

array is to reproduce the communication properties of the target

array in the [ _st. The emulation can take place either in space or in

time. ,qpaee emulation structurally maps the host array to the target

array by physically grouping host nodes into logical target nodes and

activating the appropriate host links such that the communication

topology of the target array is realised. If the target array cannot be

embedded in the host array with a one to one node mapping, the

space emu]atlon will necessarily result in a reduction of the effective

slse of the emulated target array.

Time emulation realises the communication properties of the

target array by time multiplexing the host array links. Once a one to

one node mapping is made between the target and the host, the max.

imum number of host "minor" communication time cycles needed to

realise the communication connectivity of one "major" target time

cycle can be determined. If the target array cannot be embedded in

the host array with a one to one llnk mapping (we already assume a

one to one node mapping), the time emulation will necessarily result

in an increase in the number of time cycles needed to execute an algo-

rithm on the emulated target array.

Space Emulation

An optimal space emulation scheme should minimise the aver-

age number of host nodes used to emulate a node in the target array.

Definition: The space emulatlon efficiency Su(N ) of a space emuls

tlon scheme used by regular array M to emulate regular array N

the average number of nodes of M required to emulate one node et

N. If N contains n nodes, the sise of the emulated target array will

be n / gu(N) nodes. A lower bound on 8u(N) can be determined by

calculating the number of host array nodes needed to match the node

degree of the target array. An optimal space emulation scheme

achieves the lower bound of the average number of host nodes

required for n node of the emulated target array. That is, no more

than the number of host nodes needed to meet the node degree

requirements of the emulated target array are used.

The process followed to construct an emulation scheme begins

by grouping adjacent nodes together to form logical nodes of the
emulated target array. "Active" host links are then selected to realise

the target communication geometry. During operation, nodes within

a group coordinate their actions to correctly communicate data across

the active links. Instead of enumerating all space emulations for all
regular host arrays ad nauseam_ we instead concentrate on the

strongly regular arrays.

Theorem 1: The triangular array can optlmal]y emulate the hexago-

nal array with a space emulation efficiency of four and the orthogonal
array with n space emulation efficiency of two.

Proofi The emulation schemes are shown in Figure 2.

Theorem 2: The orthogonal array can optimally emulate the hexag-

onal array with a space emulation effclency of two and the triangular
array with a space emulation efficiency of one.

Proof: The emulation schemes are in [14].

Theorem 8: The hexagonal array can optimally emulate the orthog-

onal array with a space emulation ei_ciency of one and the triangular

array with a space emulation efficiency of one.

Proof: The emulation schemes are shown in Figure 3.

Theorem 4: S,,_._,_u(R)<So._.o,,d(R)_$_._I(R ) where R is a
regular array.

Proof: Any space emulation scheme used by the triangular array to

emulate another regular array can also be used by the orthosonal and

hexagonal arrays since only one node is required by the orthogonal

and hexagonal arrays to emulate a node in the triangular array.

Therefore, any emulation scheme used by the orthogonal and hexago-

nal arrays for emulating another array must he at least as effcient as

the optimal scheme that would be used by the triangular array. A

similar argument is applied to show 8,_Aor,,,,_(R)_S_ton,t(R).

Space Emulation Schemes

The space emulation schemes for the regular processors arrays

using the strongly regular arrays are shown in Figure 2 for the tri-

angular host array and Figures 3 for the hexagonal host array I14].

Node groupings for the triangular host array are shown shaded. The

dashed lines in the hexagonal host array Indicate inactive links.

Space Emulation Efficiency

The space emulation efficiencies of the schemes presented for the

strongly regular arrays are shown in Tables I. As expected, the hex-
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agonal array shows the best e/_ciencies with nine of the schemes using

an optimal emulation of one. The inability to achieve optimal

schemes for 34.6 and 3.8.3.6 is attributed to the rigid structure of

those topologies.

Notice that the triangular array was able to achieve more

optimal space emulations than the orthogonal array. In part, this has

to do with the orthogonal array's inability to realize triangular inter-

connection paths present in some of the arrays such as 3'.6, 32.4.3.4

and 3.6.3.8.

An interesting observation from the table is that

S¢.-..,,au(3.4.6.4 ) = 3, yet St._.,_.r(4' ) = 2 and

1 One quickly realizes that a better space
S_._M_(3.4.0.4) = 1 T"

emulation scheme could be achieve for 3.4.6.4 using the triangular

array if the orthogonal array was first emulated and then its emula-

tion scheme applied to realize 3.4.6.4. This would result in an emula-

tion efficiency of 2 2 instead of 3.
3

Space emulation analysis allows a simple measure of cost,

Su(N), to be used for comparing the versatility of the different regu-

lar arrays. Additionally, the pay back for adding additional links to

the array can be easily discerned. Finally, algorithms be designed for

one particular regular array can executed on another array with

bounded performance degradation.

Time Emulation

Time emulatlons among the regular processor arrays are more

complex to construct because a mapping from nodes of the host array

to nodes of the target array must first be devised. We employed some

convenient shortcuts that allowed us to develop a collection of time

emulations for the strongly regular arrays as target topologies.

Definition: The time emulation effleiency Tu(N ) of a time emula-
tion scheme used by regular array M to emulate regular array N is

the number of communication time cycles required in M to realise the

data transfer between nodes possible in one cycle in N. Assuming the

processor array speeds are equal, if N completes an algorithm in t

time cycles, the time emulation scheme used by M will finish in

T_t(N) * t time cycles.

Notice that if S_t(N)=I, T_(N)=I. We can make use of this fact to

compute bounds on time emulations based time emulations already

known. That is, if Tu(N)ft L and TN(O)ft2, then Tu(O)<_tt*t 2.

Initial time emulations can be constructed by looking at the
space emulations with efficiency one. Since these already give a one

to one node mapping, an optimal time emulation of the host array (in

the space emulation) by the target array (in the space emulation) can

be devised and its efficiency calculated by visually following the shor-

test path to establish the single link connections of the underlying

host array. For instance, we compute Ta.,.e.,(3 e) to be three by look-

ing at the space emulation scheme of 3.4.6.4 by 3 e and following the

shortest path between connected hexagonal nodes using only the
3.4.6.4 links.

Following the above procedure, we were able to construct

optimal time emulations of the hexagonal array for most regular

arrays. The time emulation efficiencies are shown in Table 2. The

parentheses indicate upper bounds determined by applying the above

formulas to these optimal hexagonal and orthogonal time emulations.

Other entries in the table come from visually mapping one processor

array onto another as in the case of the square array onto 32.4.3.4
and 3a.42.

The interest in time emulations comes from the fact that the

emulated target array is not reduced in size. Instead, a more complex

routing of data in multiple time steps is required to emulate the tar-

get array's communication properties. However, we cannot ignore

the time needed to route data in a space emulation scheme. In fact,
we see that there are cases where a time emulation will be actually

faster than a space emulation; a time emulation of a hexagonal array

using a triangular array will take three time cycles whereas the space

emulation requires four. In other cases, the opposite is true; _,.,_der

_he triangular array emulating the orthogonal array.

CONCLUSION

Processor interconnection topologies incorporating communica-

tion and spatial regularity will become increasingly important as

VLSI dimensions continue to decrease. Although mesh processor

arrays have known scalabillty limitations with respect to communic_

tion {28], several recent reports suggest that the communication

efficiency of two dimensional meshes is better than other interconnec-

tion topologies when compared for VLSI implementation [15 t i19].

The regular processor arrays described in this paper are

geometrically defined based on nearest neighbor connections and

space-filing properties. Interestlngy, only eleven processor arrays of

regular topology exist in two dimensions. We have enumerated these

arrays as well as presented space and time emulation schemes. A

natural extension of the work presented here concerns regular three
dimension organizations. Research in this area will become more

important and necessary as VLSI begins to offer three dimensional
interconnects.
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Interconnection Networks for Fifth-Generation

Computers

Bernard L. Menezes
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College Park, MD 20742

Abstract: An important subset of Fifth Generation

Computers are Expert Systems. Support for the database

management subsytem of such a machine must include par-

allel I/O, a relational engine and an interconnection net-

work. Properties of a multiple tree-based network called

KYKLOS are presented and examined in the context of

this application. It is shown that this structure effectively

supports the parallel executions of database operations

such as the join. A brief description of the hardware of

a single I/O node is included.

.1 Introduction

Since the early part of this decade, it has been recognized

that the present (fifth) and future generations of comput-

ers would have to be adept at processing knowledge about

objects and the relationships between them. The logic base

representing this knowledge is composed of a set of facts

(the extensional database) and a set of rules (intensional

database). Data-intensive logic base systems have a large

extensional database and are characterized by the fact that

they are expected to respond to all possible solutions to a

query rather than only one solution as in AI-oriented logic

processing systems. The two major components of such

a logic base or expert system are the relational database

management system (RDBMS) and the inferential subsys-

tem. To facilitate parallelism in search, join, aggregate

operations, etc., each relation in the extensional database

is assumed to be fragmented across several I/O nodes. The

concern of this paper is the provision of architectural sup-

port for the parallel execution of queries directed at the

RDBMS. In particular, the communication medium or in-

terconnection network (ICN) linking the I/O nodes will be

the principal focus.

An ICN linking processors, memory modules and I/O

nodes in a system may, in addition, have dedicated switch-

ing nodes as shown in Fig. l(a). These networks, called

dynamic or switching topologies, were first proposed for

telecommunication where a great deal of research was con-

ducted on the feasibility of using such networks to ensure

nonblocking communication paths between every pair of

subscribers. A special class of these networks called mul-

tistage interconnection networks (MIN's) has been inves-

tigated in connection with their applicability to multipro-

cessing systems. MIN's are parameterized by their spread

and fanout, respectively designated s and L On the other

hand point-to-point networks do not have nodes dedicated

to switching. An example of this class of networks is the

hypercube (Fig. l(b)).

The design of an ICN may be motivated by consid-

erations that make no a priori assumptions of the appll-

cation(s) to be run on the system. These considerations

are typically topological: minimization of average or worst

case interprocessor distances, for example. Indeed many

of the general concerns of performance, cost and reliability

may be expressed in graph-theoretic terms. Cost concerns

translate to low node fanout and small bisection width if

the network is to be laid out in VLSI. Finally, provision for

multiple paths between node pairs would provide a level

of fault tolerance. Algorithms are typically mapped onto

this network. By contrast, a top down approach would

select a network based on its suitability for one or more

specific application(s). The methodology reported herein

in similar in spirit to the bottom-up approach - a network

is proposed, the graph-theoretic properties of the network
alluded to are investigated and its utility in the RDBMS

is explored.

The paper is organized as follows. In Section 2, some

of the ICN's proposed for the RDBMS are surveyed. The

KYKLOS ICN is introduced in Section 3 and its main

properties are summarized. Finally, the proposed RDBMS

architecture is presented in Section 4.

.2 Background

There have been a plethora of papers on the utilization

and comparison of various ICN's for parallel RDBMS's.

Strategies for performing database operations in a hypercube-

based multicomputer system with parallel I/O that involve

data redistribution operations such as tuple balancing were

presented in [BARU87]. In [BABA87], a cost-performance

analysis of a switching network as a function of the number

of stages was undertaken. In [HSIA87], several networks

CH2649-2/89/0000/0503501.00 © 1988 IEEE
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includingthebus,treeandringwerecompared.Bothtree
networksaswellasthebroadcastbusfaredwellin the
comparisonforahostofdatabaseoperations.Inaddition,
atreearchitectureunlikethebuslendsitselfwellto the
sort-and-mergeoperation(inO(n)time)whichisofimpor-
tanceindatabaseapplications.Treenetworkshaveother
virtues:theyaresimpletobuild,areincrementallyexten-
sible,havesmallfanoutandlogarithmicdelaybetweenany
twonodesinthecaseofthefullm-arytree.

Whileatreeisanidealarchitectureforabroadcastand
forthesort-and-mergeoperation,thereisanothercomu-
nicationparadigmthatisfrequentlyencounteredinquery
processingofhorizontallyfragmentedrelations(i.e.rela-
tionsfragmentedbyrows).ThisistheN-broadcastwhich
involvestransmissionofamessage,m_ from a node i to

node j for every pair i, j. Clearly, half the messages would

pass through the root resulting in a bottleneck. The other

problem with the tree is poor reliability.

There have been several approaches to the rectification

of these problems. Adding links between nodes at the same

level in the tree to bypass traffic through the root - this

strategy was implemented in the half-ring and full-ring X-

Tree [DESP78] and in the Hypertree [GOOD81] (see Figs.

2(a) and 2(b)). A scheme by Hayes [HAYE76] (Fig. 2(c))

provided 1 fault-tolerance (tolerance to any single node

fault) by the addition of a spare node at each level of the

binary tree and the addition of extra links between every

pair of adjacent levels. In addition, it was shown to be

optimal with respect to the number of links added.

The KYKLOS Network was an attempt to integrate the.

concerns of performance and fault tolerance. This struc-
ture makes use of two or more trees to increase the com-

munication bandwidth and provide fault tolerance without

increasing the fanout of the nodes in the original binary

tree. In addition, a skew in the connections between the

trees alleviates the root bottleneck problem.

.3 The KYKLOS Interconnection

Network

The general form of KYKLOS is an interconnection net-

work consisting of r sets of m-ary trees joined so that they

share a common set of leaf nodes [MENE88]. Fig. 3(a)

shows a KYKLOS of 4 ternary trees sharing the same set

of leaf nodes.

.3.1 Interconnection Strategies

KYKLOS-I

The simplest version of KYKLOS is the simple dou-

ble tree (Fig. 3(5)) used for database problems[SONG80].

Here, the bottom tree is a mirror image of the top tree.

KYKLOS-II: The shuffle-connected Bottom Tree

The connection between any two adjacent levels of the

bottom tree (level -i and -(i+l)) may be visualized by con-

sidering level -i nodes, 0 < i < n, split into two groups i.e.

node 0 to node 2 "-i-1 - 1 in one group and nodes 2_-i-1

to 2"-_ - 1 in the second group (Fig. 3(c)). The jth node

at level -(i+l) is connected to the jth node in each of the

two groups. Descendants of level -(i+l) nodes from left to

right are thus ordered as a perfect shuffle. This idea can

be generalized to a double tree with arbitrary branching

factor where an m-way shuffle may be used to define the
bottom tree of KYKLOS-II. Thus

Forl <j <n;

level -j node <-j, i>, 0 < i < m _-j

is connected to level -(j-l) nodes:

<-j+l, i>, <-j+l, i+m"-J >,... <-j+l, i + (m-

1) _-j >

and to level -(j+l) node

<-j-l, i mod m _-j-1 >

Root node <-n,0> is connected to nodes:

<-n+l, 0>, <-n+l, 1>,... <-n+l, m-l>.

The interconnection for the top tree is as in KYKLOS-
I.

.3.2 Properties

The key properties of the KYKLOS network are (details
of these may be found in [MENE88]):

1) Network Cost (as measured by the number of non-

leaf nodes) is a linear function of the number of leaf nodes.

Also, the degree (fanout) of each non-leaf node is uniformly
three or less.

2) The maximum traffic density under the uniform mes-

sage distribution assumption in KYKLOS-II is O(N l's) as

compared with the O(N 2) traffic density in the single bi-
nary tree or KYKLOS-I.

3) Average Communication Delay (leaf-to-leaf) is fur-

ther reduced over that in the simple binary tree.

4) Routing is straightforward. Also there are several

routing strategies, each of which map to a different set of
traffic or distance characteristics.

5) Fault Tolerance is improved by virtue of the multiple

tree nature of the structure. Further, eonectivity in the

case of KYKLOS-II issuperior to that of KYKLOS-I.

.4 The KYKLOS-based RDBMS

Architecture

Fig. 4 is a block diagram of the proposed RDBMS. The

host processor is assumed to be a supercomputer connected

to the roots of the KYKLOS-II network. The leaves, called

I/O nodes in this application, consist of a conventional

moving head disk, associative disk cache, a sort engine,

and a general-purpose microprocessor. An important com-

ponent of the I/O node is the sort engine design utilizing

an array of Content Addressable Data Manager (CADM)

chips manufactured by Advanced Micro Devices. 16 CADM

5O4



chips (a total of 16K bytes i.e. (# of records).(key width

+ pointer width) = 16KBytes) comprise the sorter, it is

expandible to 256K. The choice of these CADM chips was

based on its sort speedup of 15-50 over the VAX 11/780

and 1.5 over software sort on the CRAY X/MP-24 in addi-

tion to performing search and set operations. The nonleaf

nodes couple host and leaf (I/O) nodes and incorporate

logic and buffering to support merge operations on data

streams.

The database is organized as a set of relations R, S,
etc. which are the base relations upon which the leaf level

operations of a query tree operate. Each of these relations

is partitioned horizontally into fragments n, si, etc. re-
N-1

siding at I/O node i so that Ui=0 r_ = R. Each fragment

has associated with it a qualification which describes the

common properties of tuples in that fragment. The frag-

mentation scheme enables fragments of a relation to be

accessed in parallel besides parallel processing of a query.

Queries from the host are compiled into a set of relational

algebraic operations at the root node. The utility of the

proposed configuration for the computation-intensive join

operation is next exemplified. It is assumed that a join
between relations R and S is to be performed. The results

could be sent back to the host or may return to the leaves

as a temporary relation for the next phase of a query such

as a multi-way join.

Suppose that relations R and S are partitioned on at-

tributes a and b respectively, a # b, and a join on at-

tribute a is to be performed. A hash-based join [SHAS86]

would necessitate repartitioning S on attribute a based on

hash function h used to partition R i.e. if t 6 S, t is

sent to h(t.a). The communication requirements for this

phase can be modeled using the N-broadcast paradigm (i.e.

each pair of processors needs to communicate). This is

particularly well-suited to the KYKLOS-II network which

shows an asymptotic improvement over the binary tree or

KYKLOS-I. Once repartitioning takes place, the partial

joins may be computed locally. If the tuples need to be

sorted on an attribute other than the join attribute as is

often the case, the sort engine at each I/O node could

be used and the results merged using the two trees. The

network in this example has been used for communication

and for the merge operation. However, the nonleaf nodes

may be used to perform some of the partial joins as in the

semi-join algorithm described next.

The semi-join algorithm involves a broadcast of the join

attribute values from each node upon which a selection of

joinable tuples between each pair of nodes is made. Let rid

and si,; denote the fragments of r_ and sj that participate

in the join. The partial join between rid and %i may then

take place at i, j, or a predetermined site in the network.

To distribute the joins throughout the network, the sites

for the partial joins could be assigned based on the set of

mappings, v;, 0 < i < N :

vi(l) =< -(k + 1),l rood 2 "-k-' >

where i @ 1 = 0klu, i and 1 are n-bit binary strings, u

is a n-k-1 bit binary string with 0 k representing a string

of k consecutive zeros, and n is the height of each tree in

KYKLOS.

Then the partial join between i and j takes place at

vi(j). Note that vi(j) represent a non-leaf node address;
the first element of the tuple represents level number and

the second element represents a node within that level.

An example of this allocation strategy for i=0 is shown

in Fig. 5.
Two characteristics of this strategy are:

1) Load Ba/ancing The joins are uniformly distributed

throughout the nodes of the network. Note that if r_ t_ sj

takes place in Tree 2, si t_ r./could take place in Tree 1 by

an assignment which corresponds to v_ with k defined by

i _ 1 = ulO k.

2) Tra_c Equalization The traffic of the inputs of the

partial join is always rootward in each tree. Thus, there
is almost a perfect balance in traffic through every link in

the tree.

In conclusion, an augmented binary tree such as KYK-

LOS appears to be an attractive choice in the design of

the RDBMS of an expert system because the operations in-

volved in parallel query processing such as sort-and-merge,

broadcast and N-broadcast are well supported with this

structure. Finally, logarithmic internode path lengths, low

fanout, fault tolerance and ease of interprocessor routing

are desirable characteristics that further enhance its util-

ity.
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ABSTRACT: The technological availability of large scale muL

tiprocessor systems raises new issues in the design of highly fault-

tolerant architectures. The hardware redundancy inherently avail

able in such systems can be used for increased throughput, faster

execution •nd improved reliability. This paper addresses the is-

sue of scalability in the reliability analysis of large scale degrad-

able homogeneous multiprocessors. It is shown that the amount

of processor-hours a realistic system can deliver is upper bounded

independently from the number of processors. The results demon-

strate that graceful degradation in large-scale systems is not scal-

able: an increase in the number of processors must be matched by

a significant increase in the coverage factor in order to maintain

the same performance and reliability levels.

1 Introduction

The advent of large-scale multiprocessing, where several hundred

processors cooperate on the same computation, has placed the

issue of fault-tolerance and reliability analysis for computing sys-

tems under a new light. A large number of Processing Elements

not only increases the processing speed, but also the likelihood

that one or more elements will fail. Therefore, the overall system

reliability becomes a key issue in the design, implementation and

performance analysis of large-scale systems. Intact, the overall

failure rate increases with the number of processors and with

the complexity of the underlying interconnection network with

respect to the failure rate of a single processor using a compa-

rable technology. This increase is at least proportional to the

number of processors and results in a decrease of the expected

up-time of the system. The focus of this paper, therefore, is

on analyzing the scalability of large-scale gracefully degradable

computing systems. The main motivation behind this analysis

stem from the following considerations: would the reliability of

such systems impose a limit on the number of processors that

can be put to cooperate on one problem? Our analysis shows

indeed that the amount of reliable processor-hours a large-scale

gracefully degradable system is upper-bounded.

*This paper is based upon research supported by the National Science

Foundation under Grant No, 0CR-8603772 (USC/Department of Engineer-
ing - Systems), and by the Office of Naval Research, Arlington, VA under
Contract No. N00014-86-K-0311 (USC/Information Sciences Institute).

Traditional techniques of reliability and performability anal-

ysis are used to evaluate the asymptotic behavior of measures

such as the mean-time-to-failure, and the mission-time. The

concept of computational reliability, as introduced by Beaudry

[1] is used as a tool to evaluate the measure of reliable compu-

tational work as functions of the number of processors.

2 System and Fault Models

The model under consideration is that of a large-scale, homoge-

neous multiprocessor. The computation is, initially, uniformly

partitioned among N identical processing elements. The system

is assumed to support graceful degradation. Upon the detected

failure of a processor its computational load is picked up by

another processor or set of processors with near uniform load

partitioning. A distributed fault-tolerance algorithm relies on

the detection and isolation of faults and system recovery and

reconfiguration. The ability of a system to gracefully degrade

hinges on the combined success of these step. The failure of any

step can potentially result in a total system failure. The cumu-

lative probability of success of these three steps is expressed by

the coverage factor [2]. The analysis in this paper is based on

the following simplifying and strongly optimistic assumptions:

* No communication costs among processors.

• Fail proof communication links.

• No overhead associated with recovery and reconfiguration

procedures.

Although these assumptions are unrealistic, they are justifiable

in an analysis of asymptotic behavior. Based on such simpli-

fying assumptions, this analysis will determine upper-bounds

that are never reached in practice. The system is modeled

by a continuous-time Markov chain (CTMC), shown in Figure

1, [3, 4]. Since our analysis will focus on gracefully degrad-

able systems, we will not consider system repair and therefore

the CTMC is acyclic. In this model Pi(t) is the occupation

probability of state i, i being the number of failed processors,

i = 0,...,D- 1,F; where F is the state of total system failure.

D is the number of allowable degradation states, expressed as

a function of N. c is the coverage factor, which is the prob-

ability of successful recovery from a single failure. The state
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probabilities can be derived as:

Po(t) = e-N_'

Pi(t) = ei ( NN_i ) (e-_t)(N-i)(1 - e-_t) i
i=1 .... ,D-1

The reliability R(t) is simply the probability of beinj$ in a_y one

of the states i = 0 .... , D - 1. Therefore, R(t) = _i=o'D Pi(t) and

the mean time to failure (MTTF), which is the expected time

to first failure, is

_°°R(t)dt _ o°D-1 1D-_ e iMTTF = = _ P,(t)dt = _cc _- (1)
i=O "=

The Mission Time, MT, is defined for a given minimum relia-

bility R,,_in as the time interval during which the reliability is

larger than R,_,_ i.e., R(MT) = R,_i,,.

Unless otherwise noted, in the rest of this discussion, we

will assume a fully degradable system. This means that the

system allows graceful degraAation for up to N - 1 failures,

in other words, D = N - 1. The unit-time will be taken as

1/A = MTTFI (i.e, the MTTF of a single processor) and a

value of R,_i, = 0.99.

3 Time-Based Analysis

The expression for MTTF in Equation i indicates that increases

in N have diminishing effects on the value of the expected time

to first failure. In fact, an increase from N to N + l processors
results in a minimal increase in MTTF:

eN+l

MTTF(N + 1) - MTTF(N) = N + 1

since c < 1, the increase becomes insignificant for large values of

N. The values of MTTF axe plotted in Figure 2 as a function

of N for different values of c. The series in Equation 1 is not

convergent but has a logarithmic behavior. Therefore there is

no asymptotic limit to MTTF. However, for all practical pur-

poses, the mean time to failure can be considered constant for

sufficiently large N given a value of the coverage factor. Let Nk

be the value of N at the knee of the curve in Figure 2, then

MTTF(c,N) _ MTTF(c,N_) for N > Nk. From the above

analysis, we can conclude that the effects of the probability of

successful recovery, as expressed by the coverage factor e, on the

mean time to failure, MTTF, increases with an increase in the

number of processors. Also that, for larger systems, the mean

time to first failure is a constant function of the coverage factor

and is independent of the number of processors.

The values of MT are plotted in Figure 3 as a function of N

for different values of c. These curves show that for a given value

of c, there exists a value of N, denoted by N_, at which the MT

is maximal. It is clear from these curves that for smaller values

of N (N < N_) the inherent redundancy of the system provides a

higher mission time. As N increases (N > Np) the higher failure

rate dominates and reduces the mission time. Furthermore, as

e is increased, the value of Np also increases. From this analysis
we can deduce

• The peak value of MT is significantly larger than that of a

single processor. For example MT(Nr, 0.999) _> 93MT(1).

• As the number of processors is increased, i.e., N > Np, we

observe a decrease in MT that is inversely proportional to

N, MT(2N, c) = 0.5MT( N, e).

• While the peak value of MT for a multicomputer system

can be significantly larger than that of a single proces-

sor, the reverse becomes true for very large values of N,

MT(1) = 10MT(1024, 0.99).

• For N > N_, a 10 fold decrease in (l-c) (the proba-

bility of failed recovery) results in a 10 fold increase in

the MT for the same number of processors. For example,

MT(128,0.999) = 10MT(128,0.99). In other words, the

mission-time is inversely proportional to (1 - c).

Because of the cumulative effects of the probability of suc-

cessive recovery, the reliability of the system, after the ith fail-

ure, is constrained by R(t) < e i. Let K _ be defined such that

cK' = R_i_. Let K be the integer value of K'

/log R,,_,,_ I
K = L1-_-_-gcJ (2)

Given the definition of MT, I( I is the expected number of fail-

ures in the interval [0, MT] constrained by the condition that

D _> K'. In other words, if the number of processors is large

enough, K failures axe sufficient to reach R(t) = Rmin. From

this we can deduce that when the number of allowed degradation

states is sufficiently large (i.e., D :_ K), the necessary condition

to reach the minimum reliability level (R(t) = R,nin) and there-

fore the mission-time is that K processors fail. Since the rate

of failures is proportional to the number of processors, the time

interval [0, MT] is inversely proportional to N. On the other

hand, for _ << 1 and z = 1 -_, we can use logz _ 1 -z. There-

fore, for D :_ K MT c¢ _R" This proportionality expression
implies that in order to maintain a constant mission-time, any

increase in the number of processors must be matched by an

equivalent decrease in the probability of/ailed recovery: (1 - c).

4 Computation-Based Analysis

In this section we present an evaluation of performance and reli-

ability of large-scale degradable systems based on the notion of

computational work. There is no formally defined unit of com-

putational work. In this analysis we will use processor-hours as

units of computational work. Another related unit of computa-

tional work is machine instructions. Any computational task is

characterized by a certain amount of computational work, mea-

sured in processor-hours. When this task is executed over sev-

eral processors, the execution time is reduced, but the amount of

processor-hours required for that computation is kept constant

if the speed-up is linear. For non-linear speed-ups the amount

of required processor-hours increases due to added overhead.

Let Tn be the execution time of a given computation over n

processors. Sn is the attainable speed-up defined by Sn = _,_. Sn

is equivalent to the number of effective processors (i.e the number

of virtual processors fully utilized by the given computation).

We define CW(N,t) as the amount of effective computational

work a system will deliver for a given computational speed-up.

tt D-I

CW(N,t) = Lo (3)
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Based on the model described in section 2, we define PH(N, t)

as the amount of processor-hours a system, with initially N pro-

cessors, can deliver up to time t, as:

PH(N't) = frt-- D_o E(N-i)(N- i)Pi(r)dr-o= (4)

For a computation that exhibits linear speed-up (i.e. Sn = n)

we have: CW(N,t) = PH(N,t). Note that PH(N, oo) is the

mean computation before failure (MCBF) and CW( N, t) is the

integral of the computational availability, at(t), as defined in

[1]. Both PH(N,t) and CW(N,t) are expected values of the

processor-hours and computational work measures.

From this definition we can prove that the amount of com-

putational work a purely degradable system can deliver is upper

bounded and that the upper bound is independent of the initial

number of processors.

Theorem 1 VN and c < 1 3 PHrnaz such that

PH(N,t) < PH .... Vt.

Extensive proofs of this theorem can be found in [5]. The con-

clusion from Theorem 1 is that no matter how large the initial

number of processors is, there is an upper bound on the amount

of processor-hours that are obtainable when c < 1. This upper

bound is determined by c only and is reached asymptotically.

PH,_ is therefore the upper limit on the mean computation be-

fore failure (MCBF). Therefore increasing the system size does

not increase the amount of expected computational work the

system can deliver before total failure.

4.1 Reliable Processor-Hours

The measure of reliable processor-hours, RPH, is defined as the

amount of processor-hours available while the reliability is main-

tained above a given minimum, i.e,

MTD-1r

RPH(N, c) = PH(N, MT) = ] (g i)Pi(t)dt (5)
.It =0 i=0

The results of evaluating the RPH, according to Equation 5,

are presented in Figure 4 for D = N - 1, for values of c in the

range [1,0.99], and for Rmin = 0.99. The values of RPH(N,c)

are expressed in processor - hours where the unit time is taken

as 1/)_. Two observations can be made:

1. for a given value of c, there exists a value of N, Nph(C), be-

yond which an increase in N will not increase the amount

of reliable processor-hours.

2. the values of Nph and RPHmax increase with increasing

values of e.

Theorem 1 states that the expected amount of processor-hours

in the interval [0, oo] is upper bounded by PH,_. These re-

suits show that the expected amount of processor-hours in the

interval [0, MT] is also upper bounded by RPH,n_z. RPHm_

is therefore the maximum expected amount of computational

work the system can deliver subject to the constraint of R(t) >

Rmln. In the next section we present an analytical derivation of

RPHm_(c). The maximum value of RPH(N,c), RPHm_(c),

can be derived analytically by using the expression for the ex-

pected number of failures in the interval [0, MT], K, as RPH,,ax

RPH' l-oK These results show that there is no increase in
-= 1---7"

reliable computational work when N is increased above Nph for

a given value of c. This confirms the results obtained in the

MT based evaluation. It appears, therefore, that for a given

value of the coverage c there exists an optimal value of N, Nopt,

that would maximize the mission-time MT and the amount of

reliable processor hours.

4.2 Reliable Computational Work

RPH evaluates the amount of reliable processor-hours poten-

tially available from the system. The fraction of RPH that is

actually used by a computation depends on the speed-up Sn

of the computation. Similarly to RPH we define RCI¥ as

RCW(N,c) = CW(N, MT) RCW is therefore the amount of

effective reliable computational work a system can deliver with

respect to a given computation while R(t) > Rmin. In evaluating

RCW, we will take as example a sub-linear speed-up case where

S_ = _,--_--. The results, plotted in Figure 5, show that there
to$ n

exists a value of N denoted by Nr at which the value of RCW

is maximal. Figure 6 shows the plot of both RPH and RCW

versus N for c = 0.995 and S,_ = ol-_g_' This implies that as the

system size is increased over Nph, the probability of a compu-

tation not completing reliably decreases if the speed-up of the

computation is sub-linear. This result has implications on the

scalability of graceful degradation. For a large-scale gracefully

degradable system to be scalable, any increase in the system size

should be matched by an increase in the quality of the recovery

scheme, i.e., the coverage factor, in order to maintain the same

performability level.

5 Summary and Conclusions

In this paper we have addressed the issue of scalability in large-

scale gracefully degradable systems. The objective being to as-

sess the limitations that reliability considerations would impose

the number of processors in a massively parallel. Traditional

measures of reliability, such as mission-time and mean-time-to-

failure, as well as measures of computational reliability have

been evaluated as functions of the number of processors. It was

shown that the mean-time-to-failure is, for all practical purposes

and for large system sizes, a constant function of the coverage

factor and is independent of the number of processors. The

analysis of the mission-time shows that, for a given value of the

coverage factor, there exists a value of the number of proces-

sors at which the mission-time is maximal. As the system size

is increased beyond this value, the mission-time becomes a de-

creasing function of the number of processors. The measure of

processor-hours was defined as the amount of potential compu-

tational work. This measure was shown to be upper-bounded

and the upper-bound independent of the initial number of pro-

cessors. For computations with linear speed-up, it is shown that

the amount of reliable computational work is constant for large

system sizes. When the speed-up is not linear, this amount is

a decreasing function of the number of processors. Therefore,

for large system sizes and same technology, increasing the num-

ber of processors results in a decrease of the expected amount

of reliable computational work the system can deliver. It is

therefore demonstrated that graceful degradation in large-scale

fault-tolerant systems is not scalable. In order to preserve the

same performance and reliability level an increase in the num-

ber of processors should be matched by a decrease of the same
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magnitude in the probability of failed recovery.
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ABSTRACT

A number of cellular array processors have been successfully cot,s!meted

over the last several years. In general, these processors have concentrated

on interconuection topologies and processing element microarchitectures to
the exclusion of instruction ,set and high level language issues, Even in

those cellular processors with explicit hardware support for particular

operations (e.g. multiplication support in MPP), issues of actual imtmction

set design and suppot_ are secondary to low-level microarchitectural

details.

Continued advancement of cellular prooessors requires consideration of the

_or as a component in the overall context of executing parallel algo-

rithms, and so requires consideration of issues including parallel high level

languages, user-level assembly languages, and efficient microarchitectmes.

Additionally, high-bandwidth input and output must be combined with

efficient data s'aucture conversion hardware to provide a mechanism for

communication of mid-level image data between the cellular processor and

external processors for mid-level and high-level processing.

This paper describes a project involving all these levels, provkting an

integrated envirmm_ent for pyramidal problem solving. The use of a top-

down design approach, beginning with algorithms, then language develop-

mcnt, and finally architecture and microaxchitecture, has resulted in an

exceptionally clean and well-integrated processor for pyramid operations.

1. Introduction

While a numhet of parallel computers, such as ILLIAC IV, were

built by the late 1960s, the ft_t modem cellular array processor con-

stmcted was the ICL DAP (Ref 6 ). This processor included a number of

features common to most of its successors, including bit-serial processing

elements (PEs) and a grid intercoonection pattern. Also in common with

mosl of its successors, it possessed a number of special features; in the

case of DAP, the most nOteWOrthy was the pre_nee of row/column high-

ways for commtmication of data tin'onghout the array.

While DAP was extremely fast for its time, it also suffered from a

malady common to most of its successors: communication of htstructiom

and data between the host and the PE array was very cumbersome, result-

ing in underutilization of the PE array. More recent processors have gen-

erally shown similar strengths and weaknesses. In general, much more

attention has been paid to interconnection topologies and PE designs than

to host/PE array integration.

A second weakness in cellular processors has been their

Input/Output systems. Typically, the IO rates in these processors have

been far below that necessary to maintain efficient processing in the PE

array. Some systems (notably MPP) have addressed this problem through

high-bandwidth IO subsystems, operating asynchronoualy (Ref I ). Even

these systems, however, are weak in converting data between formats

which are useful for the cellular processor and formats which a_ useful
for the host.

A current project under way at NMSU is the development of an

architecture for coniputer vision which will successfully integrate low-

level, intensity array pmceming with high-level, gntph atmcture process-

ing. Issues of concern to this project include data _mcture conversion

between low-level and high.level representations (Ref 4 ), graph sU_cture

representations suitable for parallel manipulation (Ref5), model-bssed

reasoning (gef 2 ), and development of architectures for graph structure

manipulation. The ultimate goal is the development of a unified architec-

tu_ capable of structural analysis of in!ages at real!tree rates.

Figure 1: Integrated Computer Vialon Architecture

A view of the eventual system is shown in Figure 1.

In this paper, we discuss a m_tsively parallel component of the

overall project: a pyranfid processor for perfonnin 8 low level image pro-

cessing. The processor is designed from the gronnd up with the goal of

providing a set of SIMD pyramid operations usefial to programs written in

a high level language, for eventual feature extraction. The approach taken

begins with a cotmideration of the operations required to support typical

vision operations, and embeds these operations in the C progranuning

language as parallel constructs. A compiler for this extended C (caRed

HCL, for Hierarchical Cellular Logic) defines the set of low-level pyramid

operations required for a pyramidal cellular processor. Finally, this

instruction set defines the microarcMtecture of the PE's, and the capabili-
lies of the controller.

At the same lime, study of mid-level processing algorithms, and

analysis of the properties of edges ill an image, reballts in the definition of

fast parallel hardware for searching edge maps in order to create graph

structures for high-level processing.

This paper will consider each of theae issues in turn. Section 2

deals with the parallel operations of HCL Section 3 describes three candi-

date ins!rutXion sets which were evaluated for PCLIP II, supporting stack,

enh_lced stack, and two-operand instructions. Section 4 describes the

micrarchitecture of PC'LIP H, and the impact of the microarchitecture on

llte _ml choice of imtmction set. Section 5 discusses the I0 sulky'stem.

CH2649-2/89/0000/0511501.00 © 1988 IEEE

511



lc_udly, Section 6 lwovides anme _om.

2. HCL: A High.Level Language for Low-L_vd Image Processing

Algorithm development fc_ pyramid processors in the early 1980's
ted to the definition of a notation for operat/ons on pyrmdds, called

Hierarchical Cellular Logic (Ref 7 ). The distinguishing feattu_s of this

notation are its pattern match operators, the definition of grey-level opera-

tions(such as addition)ft_m bium-yoperatom (suchasexclusiveOR), =ttd

the ability to use the results of prior operations to selectively mask subsets

of the pyramid. The notation was based on two pattern match opemtom,

and the full set of bitwise Boolean operators. _hese featm_s were inspired

by the characteristics of bit-serial parallel pro_ssors (Ref 8 ), and by fire

needs of pynmtid algorithms.

The set of operators suppom_d wm formalized when the language

was embedded in the C pmgnmuning language, t_ulting in a pyrmntd

programming language called HCL (Ref 3 ). An exmnple of a statement

in HCL, calculating Ihe Sobel edge detector, is shown in Figun_ 2.

dy - (nw pixel(in image) +
2*n pixel(_n image) +

. . -r
ne_.p/xel (in image} )

(Sw_pixel(in image) +

2*s pixel (in__image) +
se pixel (in image)) ;

Figure 2: HCL Cede Calculating Gradient Cemponem

Development of the HCL compiler provided a setof fundamental pyramid

o_ratiom, and architecturalfeatmes,n_uimd to mppo_ the language. In

the nextsection,we disoaB Immtction Jetdevelopment forHCL.

3. Instruction Scq Support for HCL

The PCLIP 1I insU_ction set implements precisely the f_Wares

needed to support HCL. As the language is based on S1MD extensions to

C, the instruction set has taken a form very similar to conventiotud, seri4d

instrucOon sets, with the two differences that (I) operatiom are performed

on parallel objects and (2) there are no provi.cions for flow of c_ntrol. The

processor is being developed for use as a specialized functional unit in m

image processor supporting a unified inst_ction set for scalar and parallel

operations. In tt_ environment, scalar data and flow of control will he

handled etsewhem, and so are not requ/red in the pyramidal I_Oeesso_.

Three instruction sets have in fact been developed and evaluated: a pule

stack machine, an er_anced stack machine, and a two operand machine.

Historically, the stack machine was createdFh*st, as a "Version 0"

architecture which could he used 1o determine the routing and processing

chalactenstic,5 of HCL program& The enhanced stack machine was

developed next as a result of almulatiom of the pure mack machine, in

older to reduce meting overhead. The two _ermnd hutmction set was

then designed to simplify the microcomroller. This third instruction set is

now being pursued for further development.

Rather than discuss the three inatngtion sets and their performances

in the order they were evaluated, however, it is more instructive to p_sem

the instruction sets first, and then compare them. Three quantitative meas-

ures of the efft¢iency of the imtngtion set are shown for thL_bendunatk.

The number of instructions acts as a measure of the work required for the

instruction dispatcher to process the code, while code size gives a measure

of the bandwidth which will need to he suppo_d between the disl_tCber

and the pyramid. The execution speed is, of course, the critical measure of

the effectiveness of the architectme. This speed estimate is based on the

PE micn_architecture, described in Sec6on 4. A qualitative compar_on of

the microcontruller complexity is used.

s.t. tmtr=eu_ sm _

In the following section, the dmee imtmction sets are desurihed.

Along with each description, the code required to execute the HCL state-

merit is presented as an example.

3.2. Stack MacWme lmtrect_ Set

The fust imtmction set developed is a nearly pure stack machine,

corrupted only by the presence of imtructions popping the slack into the E

register, and adding the C register to the top of stack. The code required
in _ instruction set to implement the HCL statement is shown in Rgure

3.

3.2.1. Enhanced Stack Mackhum

To obtain the second instngtionset,flu_eenhancements a_ added

to the stack machine instroctionset:

• Combined routil_ with push o_ratlons

• Performing arithmetic on the top of sta_ without requiring push

operations

• Visible P register, with this register added to the set of possible

sources and destinations for register transfer itmroctions

Code for this enhanced stack machine is shown in Figure 4.

3.2.2. Two Operand lmtrectlon SCt

The third immtction set simplifies the microcontroller by moving

responsibility for stack management from it to the instructiendispatcher.

The code san|pie for the two operand instruction set is shown in Rgu_ 5.

3.3. Imtructim* Set Compar/som

In this section, the three candidate instruction sets are cm_pared on

four criteria: execution rate, number of imtntctiom, code size, and miczo-

contrulkr complexity.

Size Cycle,
3 8

5 16

3 8

3 8

5 16

1 8

1 16

3 8

5 16

l 16

3 8
5 16

3 8

3 8

5 16

1 8

1 16

3 8

5 16

1 J6

! 16

l 8

Figure 3:

Instruction

push (8) in_image

and match x lxx xxx xxx xxxx

pushint 1

push (8) in_image

and match x xlx xxx xxx xxxx

ishft

add

push (8) in image

and match x xxl xxx xxx xxxx

add

push (8) in_image

and match x xxx xxx ixx xxxx

pushint 1

push (8) in image

and match x xxx xxx xlx xxxx

ishft

add

push (8) in_image

and match x xxx xxx xxl xxxx

add

sub

pop dy .

Pure Staclt Machine Code Sample

3.3.1. Quantitative Comparisons

The original mo_vation for the design of the pure stackmachine was

to completely separate data manipulation from data movement. TI_ was

to locate instroction pairs that might profitably be combined into singie

imtmctions. Analysis of the code sample (see F_gu_ 3) shows two such

pairs.First, as expected, there are a very large number of push and

pop k_gtng%iO_S. Se0omd, nearJy every push instn_on is followed

immediately by a pattern match openttiot_ In addition to these, the pattern
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sise +c_,
4 16

4 16

2 8

I 16

4 16

4 16

4 16

2 8

I 16

4 16

I 16

4 8

push nw (8) In_image

push n (8) in_image
Ishft 1

adds

add ne (8) in_image

push sw (8) in /mage

push s (8) in_image
Ishft 1

adds

add se (8) in_image
subs

pop dy

F,nhaneed Stack Machine Code

iSi_ Cycl_ Instmcfion

6 16 mov nw (8) in_image Stack

4 1 clr (I) Stack+8

6 14 mov n (7) in_/mage Stack+9

6 16 add c (8) Stack+8 Stack

6 16 add ne (8} in /mage Stack

6 16 add sw (8) in image Stack

4 I clr (i) Stack+8

6 14 mov s (7) in_image Stack+9

6 16 add c (8) Stack+8 Stack

6 16 add se (8) in_image Stack

6 16 sub c (8) Stack+8 Stack

6 16 mov c (8) Stack dy

Figure $: Two Operaml Code

match operations are typically used to route data from a particular neigh-

bor, which does not requiw the full flexibifity of the pattern match imtmc-

lion. Not apparent in this code sample is a fourth area for improveinent:

pmlem matching algoritluns (such as region tilting) also show an excessive
m.oont of communications between memory and the PE.

The largest difference between fhe first two instruct/on sets is the

combination of push and muting instructions with arithmetic instruc-

tions. In the code sample, this provides nearly all of the performance

improvement', folding the instmctinns together reduced the instruction

count and reduced PE-memory traffic, while adding a lookup table for

routing reduced the code size.

The performance measures for the second and thild instruction sets

arc nearly identical. Typical algorithms show very similar oombem of

inmruclions, and processing rates, The code size for the two operand

machine is much larger, however. These performance criteria are shown

together in Figure 6.

Machine Instructions Size Cycles

S!ack Machine 22 62 264

Enhanced Stack Machine 12 35 168

Two _eramt 12 68 158

Figure 6: Quantitative Pedormance Comparisons

3.3.2. Complexity of Mkrocontroller

The first two instruction sets require the microconlmller m maintain

the expression stack. Due to the bit-serial nature of the instruction set, two

s_acks are required. The Pyr_tid Stack, consisting of the actual operands,

is stored in bit-addressed pyramid memory. The Controller Slack, holding

the length of the operands in the operand stack, is stored in ¢he controller.

The two st,_k pointers (Controller Stack Pointer and Pyramid Stack

Pointer) are also maintained in the controller.

mi<:soomlmller for lhe lecond Inslmcllon set is more ccnsplex

then fc¢ ti_ fi_ one, due to the nevmity of matmalnlng mmi_ proem
lookup tables. TI_ diffenmce is not nearly ,_, sigtflficant as the difference

in the size of the instruction set. The ,mhanced _ machine requires all
of the imlmcliom immml in tle pure _ imtmctim +el, as well as in
own enhancement,

The two opetand instruction set rues a substantially simpler micro-

controller. Hm, the stack maintenance hardwlue is not lequi.,-ed. Second,

as stack operations are simply special cases of two operm3d instructions,

the size of the ittqruction set is effectively reduced to the size of the pete
stack in_mction set.

Extending this instruction set to a thiee operand instruction is also

being considered. The approach here is to continue development of the

two operand instruction set, while leaving space in the op code list for
later implementation or"the additional in_mc_iom.

4. The PCLIP H Processing Element

A microarchitectare has been developed for execution of the instruc-

tion set This micmarchitecture was developed with the single goal hi

mind of providing a maximally efficient hardware and microcode imple-
recreation of the pyrmnid instruction sets described above.

Since the three instruct/on sets developed perform nearly identical

operations, the PE mic_oan_hitectures ate also be identical. The only

difference between them in terms of opemtimts supponed is _ presence

of a visible P register in the second and llfird. This register is also

required for muting in the first in.qmction set, although it is not visible
there, The major differences between the instruction sets fie in the

addressing mechen_ms used, taxi so do not affect the PE design.

4.1. Processing Elements

The PEs are required to sul_ort the operations defined by the

infraction set deacrihed above. Th_ trm_ates into tlnee specific require-
nlent$"

• Direct implementation of HCL pattern m_ching oper_ions

• Support for C, E, and P registe_

• Efficient bit-serial arithmetic

The resulting microarchitectme (Figme 7) is in many ways a con-

ventional bit-serial PE, with optimization inplace for these requirements.

Fr°m [Neilhb_r Pis[lllll I I I F--

J PaUem Match [

I From

[i,

i Ii J
' i i '

Memory

To

Neighbor
PEs

Figure 7: Processing Element Microarchitecture

Routing is provided by a pattern matching unit which directly implements
the AND_Match operation of HCL. The marcher is provided with a vector

of fourteen pattem elements, each containing a O, I, or x. Each 0 or 1

is matched against its _g elemem in the neighbodmod of the
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a i if all of its noo-x elements match. HCL's OR.Match can also be

executed, by modifying the pattern contents and the functions to be per-

formed by the boolean processors.

Two independent processors m'e each capable of evaluating any of

the 256 boolean functions on three inputs. A typical use of the prooessors

would be to generate sum and carry _multaneonsiy in an addition. The

outputs of the processors may also be independently routed to any of the

registers in the PE or to memory.

This micr_architecture is able to perform simple two operand aribS-
metic instn_ctions, such as addition or subtraction, at a rate of two

cycles/bit, wilh a memory ulilization of 75%.

5. Communications

AItention has been paid to two areas of communications. First, 1he

instmctiou dispatcher must be capable of sending imtmctiom to the

pyramid microcontroller, and scalar results and status information must be

returned. Second, it must be possible to tnmsmit a massive amonm of data

into and out of the pyramid, and to effectively communicate this data with

other subprocessors. In this section, we will briefly describe the mechan-

isms provided in PC'LIP rl for these classes of communications.

5.1. Instruction and Scalar Data Communkatlen

Couununication between the microcontroller and the instruction

dispatcher is provided through two mechanisans. First, an instruction

queue receives instructions from the dispatcher. The Instruction Register

is double buffered, to permit fetching from the queue with no overhead. A

second channel is used to communicate data back to the dispatcher. The

leturlled data can be either the contents of a Non Zero Result register or a

Scalar Result Return register. To synchnmize the instruction dispatcher

with the microcontroller and obtain this data, the instruction dispatcher

sends a "send NZR" or "send scalar" instm_on to the microcommller,

and then waits for the requested data to become available by _ to

read the communication channel.

]]le NZR register reflects the contents of Ihe P registers in the

pyramid. One NZR hit corresponds to each level of the pyramid. When-

ever any enabled PE has a nonzero result, the NZR bit correspondhlg to

that PE's level in the pyramid is set to one.

The SRR register operates under control of the microcontroller. The

least significant bit of the SRR is loadahie with the contems of the P regis-

ter of the root of the pyramid. This provides a mechanism for loading

scalar results of algorifluns into the controller, and from there to the

dispatcher and scalar processor.

5.2. High Bandwidth lnput/Oatput and Mid-level Vision Support

One of the primary design goals of PCLIP H is developing an

environmem in which IO may take place efficiently, and at rates capable

of suppot'ting real-time vision processing. This includes two types of IO"

roster IO, for transfer of image data in and out of the pyramid, and graph

structure IO, for transfemng edge maps in a compressed format suitable

for use with graph structure processors.

The raster IO mechanism is very similar to thai used by MPP, with

simplifications permitted by the development of Video RAM memory.

Interleaved VRAM is used as staging memory, with byte-serial data pro-

vided by a camera or other source. The VRAM shift registers are used to

convert this data to row-serial data for PCLIP II. Shift registers built into

the bottom level of the pyramid are used to trat_fer data between VRAM

and the pyramid. These shift registers operate asynchrononsly with the

pyramid, permitting simultaneous 10 and processing.

The interfaces between the pyramid shift registers and the VRAM

are also capable of _arching the data passing through them for edge end-

points, and generating the addresses of these endpoints. These erglpcinte

are then tra, tsferred to high-level, graph smlctured processors. In order to

suppot_ vertical, horizontal, and diagonal edges, four IO shift plm,es are

used in graph structure IO. MecharAsans also exist for the high level pro-

cessors to transmit coordinates to line drawing hardware, which is able to

mmalate Ihem to a lira drawling and Umm_ km to dae pyramid base

level. Thla _ ia dem#_ed ia gnmter detail in Ref 4.

Maximum IO rates are two gigabits/second for raster IO, or up to 24

gigabytes/second for graph structtae IO. These IO rates scale limady with

la'veatment in I0 hardware and cycle-stealing overhead in the precessm;

the initial implementation will only support 128 megabits/second for raster

10 and three gigabytes/second for graph smlcture IO. "13_ese rates for

gnph structure IO are peak rates assuming tm_alislicany dense edge

maps; more realistic numbers ale perhaps ten percent of this.

This IO s_cture provides an interface to high-level processors

which eliminates the need for searching through images to develop graph

representations of edge maps. Instead, the graph _s can be

developed directly, resulting in superior performance on the high-level
vision tasks.

6. Conclusions

The design of PCLIP lI has been guided from its very inception by a

small number of basic principles. Most important of these has been a

view of the processor as a component in the overall context of a vision

computer, and a language-driven desi_.

This approach has been saccemfol in producing a design with a very

clean, well integrated, and efficient immaction seL For simple operations,

Ibe processor is able to operate within a factor of two of the bandwidth of

memory. In addition, communication with other components of the vision

pmcemor, especially graph structure processors for cognitive processing, is

gxeatly eohanced.
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ABSTRACT

A software organization concerning the control of an

SIMD machine is explained. It is argued that the bulk

of an algorithm adapted to an SIMD architecture should

be executed on a microsequencing controller which is

directly connected to the SIMD machine. Typical

systems have a main control unit which calls low level

primitives on a controller which is directly connected
to an SIMD machine. An algorithm can be

autonomously run on a microsequencer directly
connected to an SIMD machine. Two algorithms are

applied to the two major SIMD controller
configurations and their performances are examined.

To demonstrate how the software organization can be

applied to a system, a compiler has been written, for

the GAM Pyramid, that generates microcode from a

high-level language with parallel data structures. The
microcode executes on a microcode sequencer unit

which is directly connected to a pyramid architecture

SIMD machine.

Keywords: SIMD, Microcode Sequencer Unit, Compiler,

Convolution Algorithm, MPP, GAM Pyramid.

INTRODUCTION

There are two major philosophies governing the
control of SIMD machines. The first is to divide control

among two or more controllers which are connected in
a hierarchical fashion. The lowest level controller

(typically a microcode machine connected directly

directly to the SIMD machine) executes primitive

instructions such as addition or logical expressions and

is not capable of supporting a large program; only

small subroutines can be run.. Its parent controller

executes higher level code and calls primitives residing

on the low-level controller. There is usually some form

of connecting hardware that eliminates controller wait

time (such a queue in the case of the MPP [1]).

The second paradigm is to execute most if not all code
on a low-level controller connected directly to the

SIMD machine. A higher-level controller would be

used to process external I/O and/or act as a gateway to

other systems. This approach requires a sophisticated

controller capable of executing different instruction

types in parallel. One way to accomplish this is to have

the low-level controller execute very versatile

microcode.

The latter design is advocated. Examples of a possible

implementation are given and an actual compiler for

implementation are given and an actual compiler for

the GAM pyramid's microsequencer is presented.

NOTATION

The notations used to represent parts of a hypothetical
microcode instruction are described below.

Indirection

Indirection is handled by: [r], where r is the register

used. Thus [r] represents the memory location pointed

toby r.

Looping

DO rl,r2 TIMES block is executed until rl = 0

LOOP decrements r and loops back up if rl > 0

The DO looping structure will automatically use rl as a

looping variable, first loading rl with r2, then looping
until rl = 0.

Program Flow Control

Program flow control consists of the following
instructions:

BR k = branch to x on the next clock cycle

BRS = branch to subroutine on next cycle

CASE rl,r'2 = branch to [rl+r2] on next cycle

DRT = execute two RT's on the next cycle

RT = return from subroutine (pop PC from stack)

CCASE rl,r2 = conditional case
CBR k = conditional branch to k

CBRS k = conditional branch to subroutine

CDRT = CRT,RT

CRT = conditional return from subroutine

Arithmetic Control

Arithmetic control is based on a three-ALU

configuration. See Figure 1. Formats are based on:

ADD source, source, destination

Any source may be represented by a register or a

constant (k) that would appear in the microcode
instruction.

LADD rl,r2,r3 = left add (may use indirection on any

register.

RADD rl,r2,r3 = right add (may use indirection on any

register)

CADD r = center add (may use indirection on r)

CH2649-2/89/0000/0515501.00 © 1988 IEEE
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Figure 1. Three ALU Configuration.

Condition Codes

The controller should have various condition lines

such as ALU results (e.g., overflow, zero, etc.) or status
lines (e.g., host ready, SIMD status, and so on).

CCSEL = condition code select (e.g., CCSEL 5 would select
condition code 5 as the condition for conditional
branches).

Mutual Exclusion

Parallel Sets:

{BR,BRS ,CBR,CBRS ,RT,CRT,DRT,CDRT,CASE,
CCASE}, [CCSEL}, {LADD}, {RADD}, {CADD},
{DO,LOOP}, {SIMD control instructions}

Elements from the same set are mutually exclusive and
cannot bc included in the same microcode instruction.

SYSTEM COMPARISONS

Two routines written for the MPP (a 128 x 128 bit-serial
array) are now presented to show the differences
between using a hierarchical control system and a
single microsequencer to execute large portions of code
(note that the hypothetical microsequencer is assumed
to have a sufficient amount of data memory and/or a
large register set).

The first routine is that of convolution (sec Program 1).
It is important to note that every line of code involves
manipulating the SIMD machine. Therefore, if it were
to be executed by itself, it would make sense to contain
it within one machine that controls the SIMD computer.

Program 2 shows how the convolution routine
(residing in a hierarchical control system) would be
called from a hypothetical FOR loop which executes one
thousand times. Parameters are passed from the high-
level controller to the low-level controller on each line
within the convolution routine. That means that the
actual convolution routine resides on the high-level
controller while simple instructions such as ADD and
SHIFT reside in the low-level controller.

In contrast, Program 3 demonstrates that no overhead

at all is required to execute the convolution routine one
thousand times. The DO instruction uses register
seventeen to loop one thousand times. This looping
structure takes no extra cycles. Thus, the entire
routine may reside on a microsequencer, freeing the
host and eliminating a need for complicated inter-
communications hardware.

Program cony(row_index.col_index);
type

sarray = Parallel Array[0..127,0..127] of 0..131071;

procedure cony33( a: sarray; var ternp: sarray; k.s: integer):
var

ashfft : sarray;
begin

temp := a* k:
ashift := shift{ a, I, 0}:
temp := temp + ashlft * s;
ashiR := shift(a, -I, 0);
temp := temp + ashlft * s;
ashIR := shift(a, O, 1};
temp := temp + ashift * s;
ashiR := shift(a, O, -I};
temp := ternp + ashift * s;
ashiR := shift{a, I, -I);
temp := temp + ashift * s;
ashiR := shlft(a, -1, 1};
temp := temp + ashiR * s;
ashlft := shlftla, I, 1};
texnp := temp + ashlR * s;
ashift:=shift{a,-I,-I);
tcmp :=tcmp + ashiR *s:

end;

Program 1. Convolution Example.

a := I;

k := 8;
S :- -l;

section := 1;
for(i= 1 to 1000)

conv33{a.b,k.s)
end.

Program 2. Convolution--Two Stage

a 2-- I;

k := 8;
S ;= -I.
section := 1;
load_register_l8 with I000
DO 17,18TIMES instruction

instruction1
instruction2

I.L)OP instructionN

Program 3. Convolution--Single Stage Method.

The second example involves Program 4, the power
factor routine [2]. There is considerably more code
than convolution, yet it shares the same portability as
convolution.

The first few lines (the nested ifs) can be seen as

initialization code. A normal variable, stage, must be
checked before any instructions can he given to the
SIMD machine. However, once the initial tests are
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Program Test (row index.col_index);

type
pli8 = Parallel A_n'ay[0.. 127,0.. 127] of 0..255;

iarray = parallel array[0., 127,0.. 127] of 0..65535;

procedure powergen(var power:pli8; var tn2, gamma,

stage:Integer; var id:pli8);

var k, tk : pli8;

twotoi, twotox : integer;

i, x : integer,

begin

end;

ff stage = 1 then power := 0

else begin
if stage = gamma then

where Id >= tn2 do

power := power + i
else

begin

x := gamma - stage;

twotox := I;

fori:= 1 toxdo

twotox := twotox * 2;

k := id dlv twotox;

power := 0;

twotoi := 2;

twotoi := tn2 div twotoi;

1"= 1;

while i < stage do begin

tk := k mod twotoi;

where (tk >= [twotol dlv 2]] do

power := power + x;

twotoi := twotoi * 2;

i:=i+ 1;

x := x div 2;

end;

end;

Program 4. Power Factor Example.

complete, it is possible to start executing the bulk of the

code (in the case that stage <>1 and stage <> gamma).

The first two lines simply do integer calculations. Then

a FOR loop appears with a scalar multiplication inside.

The FOR loop can be a DO loop, and the integer

calculations are initialization code for any machine

(although both could be done in one cycle on the

proposed microsequencing control unit). Next there

are more integer calculations followed by an array

manipulation. A clever compiler (or observant

programmer) could mesh these instructions into an

optimum piece of code executing in minimum time. A

hierarchical controller system would still need to pass

parameters from the high-level controller to the low-

level even if the sequential code and parallel code were

executed concurrently (i.e., a communications

overhead will always exist). Finally a WHILE statement

appears that is basically a FOR loop in disguise. The

microsequencer could simply put a DO loop with a CBR

(testing if i is zero or negative) in the first microcoded
instruction. Other code inside the WHILE can be

optimized in a similar fashion to that already presented.

Therefore, this entire routine could reside on a

microsequencer connected directly to an SIMD
machine.

GAM PYRAMID COMPILER

In an effort to implement the microcode paradigm, we

developed a compiler that generates microcode from a

high-level language with parallel data structures for

the GAM Pyramid. The microcode executes on a

microcode sequencer unit based on AMD 2900 chips and

is connected directly to a pyramid architecture SIMD

machine (the GAM Pyramid [3]).

CONCLUSIONS

Two algorithms were applied to the two major SIMD

controller configurations and their program flow was
examined. The results of this examination showed that

the bulk of an algorithm adapted to an SIMD

architecture can be executed on a microsequencing

controller which is directly connected to the SIMD

machine, thus eliminating the need for expensive

and/or complicated inter-communications hardware

which would normally be used. This means a

microsequencer could execute large routines and even

entire programs with little or no host interaction,

leaving the host free to do external I/O, act as a user

interface, or solve unrelated problems while the

microsequencer solves parallel problems using the

S1MD machine. A compiler that generates microcode

from a high-level language with parallel data

structures for the GAM Pyramid is being used to

demonstrate the feasibility of this approach. The

microcode executes on a microcode sequencer unit

which is directly connected to a pyramid architecture
SIMD machine. At this time, however, the GAM

pyramid has received an additional level (it now has six

levels) and the microsequencer is temporarily

disconnected until the new interfaces are thoroughly
tested.
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ABSTRACT

A new network design, the Multi-layered G-

network, is proposed. The Multi-layered G-

network is obtained by interconnecting copies of

the G-network in parallel. The design is

suitable for large interconnection networks and

has the following desirable characteclstlcs:

efficient routing, small number of links and

simple connections. Moreover, the routing

performance is not altered by a faulty link or

node - an important consideration in any fault

tolerant design.

Keywords: G-network, Fault-tolerance, Speedup,

Degree, Cycle, Subgraph.

INTRODUCTION

This paper presents the Multi-layered G-network

obtained by interconnecting copies of the G-

network (Ref. 1-2) in parallel. The design is

suitable for large interconnection networks and

has the following properties: efficient routing,

small number of links, simple connections and a

high level of fault tolerance.

THE CONSTRUCTION

Each layer of this network is a copy of the G-

network where the 7 special nodes in copy i are

labeled l.l, 2i, "''' 7i. Here i, 0 _< i _< h-l, is

the layer number. Between each pair of special

nodes, there are two nodes of degree two adjacent

to both of the special nodes. Each special node

a i is connected to a(i+l)mod h' Observe that the

nodes a 0, a I ..... ah. I induce a cycle subgraph.

One layer of the Multi-layered G-network with 7 -

4 is shown in Figure i, with connections to

other layers indicated by dotted lines. Each

2
layer has 7 nodes and 272-27 links. An

additional 7h links are required to connect the

CH2649-2/89/0000/0519501.00 © 1988 IEEE

layers, giving a total of 2h72-h7 links. There

are h(72-7) degree two nodes and h7 degree 27

nodes.

ROUTING AND FAULT-TOLERANT PROPERTIES

The maximum number of routing steps (hops)

required between any two nodes in the same layer

is four since each layer is a G-network (Ref. I-

2). This fact is independent of the number of

processors in the network.

Theorem i

The maximum number of hops required between any

two nodes in the Multi-layered G-network is

Lh/2.J+".
Proof

In the worst case situation a source node can

reach a special node in the same layer in one

hop. From that special node it takes at most

[h/2J hops to reach the layer containing the

destination node. It then takes at most three

additional hops to reach the destination node. •

We note that the routing performance dependent

only on the number of layers h. Given a fixed

number of layers, h, the maximum number of

routing steps required is constant. The

following theorems demonstrate the network's

fault tolerance by showing that this

characteristic remains unchanged when any single

llnk or node fails.

Theorem 2

Any single link can fail in the Multi-layered G-

network and the maximum number of routing steps

required remains Lh/2J+4.

Proof

Every node can still reach a special node. If

the faulty link has both its endnodes in the same

layer, then an argument similar to the one in the

proof to Theorem I yields the result. If the

faulty link is between layers, then in the worst

case situations routing between layers still
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requires _/2J hops and the combination of

routing steps on both the source and destination

layers total at most four. •

Theorem 3

If any single node in the Multi-layered G-network

fails, the maximum number of routing steps

required for any two active nodes to communicate

remains Lh/2J +4.

Proof

If a degree two node fails, each active node is

either a special node or still has two links to

special nodes, and each pair of special nodes on

the same layer is still joined by at least one

path of length two. If a special nodes fails,

each active degree two node can still reach a

special node in one hop and each pair of active

special nodes on the same layer is still joined

by two paths of length two. Hence in either case

routing between any two active nodes can be

accomplished as before. •

CONCLUDING REMARKS

Using the appropriate choices for 7 and h and

comparing the Multi-layered G-network to the

popular interconnection networks: the llliac

Mesh, the Barrel Shifter and the Hypercube in

terms of the number of links and the maximum

number of routing steps between any pair of

nodes, it is observed that the G-network has

fewer links than each of the others while

providing better routing. For example, when the

number of nodes in the network is 4096 with _ =

32 and h = 4, the Multi-layered G-network has

8064 links and requires at most six hops for any

pair of nodes to communicate; whereas, the

llliac has 8192 links and requires at most 63

hops, the Barrel Shifter has 47104 links and

requires at most 6 hops, and the Hypercube has

24576 links and requires at most 12 hops. Thus,

in this example, the Multi-layered G-network has

fewer links than each of the others and gives the

speedups in routing performance over the llliac,

Barrel Shifter and Hypercube networks of 63/6,

6/6, and 12/6, respectively. (Note that the

Multi-layered G-network requires at most four

hops between any pair of nodes when h = i.) In

general, it can be shown that as the number of

processors approaches infinity, the speedup of

the G-network over each of the others and the

difference in the number of links approaches

infinity.

Moreover, we have shown that the Multi-layered G-

network can withstand the occurrence of a faulty

link or node and the maximum number of hops

required between any pair of nodes remains

unchanged. Recall that the maximum degree of 27

is independent of the total number of processors.

Hence the Multi-layered G-network possesses the

following desirable properties: fault tolerance,

low cost, fast routing, and simple connections

with a maximum degree dependent only on the

number of processors per layer.

]- (i+11mod _ _i+l)mod h

Li _..2,

_(l=l)mod h

'4{i-liwd k,

Fisure i. One layer of the Multi-layered G-

network with _" - 4.
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Abstract

The architecture of a massively parallel multi-processor

and multi-disk database computer is presented. The inter-

processor communication network has a hypercube topol-

ogy. The architecture requires selection of linear ordering

of the nodes of a network of processors. A method is de-

veloped and presented here which can arrange the nodes

in sequences efficient for management of data. Among the

features of the produced sequences is that the size of the

sequence can grow as the size of the hypercube grows, with-

out changing the existing sub-sequences.

Keywords: Massively parallel architecture, Interprocessor

network, Hypercube, Sequencing, Database computer.

1. Introduction

The massively parallel database machines offer a way,

perhaps the only way, to meet the ever increasing demands

of information processing. Most of the contemporary ap-

proaches seek to achieve this goal by increasing the size of

the processor, memory and disk, and also by employing a

large number of processors. The primary purpose of doing

so is to increase the parallel processing power and the paral-

lel secondary storage accessing power. However, in the over-

all structures of the typical systems, the processing units.

are one group, and the secondary storage units, possibly

with some preprocessing power, are another. The process-

ing unit group and the secondary storage group are con-

nected by communication channels. The system's forma-

tion is still "Processors-I/O Channels-Secondary Storage".

The traditional I/O channel bottleneck is still present. This

problem remains no matter how many processors we add

to the machine, because the throughput is dominated by

the relatively poor performance of the disk and channel.

One can see the analogy between the processor/disk split

and the processor/memory split that leads to the yon Neu-
mann bottleneck.

This research hm been supported in p_rt by a grant from the
Florida High Technology and Industry Council.

These shortcomings have motivated the proposal of a

new architectural concept called Linear-throughput Seman-

tic Database Machine (LSDM). We discuss here only those

concepts of LSDM relevant to this paper, and more details

can be found in {7]. LSDM consists of thousands proces-

sors coupled with disks. Each processor-disk unit consists

of one or a few fairly powerful processors, a dedicated mem-

ory module and a small capacity disk, e.g., a 20 megabyte

disk. The processor-disk units are linked into a tightly cou-

pled network.

The processor-disk units comprising the machine work

simultaneously on different segments of the same query and

on concurrent queries as well, offering two levels of paral-

lelism. The hosts receive streams of users' requests. Each

request is dispatched to the processor having the best con-

trol of the relevant fragments of the database. The pro-

cessor then decomposes the request into smaller operations

and communicates them to subcontracting processors. The

processors related to a request can communicate with each

other to get the data necessary to carry out the operations

concurrently. With the completion of a request, the results

are sent to the host nodes and eventually back to the users.

Our database machine uses the Semantic Binary

Database Model [5]. The Semantic Binary Database Model

represents information of an application's world as a collec-

tion of elementary facts of two types: unary facts catego-

rizing objects of the real world and binary facts establish-

ing relationships of various kinds between pairs of objects.

The purpose of the model is to provide a simple natural

data-independent flexible and non-redundant specification

of information.

In order to fully utilize the parallel processing power

of the proposed architecture, it is essential to have an ap-

propriate data structure so that the processor-disk units

have balanced load. In our implementation of the Seman-

tic Binary Database Model, we s_ore the entire database,

including all indexing information, in one logical file. (The

file is organized in a B-tree like structure.) The file is par-

titioned into segments of the size that can be stored in

small disks. There is no logical difference between one seg-

ment and another. This important property allows us to

CH2649-2/89/0000/0521501.00 © 1988 IEEE
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Figure 1: Hypercubes

partition the database based solely on the consideration

of maximum parallelism. In addition, the data is stored

with some small but intelligent duplications which greatly

increase the locality of data accessing[f]. This implies a

much lower data traffic between the processor-disk units,

resulting in a higher degree of parallelism.

The n-cube topology has been chosen to connect the

network. The n-cube [2,4,1,91 is defined as follows: Each of

the 2'_ nodes is labeled from 0 to 2 '_-t by a unique binary

string of length n. Two nodes are connected iff they differ

in exactly one bit position. Figure 1 shows a 3-dimensional

and a 4-dimensional hypercube.

2. The sequencing problem

2.1 Database machine sequencing problem

An essential problem is how to map a linear file onto the

hypercube topology which is non-linear. Practical consid-

erations, such as heavy data flow between consecutive file

fragments, dictate that any two nodes of the network con-

taining consecutive file fragments should be directly con-

nected in the network. Therefore, we need a Hamiltonian

path or loop (i.e. a path going through every node exactly

once) in the hypercube so that the i-th partition of the file

can be associated with the i-th node of the path. This is our

Requirement I, In addition, when more than one database

is stored in the hypercube architecture in an overlapped

fashion (i.e., each database is partitioned among all the

nodes), the databases should be stored in non-coinciding

paths to avoid unbalanced data traffic load. Therefore,

many paths are needed.

There are many sequences that satisfy Requirement 1.

At leastone such sequence isguaranteed to existbecause

every hypercube has a Hamiltonian path since the hyper-

cube satisfiesthe known criterionfor Hamiltonian cycle:

the graph does not contain the so-calledtheta-subgraph.

As we shallshow later,thereare very many sequences which

satisfy Requirement I. We shall describe another require-

ment in term of suh-hypercubes.

Let H be a hypercube of dimension d. Let f be a part of

a bit-string (binary number) of length d, i.e. for some posi-

tions in the bit-string it assigns bit values. For example, f

gives the second and the fifth bits of an 8-dimensional hy-

percube node as follows: ?0??1???, where ? stands for 0

or 1. The sub-hypercube defined by st is the set of all nodes

of H having the pattern f. There are as many nodes in the

sub-hypercube as there are the possibilities to fill the ques-

tion marks. Notice, that the nodes can be relabeled so that

the sub-hypercube would itself be a hypercube. Its dimen-

sion is the number of question marks in f. For example,

the nodes

00000 00001 00100 00101 01000 01001 01100 01101

form a 3-subcube for st=O??O? in the 5-cube; for st=O0???

the sub-hypercube is:

00000 00001 00010 00011 00100 00101 00110 00111.

Now we shall define a hierarchy of sub-hypercubes. Con-

sider, for example the hierarchy of sub-hypercubes of the

3-cube as defined by the tree of st-patterns in Figure 2.

In the above example, we first varied bit #2, then #1,

then #3, and received a hierarchy of sub-hypercubes con-

sisting of 1 cube, 2 square, 4 segments, and 8 points. There

are as many such hierarchical families of sub-hypercubes as

there are orders in which to vary the bits. A more formal

definition follows.

Let p be a permutation of position numbers from 1 to

d. E.g., p = (2,1,3) in the above example. The hier-

archical family specified by p is the set of the following

--I cube

--2 squores

--4 Segments

0|0 --B pomts

Figure 2: A Sub-hypercube Hierarchy

sub-hypercubes of dimensions 1 to d. For every D, for

every f-pattern assigning constant bit values to positions

p(1],p[2] .... ,p[d- D], the sub-hypercube specified by f is in

the family. E.g., for the above example, the family consists

of:

• the 2-dimensional sub-hypercubes specified by the f-

patterns assigning constant bits to position p[11 = 2,

i.e. to patterns 707 and 717;

* the 1-dimensional sub-hypercubes specified by the f-

patterns assigning constant bits to positions pill = 2

and p[2] = 1, i.e. to patterns 007,107,017, and 107;
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• and so forth.

Requirement _ of the sequence is that when a hierarchi-

cal family of sub-hypercubes is given, every sub-hypercube

of the family should comprise a contiguous sub-sequence.

This requirement has several purposes. First, the hyper-

cube can be expanded without changing the existing logi-

cal sequence. Second, since a sub-hypercube can be easily

identified in the sequence as a consecutive sub-sequence,

data backup, trouble shooting and module replacement are

much easier. Third, because of the simple mapping between

the sub-hypercubes and the sequence, the connections be-

tween the positions in the sequence are expected to follow

a systematic pattern, which will facilitate the analysis and

simulation of the system.

There can be many sequences, depending on which sub-

hypercubes are required to be consecutive in the sequence.

For example, for the hierarchical family with p = (1,2, 3),

the sequence is:

000 001 011 010 110 111 101 100;

for the family with p = (2, 3, 1), the sequence is:

000 001 101 100 110 111 011 010

In the first sequence, the nodes of the square 000 001 011

010 are consecutive, and in the second they are not. It is

the opposite for the square 000 001 101 100. (A square is

a 2-dimensional sub-hypercube.)

2.2 Generalization of the sequencing problem

The sequencing problem in a hypercube has more gen-

eral applications. Many applications need to map sequen-

tial data structures into a hypercube. Some applications,

involve sequential operations between nodes of a hyper-

cube, e.g., scanning. Sometimes, several logical sequences

are needed at the same time.

The following is a general definition of the requirements.

Let H be a d-dimensional hypercube. Let p be a spec-

ification of a hierarchical family of sub-hypercubes. Let

L = 2d - 1. A sequence N(0),N(1),...,N(L) of all the

nodes of H is sought, satisfying:

1.

2.

For all i in 0..L - l, N(i) and N(i + 1) are ad-

jacent in H. Also, N(L)is adjacent to N(0).

For every sub-hypercube S of dimension D in

the family specified by p, for some i, the sub-

sequence Y(i),N(i + 1),...,N(i + 2D-l) is the

sub-hypercube S.

3. The sequencing method

A problem equivalent to a subset of our problem has

been solved in the Control Theory. That solution is known

as the Gray Code [3] for sequencing of binary numbers. If

it is adapted to our hypercube problem, we would have Re-

quirement 1 satisfied, as well as a portion of Requwement _.

The Gray Code would be consecutive for only one hierar-

chical family of sub-hypercubes, while we need to be able to

have an arbitrary family as a parameter to sequencing. We

call the family which happens to be consecutive in the Gray

Code, "The natural family". For 5-dimensional hypercube,

the natural family is specified by p = (1,2,3,4,5). As an-

other example, the followings are two of the sequences gen-

erated for a 4-cube with p = (1,2,3,4) and p = (3, 1,4,2):

• 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101

1111 1110 1010 1011 1001 1000

• 0000 0100 0101 0001 1001 1101 1100 1000 1010 1110

1111 1011 0011 0111 0110 0010

In the above sequences, every 4 nodes form a 2-cube, and

every 8 nodes form a 3-cube.

We have solved the general case of the problem. Our

sequencing algorithm follows. The proof of its correctness

is in [8].

A parameter to the algorithm is an array p of position

numbers which is a specification of a hierarchical family of

suh-hypercubes.

We shall describe our algorithm in terms of a binary

tree T. The tree T has the following properties. It is a

full binary tree; each node of T has a label. The root has

label "1". For any node, its label is greater by 1 than that

i i ! i i i i : i i ii ii i !i

Figure 3a

The Tree For

a 4-Cube

. ,. . -- .. T, " " The Sequence

Generated For

z z z z z z _ z z z z z z z z z p={3,1,4,2)

t_ ta ¢x _ cL _ ta _, _ m ta ta ta cx tx

of its parent. All the leaves have the label "d", where d is

the dimension of the hypercube. All the nodes at the same

level have equal labels. Figure 3a shows an example of the

tree T for d = 4.

We will use the 2a - 1 nodes of the tree, plus one ad-

ditional node, to generate the 2 a nodes of the hypercube

sequence. In the algorithm, a variable N is used. The
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initialvalueofN is the first binary number, N(0), in the

sequence to be generated. The rest of the binary numbers

of the hypercube are generated while traversing T in the

inorder order. When a node of T is visited, one bit of the

contents of N is flipped. If the label of the tree node is a

number i, then the bit position to be flipped is pill. Every

change in the value of N generates the next binary number

in the output sequence. The bits are numbered from left to

right. For example, if N = 00011,p = (1,3,2,4,5),i = 3,

then p[i} = 2; we flip bit #2 to receive the next N = 01011.

Since the output sequence will be a cycle, the first binary

number N(0) can be an arbitrary node of the hypercube.

1. N := 0 (Let 0, i.e. a string of d zero-bits, be

the first number in the sequence, without loss of

generality. )

2. repeat

(a) Get the next node from T according to

the inorder traversal. Let i be the label

of the node.

(b) N := N XOR 2a-ptil (flip the pIi]-th bit

of N to get the next hypercube node

number in the sequence).

until all the nodes of the tree have been tra-

versed.

Ezample. Using the tree of Figure 3a, the algorithm gener-

ates the sequence shown in Figure 3b for the sub-hypercube

family defined by p = (3, 1,4, 2).

Our program implementing the algorithm does not

physically create a tree, but rather performs analytical cal-

culation. The algorithm is linear in the number of nodes of

the hypercube.

4. Discussion

The proposed system can lend itself to a stand alone

database computer as well as a backend connected to hosts.

Several processors can be identified as the hosts or inter-

faces to user hosts.

One of the primary goals of our architecture is to

achieve a high throughput and approximate linearity of

the throughput in the degree of parallelism. The degree

of parallelism is the number of processor-disk units. The

throughput is measured as the average number of transac-

tions per time unit. The linearity is to be achieved for a

typical transaction load comprised of a large number of rela-

tively small, localizable queries and transactions. Under the

current design (several thousands of processor-disk units),

a conservative estimation of the throughput is more than

3000 simple queries per second per thousand processor-disk

units, provided that the host interfaces have the same or

higher throughput.

Currently, we are implementing our architecture on a

network of 32-bit INMOS transputers and 20 megabyte

Winchester disks.
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ABSTRACT

An architecture is proposed which allows the con-
struction of massively parallel (i.e., multi-billion

node, multi-trillion linked) marker propagation sys-
tems. The nodes used in this architecture allow the

best intersection of markers to be found by compar-

ing the contents of the INTERSECTION REGIS-
TER with the descending values on the CONTROL
WORD BUS. The physical implementation consists
of a silicon structure which is composed of 20,000

functional planes of silicon-based circuitry, inter-
connected by 5 billion vertical interconnecting
wires. Any node can be linked directly with any
other node.

INTRODUCTION

The parallel marker propagation system is an ex-
tremely elegant and powerful means of parallel
computation. The parallel marker propagation sys-
tem, also known as the semantic network, allows
knowledge to be represented in such a way that a
data base can be quickly searched for items with
desired qualities regardless of the size of the data
base. Through the process of spreading activation
an intersection of markers quickly occurs at a node

corresponding to the inputs presented to the sys-
tem.

A portion of a parallel marker propagation system
is shown in Figure 1. In this simplified example,
the preprocessed outputs of an image detector are
attached to the parallel marker propagation sys-
tem. In this illustration the image detector is fo-

cused on a simple screw. The features of this image
activate nodes in the parallel marker propagation

system which correspond to these features. Mark-
ers are propagated from these nodes resulting in a
better intersection at the node corresponding to the

simple, single slot screw than at the nodes corre-
sponding to the Phillips screw or the worm reduc-
tion gear. A node which reflects the context of the
situation, in this case building a certain gadget, is
also activated and markers are propagated from it.
As a result even better intersections occur at the

nodes corresponding to "put in upper corner" and
"turn." Not only has the parallel marker propaga-
tion system allowed the rapid identification of the
image viewed by the image detector, but it has
quickly retrieved the appropriate information that
the object in question should be put in the upper
comer of the gadget being built and should be
turned.

Since described by Quillian (1986), parallel marker
propagation systems have been developed further

by many researchers. Readily available references
include Brachman (1979), Fahlman (1979), and

Touretzky (1986). However, very little work has ac-
tually been done on ways of actually implementing
large-scale parallel marker propagation systems.
Hillis (1985) writes that "the Connection Machine

architecture was originally developed to implement
the marker-propagation programs for retrieving
data from semantic networks (Fahlman 1979)."
While the Connection Machine architecture does al-

low interconnection of processors (i.e., "nodes") to
one another, it greatly sacrifices efficiency for flexi-

bility. The computational power of the individual
processors in the Connection Machine vastly ex-
ceeds the requirements of the nodes in almost any

type of parallel marker propagation system. As
well, one would optimally like to have direct con-
nections between nodes instead of the indirect con-

nections established through the intercommunica-
tions network of the Connection Machine.

CH2649-2/89/0000/0525501.00 © 1988 IEEE
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Figure1.ParallelMarkerPropagation System Recognizing a Visual Object
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ARCHITECTURE

This paper describes an architecture which imple-
ments a parallel marker propagation system with
several billion nodes and several trillion connec-

tions between the nodes. The reason in describing

such a futuristic architecture is not to say that this
is the way a massively parallel marker propagation
system will one day be implemented, but to point
out that such a massively parallel system has the
potential of actually being built. I have long been
interested in massively parallel (i.e., multi-billion
node) marker propagation systems as both a means
of explaining certain brain functions and as the ba-
sis of a machine which will possess many of the
skills humans have (Schneider-1987). As such, it is

important to show that such massively parallel sys-
tems are indeed realizable.

The internalstructureofthe nodes used in the ar-

chitecturebeing describedis shown in Figure 2.

The node correspondingto the bestintersectionof

markers can be found by comparing the contentsof

the INTERSECTION REGISTER with descending

valueson the CONTROL WORD BUS whilekeep-

ing the IF CONTROL WORD MATCHES THE IN-
TERSECTION REGISTER THEN SET THE COM-

PARE REGISTER linehigh (i.e.,true).In such a
scheme thefirstnode tosetthe COMPARE REGIS-

TER representsthe node with the highestvalue in

the INTERSECTION REGISTER, i.e.,the node cor-

responding to the best intersectionofmarkers. If

forexample,the IF COMPARE REGISTER IS SET
THEN OUTPUT A PULSE FROM THE NODE line

ishigh,propagationofmarkers can then originate
from thisnode.
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Figure2.NodeStructure
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PHYSICAL IMPLEMENTATION

The physical implementation of the architecture is
shown in Figure 3. The silicon structure shown in
Figure 3a provides the several hundred meters
squared of silicon-based circuitry required to imple-
ment a system with five billion nodes and five tril-
lion links. The structure is composed of twenty
thousand planes, the geometric term notwithstand-

ing, of functional silicon-based circuitry. These
planes are connected by five billion vertical inter-
connecting wires running the height to the struc-
ture thus allowing any node to be linked to any oth-
er node. Most of the surface area on each plane is
used for wiring and for linking nodes. By applying a
voltage somewhat higher than that used to propa-

gate markers the insulating amorphous silicon
layer between the intersection of two selected wires

isnonreversiblytransformed intoconductingcrys-

tallinesilicontherebylinkingthe two wires.

Although the technologytoproduce wafer-scalesili-

con circuitryconnectedin the third dimension is

onlyinitsinfancy,thereismuch commercial incen-

tiveto believethat the technology to produce a

working siliconstructureas shown inFigure 3 will

existwithinthe next decade.Metal-organicchemi-

calvapor depositionand molecular beam epitaxy

are two currentlyavailabletechnologieswhich in

conjunctionwith other integratedcircuitfabrica-

tion technologiesallow one to build up layersof

functionalplanes.A structurecould be builtup

whereby planesofsiliconcircuitryare separatedby

insulatingplanes.By etchingdown to the layerbe-

low or by preventingdepositionof the insulating

plane in certainpredetermined regions of each
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planeanddepositing a metal in this region, vertical
interconnection wires could link the entire struc-

ture. It is interesting to note that by using a molec-
ular beam epitaxy process, integrated circuits with
over two thousand layers have already been suc-
cessfully constructed by Bell Laboratories (1986).

Interspersedamong the planesoffunctionalsilicon

circuitryare designatedautonomic planes.The sili-

con structureis a heterogeneous substance com-

posed ofmaterialswith differenttemperaturecoef-

ficients.Not only is it necessary to remove the

excessheat produced so that no part ofthe struc-

tureisdamaged by an excessivetemperature,but it

is alsonecessary to remove the heat in a fashion

such that the temperature gradientswhich may

ariseare tolerableones.One functionofthe auto-

nomic planesistocontrolsuch heat productionand

removal. These planes also serve to monitor the

controlbus goingto every node and willdisconnect

a group ofnodes from the bus shoulda problem be

detected. This prevents, for example, a defective

grounded bus line from rendering the entire system
nonfunctional. The autonomic planes serve numer-

ous other functions which allow successful opera-
tion of the silicon structure shown in Figure 3. For

example, long lengths of vertical interconnecting
wires less than a micron apart will induce false sig-
nals in each other. Thus, at every autonomic plane
the positions of the wires relative to each other are
switched.

3a - 3|_ -

I

,Q('vtiI)nl shl)wiI_ c,tllirc*

2ll _'m

,)
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Figure 3. Physical Implementation of the Architecture
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In summary, an architecture is proposed here
which allows the construction of massively parallel
(i.e., multi-billion node, multi-trillion linked) mark-

er propagation systems.
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LN-TREE: A FAULT-TOLEP.ANT TREE AR_

K. Y. Srinivamm and A. K. Sood

Depamnent Of Comput_ Sci_ and Engizmta_, Univm_ty Of Toledo

IMamme.t Of Computer Saenc,, George Mason Umvemty

ABSTRACT

Tr¢_ structu_ have betm widely used in the design of disUilmtod

systems. One distinct advantage of the tree architecture is the O(logN)
spcx)d of information exchange betwt_n any two nodes of an N node

system. Further, the tree architccturm can naturally map several
important class of problems that can b¢ described as divide-and-

conquer algorithms. In this paper we preeemt the analysis and design of

a highly reliable tree gmtcture; the LN-trec. The LN-tree i_ formed by
augraenting the simplex binary tree with redundant nodes and links.

The reliabilityof the proposed stnmtlm_ is _rahmtcd and oompartd

with previouslyproposed augmc_tod tr_ arr.hi_. The resultsof

comparison show that the LN-tree is. more reliable than the existing
fauh-tolerant tree stmctta_.

Keywords: Fault-Tolerance, Reliability, Hiewarchical Archit_xtre.

I. IhcrRODUCTION

A tree by definition is a minimally connected graph. Although the tree

can naturally map several important class of problems, it is susceptible

to single node or link failure,.For instance, the failure of a single node

or a link may invalidate the opera,on of the whole tree. Consequently,

several researchers have addressed the problem of providing redundancy
to the basic tree in terms of extra links and nodes with a view to

increasing the fault-tolerance of the basic tree. Two basic approaches

have been proposed in the literature. The two approaches differ in

terms of what constitutes an acceptable level of performance in the

event of faults. Some of the l_ng work in the design of fault-

tolerant tree structures has been done by Hayes [Hay 76]. Tbc

following definitions allow us to formally describe the two appmach_

prmem_i in the littmLtUre for the design of fault-tolmam trte

smmmr_. Without loss of gem:rality, we restrict faults to node
failures.

Definition I:

I._ S be the system graph. A k-fanlt F in S is the removal of k nodes {

z_,z2 ..... ,x_ } from S. All links connected to them nodes are also

removed. The rtmlting system graph under faultswill be damtt_

S F"

Definition If:

A simplex sysmm S ° is a non-rtdundant system that can not tolerate

any faults.

In the first approach [De, 78], [Hor 81], [_W84], it is amumod flint S

is k-fault-tolmant with respect to S ° if, for every k-fault in S, the graph

S t' is m. Und_ the abov_ &_:inition of fault- tolm'an_, it is

pomible to design fault-totemm tree muct=m solely through the
addition of rtdundant links to the dmplm tree stngtu_. This apWoach

permits pmfforman_ degradation in the event of faults. The systtm is

=atsidortd open or rq_airabte. Hmc¢, performance degradatiou is

allow_ during periods of outages (node failures). Under the above

assumptions, a temporary dtgradafion in Ix-rf0rman_ is comide_d

acceptableas long as the reliabilityof the complete treeremains high.

In the second approach proposed by Haym [Hay 76], a more sta'ing(mt

constraint is placed on S F for S to be considered fanit-mlemnt with

rtsp_ to S °. In this approach it is assumed that S is k-fault- tolm'ant

with _ to S O if, for every k-fault in S, the graph S r has a

subgraph isomorphic to S°. Here the objective is to Ixmm've the

original trt_ smmtur¢ fully, in spite of faults: by reconfigunng the tree

with the standby nodes and links. At least theoretically this mmurm that

the overall system pcrformancc suffers no dcgradafiou in the event of

faults. Tha chief o0ncern of this design approach is augmenting the

basic tree smmture for fault-tolerance while keeping the numbea- of

ro:lundant nodes and links to a minimum for the rt_red level of

fault-tolea'ance. Hay_ [Hay 76] first posed the above problem and

proposed an algorithm for get_mting optimal k-fault-tol_ant

for a class of symmetrical hierarchical U't_. The work of Hayes was

catendcd by Kwan ,t al, [Kwan 81]. The algnrithrn proposedby Kwan
al, is not only optimal with respect to the number of rodmxiam

nodes and links, but also with respect to the fan-in of the node,.

Rnghavendra et al, [Rag 83] have proposed two augmented tree

mammms neither of which is optimal in tim smse defined by Hayes.

Both schemes can tolerate multiple faults, as long as the faults _ in

different parts of the tree. In the first scheme proposed, there is a spmm

node for each level of.the tree. This structure can tolerate up to m node

faihmm (for a tree of level m) as long as each level has no more than
one node failure. We shall refer to this tree as the RAE-trtm. The

second sc.heme proposed by raghavmdra et al, [Rag 83] is an _t_siou

of the firstscheme. In this sclmmc a spare node is provided for evm 3, 2 _

nodes for some value of i. There is a varietyof schemes Ixmmbl©

depending upon the value of i chosen (the value of i may bc diffcnmt

for each levelof the tree).Haman ctal, [Has 86] have proposed a

modular fault-tolerantbinary tmc structure.The approach mcs modular

f_mlt-tolm'antbuilding blocks to construct the complete binary tree.

Each module is a one-fault-tolerantbuildingblock which constitutm a

three node two level mbtre_ for the complete binary tree. In this paper
we will r_fcr to this tree as the module-tree.

In this paper we present the design and analysis of a new fanit-tolm-ant

tr_ mxtmat; the LN-tr_. The LN-tme is form_ by augmenting

simplex binary tree with rtchmdam links and nodes. The LN-tme

maintains a rigidtroc structurein the ewmt of faults. In tim following
soctionwe _emmt th_ architectureof the LN-tre_. In section3 w_

present tl_ rdiabihty analysis for the proposed architecture.Finally, we

present conclusions in section 4.
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.2. DESCRIPTION OF THE TOPOLOGY

In this _on we _ a scheme for augmenting the im_ex

_ _t nodes and Links. We _ refer to the

_tecture as the _-tree (tree _ / 5nk_ and nodes).

Cemider a mmptex binary tree of m levels, m> 1. Observe that each

ieve_ i (i>l) of the _imple_ tree can be partitioned into 2 I-2 parfitiom

each having two nodes. In the pmimeed arc_tecture each str.h pair c_

nodes is replaced by a fault-tolerant module. The sgucture of a 15 node

LN-tree is shown in Fig. 1. Each fault totexant module c_mts of three

nodes and the required switching circuitry to effect recontigurafion in

the event of faults. The _ of the proposed fault-tolerant module

is presented in Fig. 2. Each fault-tolerant module has two input /

four output links. All finks axe amumed to be undirect_. At any_ve_

time o_y two of the three nodes of the module are active. The two

input fines to the module arc switched to fine currently ac_vc nodes

thr_gh a 2X3 cax3ss bar switch, NW1. The ix _ of the throe

nodes are switched through a 6X4 c_m bar switch (NW2) to the

output of the module. Both NW1 end NW2 are c¢_roiled by one of

the ac_ve nodes. The three noc_s are also connected to a cSesncstic

bus. A virtualtoke_ ring is let up on the cliasn_c bus to rapport

distributed self diasnoms. At any [pven time the highest numbered

e_ive node in the module is the module controller (node ha_ng control

ove_ the mtc_ng networks NW1 and NW2).

In a hierarr_cal system such as the Uee, it is reasonable to cucpoct that

the complexity of nod_ in different levels of the tree will be _.

Hence, we feel that the partitioning proposed in the deeign of LN-tree
is natural. Each fault-tc4etant module of the LN-tree can be

implemented as a VLSI syst¢_ made up of lhree homogeneous

processing elements and the a_ated reconfiguration cimuitry.

_ this to the _ng used in the m/c-_, where

fault-tol=am module is made up of nodes belonging to two adjacent

levels of the tree along with the usociated reco_guration d_. ff

of _t levels arc logically _t, _e _e_

in the _ of m_e-_ may I_ _

implenumtation proteins. Another advantage of the proposed athene

is that the nuefimum degree of any node is 3 (cc_dering ordy the data

cc_ected to each node). This degree of _mnecdvity in our

z:hemc is much lower than the module-tree whose ma_mum degree is

5 (the maximum degree in the _ is 7).

"I'ne i nodes in the LN-tree are not active unless the_ is a

fault. The proposed structure can tolerate multiple node failures as

long as the failed noc_ beJong to differem par_ of the tre_. F_,

the number of node failurc_ a 1_ can tole_rate depends on the level

nmnbcx. For example, Icvcts c_c and two of the LN-tree can each

a node failure. Level i of the LN-tme, 2<i <m, can totexate at

most 2 _-2 node failures (each module in level i can tolerate a fault). As

_n _ It _ arc _ m _ m_, _ _ormance

the LN-tree is same as that of the simplex binary tree.

3. RELIABILITY ANALYSIS

this section we _ua_ the reliability of the _-_. We _orm

reliability/_s under the following assumptions:

I. The reliability of links is laxgc comparcd to the reliabilityof

nodes. Further, it is amumcd that the reliability of a fault-

tol_'ant m_c is a function of node rctiabilitics only.

2. The structure under faults is con_clc_cd functional ff the

_i nodes can be reconfigured to m_in_ a rigid tree
_mure of _e_ c_h.

3. The failure process (ol nodes) is a Poimon process.

Coomdex a LN-U_ c_ depth m. I._ & be the reliability of level i of

the I.Jq-U_. The tWtm reliabilityoL the LN-tree am be ezpmeed m

terms& / i, _vm by the foaow_ e_emon:

ffi

RSy S = i_lRi

_nccicvclonccanmtentteaingicnodcfailurc, thcrdiabiliw _ic'v_

onc, e_is_vcnby:

R 1 = R2 + 2R(1-R)

wheme R is the reliability of a single node. ff k is the failure ram of a

node, them Rffie -x'. Cot_dcr level i, l</'cm, of the LN-ta'cc. _ i

c[ the LN-tme is made up of 2 _-_ fimlt-tole_mt modules, ff R_oov_

is the reliability of a faldt-tOlcxant role, then, the reliability of level

i of the LN-tree is _ve_ by

R i - (R_ooULE)2i-2

as each of the2 _-2 f_mit-tolerant modules of level i (i>l) must survive

for level i m survive. Each fimlt-tcierant modede has _ nodes and

am t_iexate a _gle node failure. Hence, the reliability of a fatdt-

tokxant module, Ra#o_a_ is given by the folk_ing espremon:

R/_ODULE = RJ+JR 2 (i-R)

Since each level of the system has to _vc for the _rc system to

survive, wc have

R2+2R(I-R) for _Pl

RSYS = m

(R2+2R(I-R)) ff R. for m>1

|-2 *

probability of _ recovay afl_ the oanma_c of a fmdt is C,

the systan rciiability under impcffect coverage conditions _s givca by

C [ R2+2RC(1-R) _'or m-I

RSys= l m
(R2+2RC(1-R)) IT R_ for m>l

i'2

when:Rf_si_thesystemreliabilityende_impen_ coverage_ond/_om
andR_c is thereliab/li_ of leveli, i>1 of theLN-t_eeunderi_
coveragec_tiom. R_ is sirenby

i-2

R[ C 2= R/_ODULf

wh_ cRuoouz_ is the rcliability of a fault-t_eram modu/c und_

impcffcct _ conditiom and is givem by

C
R_ODULE = R3+3R2C (I-R)
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We con=dot a four level LN-t_c for rdiability computatiom. Under

the assumptions of pc_=ct coverage and uniform node rdiability

(failure rates of all the nodes assumed to b¢ idcmticai), we study

effect of individual node rdiability on the system reliability. The

reliability plot of the LN-trec is givcm in Fig. 3. For _ of

comparison wc have also induded the pertincm data for the simplex

tmc, module-tree and the RAE-trec. In Table 1 wc prcscm the

contribution of the reliability of each level tO the sym¢_ reliability for

the LN-trec. It is noted that the reliability of the LN-trec is higher than

that of the module-tree and the RAE-trec.

In order to study the effect of coverage, we evaluate the system

reliabilityunder imperfect coverage conditions.The reliabilityplot

und_ imperkct coverage conditionsisgiven in Fig. 4. In Table 2 wc

prmmtt the rdiability of each level of the LN-trcc under imperfect

covca'agc conditiom. It is noted that the reliability of the LN-t_¢ is

higher than that of the module-tree and the RAE, trec _ under

/m_ coverage conditions. In Table 3, we presentthe variationof

system re_iability with _ to the coverage factor. It is noted that the

rdiabifity of the LN-trec is not very sensitive to the variations in the

_e factor for the values of C consisted. A I0 imm:cm

drop in the coverage factor results in a system re.liabilitydeterioration

of about 4.2 IXaXa_t.

In a liiemrchical_ such as the tree,itisreasonableto eapect the

nodes of different lmads to have dif:fctlmt failure rat=. For example,

one would ca]x_t the root node to have a low failm_ rate, as all

transactionsto the tz¢c isthrough the root node. Again, as the leaf

nodes perform _ basic operatiom in a typical Ix_ archimctm'¢, it is
reasonableto cax_ct a low failure rate for the I_f nodes (rdiabiliwof

a node is a function of the cornplcmty of the nod=). Wc study the

re.liabilityof a non-homogenonus tree under the assumption that each

levelof the trcc ismade up of homogcnomts nodes. The resultsare

pmsantcd in Table 4. Thc values of failurerate and coverage chc_n

for each I¢v¢I is presented in Table 5 (the failure rates presented is for a

node belonging to the particular level). Itisobserved thatin order to

acbicvc high reliabilityfor LN- trees,it is nccemary to balance the

reliabilities in each levelof the tree. Spcdfically,the re.liabilityof

nodes in the highestlevelof the treewill havc to bc higher than the

other nodes in the trec since the system reliabilityislimited by the

re.liabilityof the highestlevelof the tree.

4. CONCLUSIONS

The binary tree has long bccn rccogniz_ as a natural intmxamn¢_on

structure for describing several hierarchical computations. We have

pres_ted a new fault- tolerant binary tree architecture: the LN-trec.

The LN-trec maintaim a rigid trec structure even under node failure.

In t.hc design of the I.,N-trcc we have used Hayes deffmition of fault-

tolexance. Although the proposed structure is not optimal with rt, pect

to the constraints defined by Hayes, the I_N-tree of m levels can

tolerate multiple node failures as long as the failed nodes are in

diffc'mnt parts of the tree.The LN-tmc has been designed using fault-

tolerant buildingblocks. As fault _on and reconfigurationis local

to each fault-tolerant module, simple fault detex:tion and

rtconfigumtion is possible. The reliability of the LN-tree was evaluated

and compared with other comparabic architectures proposed in the
literature.
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Table I. Reliability of a four level LN-tree.

_-O.I C- 1.0

o. 2 o.991 o.999 o.998 o.997 0.995

o. _ o.967 o.998 o.995 o.991 o,982

0.6 0.9}0 0.996 0.990 0.980 o._1

o.8 o.882 o.994 o.98) o.966 o.934

l .o 0.827 0.990 0,974 0.949 0,902

Table 3- Variation of lyltll tel iebi lily with reaplct tO coverage.

_ -O.l t-O.Z

RSYS
¢

l.oo o.991

0.98 0.982

o,96 o.97_

0.94 0.965

o.9o o.9_8

Table S. Fault coverage and failure rate for each level.

Level Coverage Failura rite

1 1.00 0.0001

2 1.00 O.OlO0

3 0.98 o.otoo

k 0.95 o.o0ol

Table 2, Reliability of a four level LN-tree under im_lrfect coverage.

" 0.1 C " 0.98

Rsy$ R1 R2 R3 R4
t

0.2 0.982 0.998 0.997 0.995 0.990

0.4 0.951 0.996 0.993 0.986 0.973

o,6 0.908 0.994 0.987 o.97_ 0.949

0,8 0.855 0.991 0.979 0.958 o.919

1.o 0.797 0.987 0.969 0.940 0.884

Table k, Reliability of i non-hologeneoul LN-trae.

Rsy S R1 R2 R3 R4
t

0.2 0.999 1.0 0.999 0.999 0.999

0._ 0.999 I.o 0.999 0.999 o.9_9

o.& 0.998 t.o 0.999 0.999 0.999

0:8 0.998 1.0 0.999 0.998 0.999

1.0 0.997 1,0 0.999 0,998 0.999
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Figure i. A four ievel LN-tree.
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Figure 2. Fault-tolerant

module _r_ed it, a_ IN-tree.
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Abstract

In this paper, we describe a new mesh-connected array processor

for low level vision tasks. Several disadvantages of existing mesh-

connected array processors, such as (i) communication overhead between

processing elements (PEs), (h) data input/output (I/O) overhead, and (//i)

complicated interconnections are alleviated. The new Sliding Memory

Plane (SliM) array processor achieves higher speeds than existing mesh-

connected array processors. In this architecture inter-memory

communication as well as inter-PE communication can take place without

interrupting PEs. In other words, during computation, the contents of all

register cells on the sliding memory plane can be shifted simultaneously

and in the same direction to the neighboring cells. In addition, the

duplicated I/O planes can provide buffering capability. Since

communication, I/O and computation occur at the same time, the

communication and I/O overhead will be greatly diminished. The

performance of the SliM shows remarkable improvement over existing

machines. The SliM array processor is a fine-grained bit-parallel SIMD

architecture.

1. INTRODUCTION

Several disadvantages of existing mesh-connected array processors,

such as communication overhead between processing elements (PEs),

data input/output (I/O) overhead, and complicated interconnections limit

efficient implementation of low level vision tasks. In order to alleviate

these disadvantages, and to achieve higher speeds than existing mesh-

connected array processors, a new Sliding Memory Plane (SliM) array

processor is proposed for low level vision tasks.

Most operations needed in low level computer vision tasks are

neighborhood operations which transform the value of each pixel into a

new value calculated from itself and its neighboring pixels. Such

operations can be accomplished with a high degree of concurrency by

using mesh-connected array processors which are well suited to the

structure of image data (spatial characteristic) [1]. Many mesh-connected

array processors have been pmpused [2]. Examples of such architectures

include MPP [3-5], CLIP [6-8], DAP [9], LIPP [10], etc.

These array processors have major limiting factors towards speed-

up. During processing, almost all communications are localized. In other

words, a great deal of local communication occurs between neighboring

PEs. This communication overhead is a significant problem on existing

mesh-connected array processors [1][5][10]. Moreover, when the size of a

window (neighborhood operator) is larger than 3 x 3, this overhead may

seriously degrade performance.

To reduce communication overhead, the LIPP architecture was

proposed [10]. However, this scheme has several drawbacks.

*Theresearchwas SUlC_Oaeclinpan by IBM.

Complicated gate logic circuits for multiplexing and special purpose

RAM (Random Access Memory) and processors are needed [2]. In

addition, if the size of window is larger than 3 x 3, or if other types of

windows (ckcular, diamond, rectangular, etc), which are frequently used

in low level vision [11-12], are employed, communication overhead may

become worse.

In order to alleviate these disadvantages (communication overhead,

data I/O overhead, complicated interconnections), and to achieve higher

speeds than existing mesh-connected array processors, the new massively

parallel SliM array processor is proposed in this paper for low level

vision tasks. In this architecture inter-memory communication as well as

inter-PE communication can take place without interrupting PEs. In other

words, during computation, the contents of all register ceils on the sliding

memory plane can be shifted simultaneously and in the same direction to

the neighboring cells. In addition, the duplicated 1/O planes can provide

buffering capability without interrupting PEs. Since communication, I/O

and computation occur at the same time, communication and I/O

overhead can be overlapped with computation, and communication and

I/O overhead are significantly diminished. Moreover, four communication

links for each PE are sufficient, instead of the eight, thus greatly

simplifying connectivity. The SliM array processor is a line-grained bit-

parallel SIMD architecture.

The remainder of this paper is organized as follows. In section 2,

the SliM array processor is introduced. The overall scheme and the

structure of a PE are presented. In section 3, the analytical model of the

SliM is established and compared with those of existing machines. In

section 4, the applications to low level vision tasks are discussed. The

performance evaluation based on the analytical model is described. The

performance of the SliM for low level vision tasks shows remarkable

improvement over existing machines. Finally, section 5 contains

concluding remarks.

2. ARCHITECTURE

In this section, we describe the new architecture for low level

vision, and compare its features with those of existing mesh-connected

array processors.

2.1 Overall System

The logical block diagram of the Sliding Memory Plane (SliM)

array processor is shown in Fig. 2.1.1. The processor plane consists of N

x N processors. The sliding memory plane S consists of N x N register

cells. The top row of the sliding memory plane is connected to the

bottom row to form a wrap-around mesh connection scheme, Similarly,

the leftmost column is connected to the rightmost column. The processors

can process the data in the sliding memory plane S.

CH2649-2/89/0000/0537501.00 © 1988 IEEE
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IntheSliMarrayprocessor,asinmostmesh-connectedarray
processors,gridlikecommunicationlinksamongPEsareusedforinter-
PEcommunication.Thesegridcommunicationlinksarealsousedfor
inter-memorycommunicationin orderto reducecommunication
overhead.TheI/Oplanes,D and D', are exclusively used for input and

output, whereas the sliding memory plane, S is used for data

communication (parallel data movement). The I/O processor (IOP) can

load the input data in a row-parallel (or column-parallel) manner into the

I/O shift register plane D or D'. Of course if sensory array is used for D

or D', image-parallel I/O can be achieved. After being leaded, the data in

D or D" is shifted into the sliding memory plane S in one unit cycle time

(parallel shift).

D' Plane

D Plane Processor Plane

Fig. 2.1.1 Sliding Memory Plane (SliM) Array Processor

The role of the Host is to control the CU and the IOP. The CU

consists of three subunits; the I/O control subanit, the processor control

subunit and the sliding memory plane control subunit. The CU can

broadcast not only instruction set to processors but can also broadcast

control signals to the sliding memory plane at the same time instant. The

CU controls the data movement in S.

While processors process the data in S from D, the lOP can unload

the output data from D', load another input data into D'. The output data

in D' are those which were previously processed and shifted from S.

While processors process the data in S from D', the IOP can unload the

output data from D, load another input data into D, alternately. This

buffering capability allows I/O to be overlapped with computation. The

details of a PE will he described in the next subsection.

2.2 A Processing Element

A PE shown in Fig. 2.2.1 consists of a ALU (Arithmetic Logic

Uni0, its local memory, registers, multiplexers (MUXs) and a

demultiplexer (DMUX). The register s is an element of the sliding

memory plane S shown in Fig. 2.l.1. Similarly, d and at' are elements of

the I/O planes D and D'. s is connected to the neighboring registers

(North, East, West or South) via a multiplexer. Thus, a PE is also

connected to its four neighboring PEs. d and d" are connected only to

their left and right neighboring registers. This scheme provides inter-

memory communication as well as it_ter-PE communication as described

below.

While the ALU processes the pixel in s from d, a neighboring pixel

can be shifted into s, and I/O operation can occur through d' register.

Again, while the ALU processes the new pixel shifted into s, another

neighboring pixei can be shifted into s, and I/O operation can occur

through register d'. These operations can be executed by all PEs at the

same time instant. Each operation can be controlled separately by the

I/O control subunit, the sliding memory plane control subunit or the

processor control subunit. Thus, I/O overhead and inter-PE data

communication overhead can be overlapped with computation. All pixels

are moved into the neighboring location register cells at the same time

and in the same direction. In addition, direct inter-PE communication can

be provided like in existing array processors.

Data In

From Neighbors

E
W
S

Data Out

To Neighbor

Wired-OR

Fig. 2.2.1 A Processing Element

The other major components of a PE consist of an ALU, a shift

register (SH), a condition register (C), four registers (T's) and a small

memory module which is used for local data storage. The 8-bit ALU

provides boolean functions as well as arithmetic functions. SH performs

arithmetic and logic shifts. C provides conditional operations and control

of the MUX for neighboring communication, s stores the data transferred

from neighboring PEs. For direct inter-PE communication, ALU stores

the data to be transferred into s register. During this communication,

ALU can perform other operations. The memory is a one-byte wide
RAM.

Most operations in image processing are performed on grey-level

rather than binary data [7-8]. Hence, the SliM array processor uses bit-

parallel processing rather than bit-serial processing, because the former is

better suited to low level vision and the speed of bit-parallel is faster than

that of bit-serial. Each register cell contains one pixel. The

communication link between neighboring PEs is, however, one-bit wide

so that area of VLSI can be efficient. The thick lines represent bit-

parallel paths, while the thin lines represent bit-serial paths.

The SliM is different from existing mesh-connected array

processors, in that the Sliding memory plane (S) provides parallel data

movement during computation, and the I/O planes, D and D', provide

data buffering capability. In the SliM, additional communication links for

NE, SE, NW and SW neighbor cells are not needed, because these

contents can be accessed after two sliding memory plane shifts. Thus,

the SliM can significandy reduce the serious disadvantages of existing

array processors, that is, inter-PE communication overhead, I/O overhead

and complicated interconneetions. In general, communication time may

be invisible, because computation time is longer than communication
time.

Since the movement of sliding memory plane is programmable and

flexible, any shape and any size of window may be employed on the

sliding memory plane with very little or no communication overhead. In

contrast, the existing array processors may suffer from performance
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degradation.If thewindowsize is larger than 3 x 3 or the shape of

window is not square, performance degradation becomes worse.

3. ANALYTICAL MODEL

Neglecting the time for program loading to the CU, the total

processing time (TA) consists mainly of three time components : data I/O

time (Trio), computation time (Tcp), and inter-PE communication time for

data exchange (Tee). These times are functions of algorithm length (L),

image size (/) and the number of the PEs employed (N). If the size of the

image is larger than the size of the array processor, then the size of a

subimage hecomes N. The total number of subimages (n,) is I/l. Thas,

the total time to process a whole image can he expressed by

Tp, = n,(Ttlo + Tc,* + T,,p) (2.3.1).

The I/O time using column parallel (or row parallel) for a

subimage is expressed by

1"11o= 2 nuo tuo (2.3.2.a)

where n_, is the number of columns in a subimage, and tuo is the I10

control subunit cycle time fo¢ one column. Of course if D and D" are the

actual sensor arrays, then all pixels can he loaded in one cycle.

The computation time for a subimage is expressed by

:Ice = n i ti (2.3.2.b)

where ni is the number of instructions to execute a specific algorithm,

and ti is the processor instruction cycle time.

The inter-PE communication time for a subimage is expressed by

Tpp = nt, nc tc (2.3.2.c)

where nb is the number of bits to be transferred to neighboring PEs while

executing the algorithm, n_ is the number of neighboring communications

for a specific algorithm, and t, is the communication time for one bit

between neighboring PEs. Since the width of communication link is one

bit, the number of bits to be transferred must be considered instead of the

number of bytes.

Therefore, the total time for a whole image is again expressed by

T,_= 2n,n_otUo+ n,n_ti+ n_nbndc (2.3.3).

Since the SliM has buffering capability,I/O can be overlapped with

processing.The totalprocessingtime reducesto

njTct, + n,Tee if naTcp + n,Tee > naTi/o
TA = [n,T#o otherwise (2.3.4).

In addition, the SliM has inter-memory communication capability during

computation. Thus, communication can be overlapped with computation.

This further reduces total processing time. The total time TA can be

expressed as follows

n,Tce if n_Tce + n,Tet, > ntT#o and n,Tce _ n,Tet,

TA = _n,Tt, e ff n,Tcl, + n,Tee > nsTt:o and n,Tce < n,Tel, (2.3.5).
1
[nsTtlo otherwise

As shown in (2.3.5), the total time of the SliM can he expressed by

one of three time components. In general, computation time is larger than

I/O time or inter-PE communication time. Hence. on the SliM the total

time is composed of only pure computation time, if the above conditions

are satisfied. In contrast, the total time may be expressed by Eq. (2.3.3)

in existing mesh-connected array processors. In some tasks, inter-PE

communication cannot he fully overlapped, and some portions of Tee

may still exist. Then, TA is expressed by n,Tct, + (1- p)n,Tee, if

n_Tcp + (1 - p)n,Tep > pn_Tee, where p is the overlapped portion of Tee

with Tce.

4. APPLICATIONS AND PERFORMANCE EVALUATION

The SliM is suitable for low level computer vision tasks, where

there are excessive data exchanges between neighbors, because it can

perform neighborhood operations with little or no communication

overhead. For instance, 2-D convolution, median filtering, average value,

template matching, thresholding, zero-crossing, etc., are suitable

applications for the proposed architecture. Edge detection can be

performed by using 2-D convolution algorithms. Gradient, Laplacian,

difference of Gaussians, and Sobel operator are some of examples. After

convolution of image with these operators, edges can be efficiently

detected by the SliM. Parallel algorithms for 2-D convolution and

median filtering are illustrated.

4.1 Convolution

A parallel 2-D convolution algorithm [12] is highly suited for

implementation on the SliM architecture. For a image convolution using

3 X 3 window, 9 multiplications, 8 additions, and 8 inter-PE

communication steps are required on existing mesh-connected array

processors. Since the time to shift contents of the sliding memary plane

is much less than the time to execute one multiplication, the parallel data

movement can be completed within the computation time. If the SliM is

employed, 9 multiplications, and 8 additions, are needed, regardless of

the size of image. Inter-PE communication overhead is overlapped, and

I/O overhead can also be overlapped if the computation time is larger

than the I/O time. Therefore, the total processing time for a whole image

consists of computation time (i.e., 9 multiplications and 8 additions).

The 3 X 3 convolution window and the movement of the sliding memory

plane are shown in Fig. 4.1. If the movement starts at the center pixel

and ends at the southwest pixel through a clockwise direction, the

movement of the contents in the sliding memory plane is O _ S ---> E

N _ N _ W _ W _ S --_ S. The direction of the movement is a

Hamiltonian path which starts at any node and visits every node only

once. Any kind of window shape and size can be employed with little or
no communication overhead.

NW N NE

W O E

r
SW S SE

Fig. 4.1 3 x 3 Square Window and Movement of Sliding Memory Plane

Before we discuss performance issue, we briefly describe the

figures of MPP. Then, we make assumptions for performance evaluation

of the SliM. In MPP, one memory access and several operations can he

executed together within one cycle (100 ns). The actual memory access

time is about 50 ns [4]. Thus, several operations can be merged into one

instruction [3-4]. The performance evaluation of the SliM is based on

the following conservative assumptions. First, memory access time (1

byte) is 100 ns, and is defined as a nominal cycle time. Only one

memory access without any operation can be executed in one cycle.

Two operations can he merged into one instruction if there is no conflict,

and this instruction can be executed within one cycle. Thus, li is 100 ns.

In practice, the time for l-bit memory access is equal to the time for 1-
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byte memory access. We assume most of the operations like addition,

shift, compare, etc., to be executed within a half cycle except several

operations like multiplication, division, etc. Second, 8-bit passing to a

neighboring PE is completed within one cycle time. Third, a

multiplication of two 8-bit integers requires 8 additions and 7 shifts. If

two operands are from registers, 8 cycles are needed. But if two operands

are from memory and the result is stored into memory, 12 cycles are
needed.

To simplify the performance evaluation, the size of the SliM is

assumed to be greater than or equal to the size of the image. In addition,

assume that window coefficients are broadcasted from the CU. Since

Sliding, i.e., inter-PE communication, can occur during execution of

operation, Sliding and operation statements are put on the same line. In

the following description of the algorithm, wherever there are more than

one statement on the same line, then these statements can be conside;ed

to be overlapping. The general algorithm is shown as follows, in which s

represents a register on the Sliding memory plane S and T is a set of

registers in a PE.

T +-- s'w0; s +- a neighboring pixel; /* Sliding */

for i _ 1 until window_size - 1 do

T _ T + s*wi; s +-- a neighboring pixel; /* Sliding */

As shown above, window_size multiplications and window_size - 1

additions must be required. If the window size is 3 x 3 and the number

of bits per pixel is 8, it requires 9*n,, + 8 cycles, where n,,, is the number

of cycles for two g-bit integer multiplication. If we assume n,, to be 8,

the total time is 8.0 lasec.

4.2 Median Filtering

In general, median filtering requires a sorting algorithm after all

neighboring pixels are collected. Since the sorting algorithm itself may

take long and sorting and collecting neighbors cannot occur

simultaneously, median filtering is a time consuming task.

A new parallel 2-D median filtering algorithm is similar to the

parallel 2-D convolution algorithm with respect to the window operation

and the movement of the sliding memory plane. The ordered singly

linked list is used for median filtering. Each PE has its own lisL After

shifting the sliding memory plane, each PE can access its neighboring

pixel, and insert it into its list in order. While this insertion is taking

place, the sliding memory plane can be shifted. If the time for insertion

into the list is larger than the time for shifting, communication overhead

is overlapped, and only the time for creating Lhe ordered singly linked list

of neighboring pixels is needed. After making the list, the median value

in each list can be easily found simultaneously. The total processing time

thus consists of only the time for making the lisL In contrast with the

widely used median filtering algorithms which consist of collecting and

sorting procedures, sorting procedure is not required, and collecting

procedure is invisible in the new algorithm. The worst case is in which

every time the pixel received from a neighbor is greater than the pixels

in the list. For a 3 x 3 window and 8-bit/pixel, the estimated time is 12.7

psec in the worst case.

Performance evaluation for other tasks, i.e., Gassusian, zero-

crossing, threshold, average value, Sobel operator, etc., shows remarkable

improvement over existing mesh-connected array processors. Due to page

limitation, the details are omitted.

5. CONCLUSION

As discussed, remarkable performances can be achieved by the

SliM. There are several reasons why the performance of the SliM is

better than that of existing machines. First, inter-PE communication and

I/0 overhead can be overlapped with computation. Second, bit-parallel

processing is faster than bit-serial processing. Third, on existing mach'_s

PEs store pixels into memory, after pixels are received. During

processing, the pixels stored in memory must be accessed for

computation. This memory access overhead is significant. In contrast, the

S plane on the SliM contains the pixels which can be transferred to

neighbors, and directly accessed by the ALU. Mo_..over, a set of registers

(7") can be efficiently used. Thus, overhead for memory access can be
reduced.

In summary, the proposed array processor, the SliM array

processor, for low level vision alieviates the drawbacks of existing away

processors. Performance degradation due to these drawbacks is minimized

to allow higher throughput than existing array processors. The SliM is a

fine-grained bit-parallel SIMD architecture. The simplicity and the

regularity of the architecture, and the slraighiforward control strategy

make this architecture highly suitable for VLSI implementation.
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ABSTRACT

The advancement of optical interconnection and micro-

electronics packaging technology have made it possible

to use optical fibers as media to carry information

between processors. In this paper, we study an archi-

tecture called the generalized multiple bus-connected

parallel computer (GNBPC). The GMBPC is suitable for

optical interconnection and wafer scale packaging appli-

cations. A special case of the GMBPC operating as a data

flow machine has been studied and fabricated by Hughes.

The Gt4BPC operates as a message passing MI_[D machine in
this investigation. The performance of the C_J4BPC is

modeled by generalized stochastic Petri nets (GSPN). To

lessen the exponential distribution assumption used in

the GSPN model, _4onte Carlo simulation technique has

been used to predict the performance probabillstically.
For application, two-dimensional fast Fourier transform

algorithms for the GI_PC are derived. The performance of

solving multi-dimensional Poisson's equation by
relaxation and fast Fourier transform methods on the

GM_PC with different parameters of GMBPC and problem

sizes has also been analyzed.

Keywords: Message passing. Petri nets, Monte Carlo simu-

lation. Normalized Processing Power, Posisson Equation.

1. ]MTROIXL_ ION

As the number of interconnected processing elements

increases, the interconnection among them plays an in-

creasingly important role in influencing the perfor-

mance of the multicomputer system. A network configura-

tion is considered ideal if it possesses a direct commu-

nication link between any two interacting processing

elements. To provide a reasonable communication band-

width, various mesh-connected types and rm_y other

schemes are described E1-5]. Among the interconnection

schemes bus systems are inexpensive and easy to Imple-

ment but have limited bandwidth, fanout and lack fault

tolerance. Meanwhile. computer architectures are driven

by available technologies and application needs.

Recently the optical interconnection technolog [6] has

shown that the optical fiber can be used to transmit

optical signals between two silicon VLSI chips recessed

into a silico_ carrier. A small gallium arsenlde

transceiver chip electrically connected to the VLSI chip

is employed to convert the electrical signals from the

silicon chip into into light signals and vice versa.

Optical interconnects offer the combination of large

bandwidth and large fanout. The bus-connected structure

suffers from limilted bandwidth and fanout. The fanout

limitation can be improved to some extent by consuming

larger silicon area to construct drivers with higher
driving capability, but the bandwidth limitation of the

bus-connected structure is not easy to overcome unless

other material rather than electrical wires is used to

carry signals.

Therefore, the combination of optical interconnects and

the bus-connected structure seems to be a promising

approach to construct a parallel computer, because the

properties of optical interconnects can remove the limi-

tatlons in the bus-connected system and keep the merits

of the bus-connected structure. In this paper we inves-

tigate a generalized multiple bus-connected parallel

computer (GMBPC) assuming the buses are made of optical
fibers. In section 2 the GMBPC is introduced. The stoch-

astic performance modeling of the GNBPC is presented in

section 3. Application examples such as the two-dimen-

sional (2D) fast Fourier transform (FFT) and the multi-

dimensional Poisson's equation are given in section 4.

Conclusion and discussion are given in section 5.

2. C_ql_CALIZED RIYLTIPLE ]KIS_ PARALLEL

The generalized multiple bus-connected parallel computer

(GMBPC) is defined as a four-tuple denoted as GNBPC =

(N, K, L, D) where N and K represent the total number of

processing elements (PE's) and the total number of buses

in the GNBPC respectively, L is the number of processing

elements within a bus, and D represents the dimension.
The relation between N, K. L, D can be formulated as L =

N1/D , K = (NI/D)D-ID. Figure 1 shows a case of (;MBFC =

(64. dS, 4, 3). A special case of the G_[BPC operating as

a data flow machine has been studied and fabricated by

Hughes, lcnown as Hughes data flow multiprocessor for

real-time radar signal processing [7]. The C_PC is

assumed to be a message passing _41ND machine throughout

this paper. In order to get a symmetrical structure, we

always select N and D properly to make L an integer.

3. STOCHASTIC _ I_LLNG

The behavior of the C_4BPC is modeled as a generalized

stochastic Petrl net (GSPN) graph. From the GSP]_ graph

the performance of the GMBPC is derived analytically.

The Monte Carlo simulation technique is also used to

investigate more cases which can't be easily modeled by
the GSI_ model.

3.1 _ Model of the QIBPC

The generalized stochastic Petri nets (GSPN) have been

used to model computer systems. The results of this

modeling scheme have been verifled by experiments and

reporeted in many literatures E8,9,10_. We apply the

GSPN modeling scheme to model the behavior of the G_3PC.

In order to apply the GSPN modeling ,principles, the
states of each PE in the GMBPC are classified as

follows: 1) Active: The FE is executing programs in its

own private memory, 2) Communicating: The PE is exchang-

ing messages with other cooperating FE's through buses.

3) Queued: The PE is waiting to access a bus.

Nodeling the C_4BPC at the message-passing level corres-

ponds to the identification of processing periods (of

average length l/X) which require no bus access, and

data transfer periods (of average length 1/_) which do

require bus access.

CH2649-2/89/0000/0541501.00 © 1988 IEEE
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3.2 Modeling Unit Structure and Assumptions

Since the GMBPC is a regular and symmetrical structure,

we apply the GSPN model to a (2tIBPC having only one

dimension. In other words a one-dimensional GMBPC is

used as an unit structure for performance modeling.

Another reason of modeling the unit structure rather

than the entire (;MBPC is to keep the reachabillty set

from becoming unmanageably large, reducing computatiotml

complexity. The modeling unit structure is shown in

Figure 2. It is assumed that the workloads are uniformly

distributed among all PE's, resulting in uniform

processing loads and cor_nunication loads. The data

processing period follows an exponentially distributed

random variable with rate X. and the message transfer

period also follows an exponentially distributed random

variable with rate V.

3.3 PerforNmnce Estimation

For a GMBPC = (64, 48. 4, 3), the corresponding GSPN

graph of the modeling unit structure is shown in Figure

3. This GSl_ model comprises 13 places and 12

transitions. The uniform workload assumption implies

that )x I = _2 -- _3 = h4 = X and N1 = _t2 = _z3 = _4 = tt.

The immediate transition rate r is determined by bus

acquisition mechanisms. Since all the transition rates

can be categorized into three groups, each group

representing a specific function of the GNBPC, the 12

transitions can be reduced to 3 transitions. ]'he number

of places ca_ also be reduced by combining places PI'

P4' PT' PIO into one place, representing active state.

By the same method we can reduce the rest places except

P13 into two places, representing the communicating

state and the queued state. The simplified (_SFN model is

shown in Figure 4. With the simplified model the

performance of larger size G$IBPC can be modeled and

estimated by Dlacin_ lar_er number of tokens in the

place PI" Because the bus is assumed to be made of

optical fibers, the bus speed is expected to be much

higher than PE data processing speed. We consider three

cases which are k/tL = 25, k/_ = 50 and X/_ = 100

respectively. The performance is measured by a index, P.

called normalized processing power, which is the ratio

of the average number of active PE's over the total

number of PE's in t:m system. Table 1 presents P versus

L for the three cases. The data shown in

L 2 d 6 9 10 11 12

k,/p=lO0 P 0.99 0.99 0.98 0.98 0.98 0.98 0.98

X/p,=50 P 0.98 0.98 0.97 0.97 0.97 0.97 0.97

X/p,=2,5 P 0.96 0.95 0.95 0.94 0.94 0.93 0.93

Table I. P vs. L for G_PC's with D=I (N=L)

Table i demonstrates that even L = 12, the processing

power still remains above 90% for the three cases. This

is a very good performance but it represents only a one-

dimensional case. In the following we apply the Monte

Carlo simulation scheme to estimate the GMBPC performan-

ce with higher dimensions and more PE's within a bus.

The GSPN model will become very complex and difficult to

solve when modeling a multidimensional GMBPC.

3.4 Nonte Carlo Simulations

In Nonte Carlo simulations we analyze the following

oases :

I) one dimension C_ddBPC with L up to 50 PE's per bus,

2) two dimension GMBPC with L up to 50 PE's per bus.

3) three dimension GbIBPC with L up to 50 PE's per bus,

4) the data processing period and the data transfer

period are exponentially distributed random variables

with different average values,

5) the data processing period and the data transfer

period are uniformly distributed random variables with

different average values.

In Monte Carlo simumlations we assume all the I/O ports

of the PE can be enabled concurrently. The transputer

[113 and the FAIN-1 [12] are two examples which show

that all the I/O ports of a PE can be enabled simultane-

ously. Tables 2, 3 and 4 show the simulation results for

three oases with different distribution functions.

N 22 42 62 102 202 302 402 502

X/I.L=IO0 P 0.99 0.94 0 94 0.90 0.84 0.79 0.74 0.69

k/tt=50 P 0.94 0.90 0.88 0.82 0.74 0.55 0.57 0.52

k/it=P-,5 P 0.89 0.8d 0.79 0.72 0.56 0.45 0.38 0.32

Table 2. P vs. N for a GNBPC with I)=-2

(data processing and transfer periods follow the

exponential distribution function. )

N 22 42 62 102 202 302 402 502

X/l_=lO0 P 0.99 0.95 0 94 0.91 0.8,5 0.80 0.75 0.70

)v't_SO P 0.94 0.92 0.89 0.83 0.74 0.65 0.58 0.52

X/_=2.5 P 0.89 0.85 0.80 0.72 0.57 0.46 0.38 0.32
Table 3. P vs. N for a GbIBPC with I)=-2

(data processing and transfer periods follow the uniform

distribution function.)

N 23 43 63 103 203 303 dO 3 503

k/_=lO0 P 0.99 0.92 0 91 O.&5 0.77 0.70 0.63 0.57

k/_t--50 P 0.94 0.87 0.74 0.74 0.64 0.52 0.44 0.37

X/#=25 P 0.89 0.77 0.58 0.62 0.42 0.30 0.23 0.18

Table 4. P vs. N for a GNBPC with 13--3

(data processing and transfer periods follow the

exponential distribution function.)

The data obtained from Monte Carlo simulations agree

quite well with the data from C,SPr_ model in the same

s i tuat ions.

4. APPLICATIONS

The GNBPC has l_een studied in solving two-dimensional

and three-dimensional Poisson's equations. Algorithms

designed for the GMBPC machine in solving 2.2) FFT

problems are also derived.

4.1 Definitions and Assu_tions

i. The I/0 ports of each PE can be enabled concurrently.

2. The communication time is modeled by tst + tcomm per

data transfer, where t is an overhead due to address
st

calculation, control of data flow and synchronization

and any other overhead for accessing the bus, t
comm

varies as the GI4BPC structure varies. For the reason of

simplicity, tst is assumed to be a constant. (Based on

the data provided in [11], tst is asssumed to be 5000ns

throughout this paper,) tbyte represents the one byte

transfer time over the optical serial bus.

3. Each datum is a single precision floating point

complex number with 8 bytes in length (four for the real

part, four for the imaginary part) for the FFT algorithm

and a double precision floating point real number for

the Jacobi method..

4.2 a 2I} FFr problem for the (_BPC

We first introduce the FTT algorithm [13] designed for

the two-dlmensional GMBPC, then the algorithm for the

three- dimensional CMBPC will be presented.

Alg. 1 : 2D n2-point FFT on the GNBPC=(L2.2L,L,2), nYL 2 .

step 1) partition n 2 points into L 2 domains, so that

each domain has n/L 2 complete sets of one-dimensional

data. Each set of data is ready for 1D n-point FFT

processing.

step 2) assign a domain to a PE consecutively, so that

each PE will have an unique data domain.

step 3) All PE's simultaneously perform ID n-point FFr

on their assigned data domains, i.e, performing 1D

n-point FFT n/L 2 times each FE.

step 4) Each PE partitions the transformed data into L 2

groups with (n2/L2)(I/L 2) data in each group.

step 5) All the PE's on the same row swap L groups of

data between each other, then all the PE's on the same
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colu.mdo the same data swap afterwards. (Although all

rows and columns can swap data at the same time through

the dedicated row and coltum buses, colum_ (row} data

swap can not start until after the end of row (column}

data swap because some data are not available.}

step 6) Each PE performs n/L 2 tiroes ID n-point FFT.

step 7) Finish.

In step 5 the data swap is to redistribute partially

transformed data to the appropriate PE's for another

dimension ID FFT processing. Based on the above

algorithm, we calculate the speedup of solving 21) FFT

problems on a two-dlmenslonal CHBPC = (L2,2L,L,2}. The

communication time for each data transfer is T = t +
sc st

tbyte8(n2/L2) I/L. The total communication time is

2L(L-1)Tsc. A single PE performing a 2]) n2-point FIT

needs execution time 2nTFF T, where TFF T represents a

n-polnt FFT execution time on a single PE. TFF T is

proportional to the execution time of 5n( log2n }

arithmetic operations for complex input data. Assume t
P

represents the average one arithmetic operation time, so

TFFT_n(log2n)tp. The speedup S is

2I)FFTS2IE_2nTFFr/( 2nTFpr/L2+2L ( L-1 )Tsc) •

The above speedup equation is shown in Figure 5.

Alg. 2: 2D n2-point _ on the GMBPC=(L3,3L2,L,3), n)].3

step 1} partition n 2 points into L 3 domains, so that

each domain has n/L 3 complete sets of one-dimensional

data. Each set of data is ready for 1D n-point FFT

processing.

step 2} assign a domain to a FE consecutively, so that

each PE will have an unique data domain.

step 3) All PE's simultaneously perform 1D n-point FFT

on their assigned data domains, i.e. performing ID

n-point FFT n/L 3 times each PE.

step ,I) Each PE partitions the transformed data into L 3

groups with (n2/L3}(I/L 3) data in each group.

step 5) For the PE's on the same shared bus, L 2 groups

of data in each PE are swapped between each other. This

applies to all PE's and buses in the GHBPC. For a CHBPC

having three dimensions (x,y,z) the data swap within

either x,y or z dimension can be done simultaneously,

but at any time only one dimension data swap is allowed

because of the unnvailability of some data.

step 6) Each PE performs n/L 3 times 1D n-point FFT.

step 7) Finish.

Based on the above algorithm, we calculate the speedup

of solving a 21) FYr problem on a GHBPC = (L3,3L2,L.3).

The corm_unication time for each data transfer is T =
sc

+ tbyteB(n2/L3)l/L. The total cormunication time istst

3L(L-I)Tsc: The speedup S is

2DFFTS3DGM=2nTFFT/(2nTFFT/L3+3L ( L- 1 ) T sc }'

Figure 5 presents the speedup versus N for different
dimension (_IBPCs in solving a 2]) FFT problem. Two bus

speeds. 800Mbits/sec and 80Mbits/sec are considered.

SOOWoits/sec is a realizable bus speed via optical

interconnects [6] in the very near future. (Throughout

the rest of this paper, a bus with speed = 800Hblts/sec

implies this is an serial optical bus.) It shows that

for a 21) 4096 2 point FFT problem a CHBPC with I)=2, bus

speed=8OOMbits/sec has slightly better performance than

the one with D=3, bus speed--8OOHbits/sec for N < I000. A

G24BPC with D=3 and bus speed---80_4bits/sec has worse per-

formance than one with D=2 and bus speed=_)O_fblts/sec.

It concludes that there are a number of parameters such

as the structure o£ Q4BPC, bus speed, PE data processing

speed, cost of Interconnection network and problem sizes

to be considered to achieve the desired speedup.

4.3 Solvi_ the Poisson Equation on the GIBPC

In the following we solve a three-dimensional Poisson's

equation on GMBPC with different parameters.

Example I: Solving a three-dimensional Poisson's

equation with n 3 points In size on the (24BPC =(L 2, P-L,

L, 2) and n > L. The Jacobi Iterative solution technique

[14,15] is used in this example. Although the Jacobi

method has not been used in practice, it is the basis

for understanding the fast converging methods and

represents the same complexity of communication. It is

assumed that n 3 points are equally partitioned into L 2

processors. Therefore each PE has equal amount of work

in computation. The amount of data for each transfer

between two adjacent PEs is n2/L. The communication time

t + tbyteBn2/L. Since allper data transfer is Tsc= st

the I/O ports in the PE can be enabled concurrently, the

total communlcation time per iteration is [2(L-2}+2]Tsc.

Based on the INMOS I_S TSO0 data book [Ii]. the computa-

tion time per point per iteration is t = 2915ns
comp

3
[14]. The total computation time for the n points is

T = n3t . The cost of communicating convergence
comp comp

checking information on the GI_BPC is insignificant

because it involves only one number from each PE in each

dimension, and is hence neglected, The speedup S is

T /(T /L2+2(L-1 )T )
3DPoS21x_ = comp comp sc

Speedup analysis for this case is presented in Figure 6.

FJcz_pl e 2: Solving a three-dimensional Poisson's

equation with n 3 points in size on the GI_BPC =(L 3, 2L 2,

L. 3}, and n)L. The Jacobi method is also used in this

example. Since the n 3 points are evenly partitioned into

L 3 processors, the amount of data for each transfer

between two adjacent PE's is n2/L 2. The communication

time per data transfer is Tsc = tst + tbyteSn2/L 2. Since

all the I/O ports in the PE can be enabled simultaneous-

Iy, the total communication time per iteration is

[2(L-2)+2]Tsc. The computation time required for each

point is still t . The total computation time for n 3
comp

points is T = n3t . The speedup S is
comp comp

3DPoS3DGM = Tcomp/( Tcomp/L3+2 (L- 1 )Tsc )

Figure 6 presents the speedup versus the number of PE's

in (_BPC's with D=2. or 3 and different bus speeds. It

has shown that given N PE's in total, a GMBPC with D=2,

bus speed--8OOMbits/sec, or I)-..3, bus speed--8OMblts/sec

produces the same performance; and the performance of a

C24BPC with I)---3,bus speed=8OOffi)its/sec is only slightly

better than the Just mentioned two cases. Therefore the

choice of the D depends on the cost of Interconnection

network and desired speedup.

In the following we solve the same Poisson's equation

but using Fast Fourier Transform method [16,17] rather

than Jacobl method.

Example 3: Solving a two-dimensional Poisson's equation

with n 2 points in size and zero Dirichlet boundary

conditions by FFT method on the GbIBPC. First, transform

the Poisson's equation from real space to Fourier space.

Second, perform dn 2 arithmetic operations. Lastly,

transform the data in Fourier space back to real space.

The speedup for the G_IBPC with D=2 and D--3 are :
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_poS2_ =

( 4nTFFT+dn2tp)/[ dnTFFT/L2+dn2tp/L2 +dL(L -1 )Tsc]

where T_c= tst+tbyteS(n2/L 3)

2DPoS3D(_ =

('ii'ITl:nb-..l.+a,rl2 tp )/ [a,nTF,b.T/L3+_2 tp/L3*6L (L- I)T'sc ]

where T_c = tst+tbyteS(n2/L I)

The speedup comparison between different dimension

C_BPC's in solving a 2D Poisson's equation by FF7 method

is presented in Figure 7. It shows that an
optical-interconnected GNBPC with ])=2 has better

performance than a non-optical-interconnected CKBPC with
De3. It also indicates that when De2 the speedup seems

to get flat much faster than when D--3 that provides more

communication paths.

5. ODMC_USION ARD D1SC_3SI(,_
A bus-connected multiple parallel computer has been

studied in this peper. The bus-connected parallel

computers are inexpensive and easy to implement, and the
limited bandwidth and fanout can be ellminated by using

optical buses. The GSFN model and Monte Carlo simula-
tions show that a (_BPC can achieve 70_ of its full pro-

ceasing power even N=25(X) end I)=2. A speedup comparison

In solving a 2D F_r problem a_d a 3D Polsson's equation
on G_BPC's with different dimensions has sho_1 that an

optical-interconnected GMBPC can indeed generate speedup
closing to the number of PE's in a CMBPC. The relation

between speedup. L. and D studied in this paper and the
cost of interconnection network can provide a guide for

the design of GIABFCs as message passing machines.

Af_oIrL._X:_4_IT - The author C. Wu likes to thank Auburn

Universlty Crant-ln-Aid program.
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Abstract

With the recent advances in neural networks, there has

been a great deal of research in neurocomputer architec-

tures based on electronic and optical technologies. This

paper presents techniques for realizing conneetionist style

neurocomputations on Opcom, an optical computer archi-

tecture based on the pipeline networking concept. Special

attention is paid to the ef_cient implementation of learning

and search procedures.

1 Introduction

With the recent advances in neural networks [4,7], there

has been a great deal of research in architectural studies

of neurocomputers, based on electrical or/and optical tech-

nologies [2]. The authors have recently proposed an optical

computer architecture, called Opcom [12], which is based

on the pipeline networking concept [5] and maps nicely into

the characteristics of optics] interconnectlons and gate ar-

ray structures [6]. The primary operation mode of Opcom

is massively parallel and pipeline processing at the gate
level.

In this paper, we extend our research in [12] to the

area of neurocomputing. More specificly, our interest is in

connectionist style computations in digital neural networks

[1,3,9]. Special attention is paid to the implementation of

the two most important functions of any neural network:

learning and search (retrivial).

The architecture of Opcom is described in Section 2.

The implementation of neural networks in Opcom and the

i This research was supported in part by an NSF grant DMC-84-
21022, by an AFOSR grant 88-0008, and by a Henry Rutgers Research
Fellowship.

search process is discussed in Section 3. The implementa-

tion of a supervised learning procedure, the Pocket Algo-

rithm [1], is shown in Section 4. Our research results are

summerlzed in Section 5.

2 The Architecture of Opcom

We will only briefly discuss features of Opcom that are

relevant to this paper. Details of architecture, instruction

set, and optical implementation can be found in [12].

The functional architecture of Opcom is shown in Fig. 1.

The Host provides an interface to the outside world and

can be implemented using any micro- or minl-computer.

The Array of Cells is a rectangular array of optical cells.

Each cell, as shown in Fig.2, can be viewed as a NOR

gate cascaded with a D flip-flop. Such a cell provides

one bit storage and processing power and can be imple-

mented by an optical bistable device [8,11]. The Intercon-

nect Unit provides dynamically reconfigurable interconnec-

tions among the cells. It can be implemented by computer

generated holograms or optical crossbar networks [6,10,11].

Host

I Control

Unit

Connection

Unit

_Arra_/of Cells

Figure 1. The Logical Arthitecture of Opcom

CH2649-2/89/0000/0545501.00 © 1988 IEEE
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x qy q ,-

newq= _q+c(x+y)

new q = _{+ c(x + y)

Figure 2. The Functional Description of a Cell

The Control Unit executes instructions of Opcom. Only

two instructions are needed in this paper. The execution

of a "CONNECT p" instruction will reconflgure the Inter-

connect Unit to set up inter-ceU connections as specified by
p. A "START n" instruction will enable all cells involved

for n clock periods. There are no conventional data trans-

fer or arithmetic/logic operations in Opcom. Instead, any

computation is carried out in the following fashion: First,

a optical circuit is constructed by executing a CONNECT
instruction; then the execution of a START instruction

propagates operand data through the circuit to generate

the desired result data. Thus the basic operation mode

of Opcom is massively parallel and pipelining at the gate
(cell) level.

3 Implementation of Neural Net-

works in Opcom

Because there are many different definitions of neural net-

works and neurocomputing, we will define below what we

mean by "connectionist style neural computations" [1,3,9].
A neural network consists of a number of neurons inter-

connected by unidirectional synapses. A network is cyclic

(also called -feedback) if it contains directed cycles, other-

wise it is acyclic (also called feed.forward). We will focus

on feedforward networks in this paper, although the tech-

niques presented can also be applied to feedback networks.

Each synapse from neuron nl to neuron nj has an inte-

ger weight wlj. Each neuron hi, as shown in Fig.3, has an

activation (also called state) al, which can have values -1,

0, or 1. The activation ai is determined by the following

equations:

1 ifS_ >0
Si = E_'=I wlSai ai= T(SI) = 0 if S_ = 0

-1 if Si < 0

A neuron can be implemented in Opeom using a bit

slice circuit as shown in Fig.3. Using ones-complement bi-

nary number system, each wi¢ (and $i) can be represented

by an r-bit binary number wbw_j-1...w_j (and S[S'_-1...S_),

if the range of possible integers is from -2 "-1 to 2"-1.

Each activation aj can be represented by two bits a s2asl,

with 0=00, -1=10, and 1=01. A multiplication operation

wisas can be realized by a three-gate circuit in a bit-sliced

fashion. In fact, the k-th bit of the product is equal to

wljajls 1 __ wi_aj,lt 2 which needs one OR gate and two AND

gates. Consequently, a bit-sliced multiplier can be imple-

mented as shown in Fig.4 using three optical cells of Fig.2.

w_

a ]

w,j

Figure 4. The Multiplication Circuit

_ Threshold

Function

Figure 3. An Optical Circuit for Implementing a Neuron
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In [12], we presented an integer adder that needs 11

optical cells. The n products from the bit slice multipli-

ers can be summerized using n - 1 adders organized as

a (log2n)-stage adder-tree to produce Si. The threshold

function T($i) can be implemented with 4 optical cells as

shown in Fig.5. A simple calculation shows that a neu-

ron with n inputs can be implemented by (r + 14)n - 5

optical cells. A neural network with m neurons can be

implemented using O((r + 14)ran) ceLls.

A basic function performed by any neural network is

search. That is, given some (maybe partially specified)

input, find an output that best matches the input. In a

feedforward neural network, such an output can always be

produced by propagating the input through the network.

If the longest path in the network has length L, the prop-

agation time will be rL(4 + log a n) dock periods, where r

is the word length of integer and 4 + log 2 n is the number

of stages of cells in Fig.3.

Due to the acyclie property, a feedforward network can

perform N searches in a pipellned fashion: First, the Con-

trol Unit executes a "CONNECT p" instruction, where

p is the interconnection pattern of all the O((r + 14)ran

optical cells involved. The Interconnect Unit is recon-

figured to provide all inter-cell connections. Secondly, a

"START t" instruction is executed, where t has the value

4L + Llog 2 n + rN. This instruction enables a search to

be performed very r clock periods.

4 Learning in Opcom

Another basic function of a neural network is learning.

That is, we need to set the weight attached to each synapse

by applying some training examples to the neural net-

work. Many learning schemes have been developed in the

past, including supervised procedures, reinforcement pro-

cedures, and unsupervised procedures. For a survey of

various learning procedures, the reader is referred to [3].

In this paper, we show how the Opcom architecture

can efficiently implement a supervised learning procedure,

called the Pocket Algorithm [1], which has been success-

fully integrated into the design of connectionist expert sys-

tems. The basic idea of this algorithm is as follows: Ini-

tially, all weights are zero. A number of training examples

are applied to each neuron in a network. For each training

input E, the neuron's actual response is compared with

the desired output C. If they do not match, the weights

are updated by adding the product C • E. For a detailed

description of the Pocket Algorithm, the reader is referred

to [1].

This learning procedure for each neuron can be imple-

mented by O((r + 24)n) optical cells as illustrated in Fig.6.

Because of the feedback connections in Fig.6, no pipelin-

ing is possible. That is, a training example can not be sent

to the optical learning circuit until the previous training

example has propagated through the entire circuit. This

problem can be solved by using the pipeline networking

techniques presented in [5]. We first insert some optical

cells as noncompute delays into each cyclic path in Fig.6

to ensure that all cyclic paths have the same length q.

Then we use the same circuit to carry out the learning

procedures of q neurons in a pipelined fashion. This is

possible because in the Pocket Algorithm, neurons learn

their weights independently. With this scheme, if there

are N training examples, a network ofrn neurons can finish

learning in O(qrN) dock periods using m/q optical learn-

ing circuits of Fig.6, where r is the integer word length.

ai 2a i2

Figure 5. The Threshold Circuit

I n

ICi_.u_'t _3x-gl Compare _

C E W

Figure 6. Sketch of an Optical Learning Circuit
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5 Summary of Research Results

Three topics of research naturally arise in building a

neurocomputer that efficiently supports search and learn-

ing: new instruction sets, innovative architectures, and

proper technologies. In this paper, we present our solu-

tion to each of the three problems. The conventions] data

transfer and arithmetic/logic instructions found in a tra-

ditional sequential computer are not suitable for ef_iclent

implementation of neurocomputing. In contrast, our CON-

NECT instruction supports massive, reconfigurable inter-

connections and the START instruction enables massively

parallel and pipeline operations. All these are properties
essential in a neural network or a connectionlst model.

The Opcom architecture also matches with a neural

network model. There are no separate memory and CPU

as in most traditional computers. Instead, Opcom can be

viewed as a set of dynamically interconnected optics] cells,

each has one hlt processing and storage capability. Note

that a neural network is defined as a set of dynamically

interconnected neurons, each has limited processing power

(some threshold operation) and storage capability (state or

activity). Adveaices in optical technology promise reconfig-

urahle interconnections, massive parallelism, and gate level

pipelinlng, which make the Opcom architecture feasible.

A traditional computer has millions or even billions of

gates. However, most time only a very small portion of

the hardware is involved in operation, while the major por-

tion of hardware is idle. On the contrary, we have shown

in this paper that due to the mode of massively parallel

and pipeline operation at gate level, Opcom can have a

much higher hardware utilization rate. This, coupled with

the fast switching time of optical devices (in the order of

nanoseconds), could lead to very impressive performance.

In fact, using a single circuit of Fig.0, which has a gate

count smaller than a microprocessor, a network of 1000

neurons could be implemented to learn 1000 training ex-

amples in less than a second.
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Abstract

An optimizing compiler for a data parallel programming lan-

guage can significantly improve program performance on a mas-

sively parallel computing system by incorporating new strategies

for allocating array elements to processors. We discuss techniques

for automatic layout of arrays in a Fortran compiler supporting

Fortran 8x array features and targeted to the Connection Ma-

chine computer system. Our goal is primarily to minimize the

costs of moving data between processors and secondarily to min-

imize memory usage. Improved array layout may allow commu-

nications operations to be eliminated or to be replaced by more

specialized communications operations having lower cost. We ex-

hibit and discuss thoroughly a typical example of a code fragment

that can be improved by a factor of 2 in memory consumption

and a factor of 20 in speed.

1 Introduction

An optimizing compiler for a data parallel programming language

can significantly improve program performance on a massively

parallel computing system by incorporating new strategies for

allocating array elements to processors.

We have designed and implemented a Fortran compiler for

the Connection Machine ® computer system at COMPASS on be-

half of Thinking Machines Corporation. Work on improvements

and extensions is currently in progress. The data optimizations

described here are under design for incorporation into a future

version of the compiler.

The language implemented is Fortran 77, extended by Fortran

8x array features, including some features (FORALL and vector-

valued subscripts) now listed in the "removed extensions" section

of the latest ANSI proposed standard for Fortran [3]. These

features suit the data parallel computing style, which associates

(at least metaphorically) one processor with each data element.

The Connection Machine system [6,12] supports the data par-

allel style by providing thousands of hardware processors that can

operate on as many data elements simultaneously. A full Con-

nection Machine system includes 65,536 physical processors, each

with its own memory. Each processor can perform all of the usual

arithmetic and logical operations on integers and floating-point

numbers stored within its own memory. Parallel data structures

are spread across the processors, with a single element stored in

each processor's memory.

*Compass. Inc. (formerly Massachusetts Computer Associates, Inc.)

tUniversity of Massachusetts at Boston and Compass, Inc.

lThinking Machines Corporation

The Connection Machine is accessed through a front end,

which provides the programming environment. The front end

holds scalar data, and also controls execution of the data parallel

program. Program steps involving parallel data are passed over

an interface to the Connection Machine, where they are broadcast

for simultaneous execution by all the processors.

Interprocessor communication is implemented by a high-

speed routing network. In a send operation, each processor con-

thins data to be sent and a pointer to a processor (possibly itself)

that is to receive it. In a get operation, each processor contains

a pointer to a processor containing data to be copied back to the

first processor. A send is faster than a got, but a get allows

data from one processor to be copied to many other processors

at once.

The Connection Machine Model CM-2 singles out certain pat-

terns of communication for special hardware and microcode sup-

port. Cartesian grids of any number of dimensions can be embed-

ded within the boolean hypercube structure used by the router.

Array elements that are neighbors along any dimension are al-

located to processors that are neighbors within the hypercube

structure. As a result, a single-position shift along any axis of

such a grid can be performed much faster than the general case

of the send instruction. Such operations are called NEWS op-

erations (for North-East-West-South); the simplest one is called

simply get-from-news.

Complex operations on Cartesian grids are also directly sup-

ported as single Connection Machine instructions. These include

spread and scan. A spread operation can take any row of a ma-

trix and copy it into all the other rows. A scan operation takes a

combining operation (such as add, max, or logior) and performs

a parallel prefix computation [9,7] on each row of a matrix. For

example, scan-with-add computes running totals for each row.

Both spread and scan generalize to columns instead of rows and

to any number of dimensions.

As a rough rule of thumb, ifa 32-bit addition (to be performed

by all 65,536 processors) takes 1 time unit then

• a 32-bit NEWS transfer takes 4 units

• a spread takes 25 units

• a send takes 80 units

• a get takes 180 units

One unit is approximately 16 microseconds. These figures are

only useful rough estimates; actual times depend to some extent

on the virtual processor configuration.

Our goal is to minimize the cost of interprocessor communi-

cation. Appropriate allocation of data to processors frequently

CH2649-2/89/0000/0551501.00 © 1988 IEEE
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allows a general communication operation (such as send) to be

replaced by a faster one (such as get-from-news) or eliminated

altogether.

2 Examples

As an example of the optimization issues addressed here, consider

this code fragment:

I0 B(1:5,1:N) = B(I:5,1:N) * S

20 LII(I:N) = 1.0 / B(I,I:N)

30 U2(I:N) = B(2,1:N) * LII(I:N)

40 U3(I:N) = B(3,1:N) * LII(I:N)

50 U4(I:N) = B(4,1:N) * LII(I:N)

60 U5(I:N) = B(S,I:N) * L11(I:N)

(This fragment isloosely based on a fragment of a vectorized tri-

diagonal solver subroutine. For emphasis we have written out all

subscripts explicitly.)

The simplest and most na;'ve way to arrange the data is to

lay out each array with one element per processor, starting at

processor zero. See figure 1. This is the "canonical" layout used

by the compiler in the absence of other criteria. This places Lll

and each U in the same set of processors so they align, but B is

spread across the processors in a manner that does not necessarily

bear any useful relationship to the other arrays. Alignment of L11

and each U with the sections of B requires motion.

This strategy requires a total of 8 memory slices: one for B,

one for each U, one for L11, and a temporary used to hold a moved

copy of Lll or B(i, 1 :N) in each of statem4nts 30-60. The tgtal

communication cost depends on which of two strategies is used

for statements 30-60. If LI1 is moved to align with B(i,I:N),

and then the result of the multiplication is moved to Ui, a total

of 9 send operations will be required (I for statement 20, and 2

each for statements 30-60). If B(i,I:N) is moved to align with

Lll and Ui, then only 5 send operations are required in all. The

time for motion will thus be either 720 or 400 units.

In summary, the total cost of lines 10-60 for the nai've allo-

cation strategy is

Total time for operations = 6

Total time for motion - 720 or 400

Total number of memory slices = 7

An obvious hypothesis is that aligning the one-dimensional

arrays with some row of B, say the first, would reduce communi-

cation (figure 2). This eliminates one communication step (that

between Lll and B(1,1 :N)), but is not the best possible improve-

ment. Observe that each send operation can be replaced by a

sequence of NEWS moves, copying values from row to row of B,

giving

Total time for operations = 6

Total time for motion = 80 or 40

Total number of memory slices = 7

In this particular case it might be better to lay out the first

dimension of the array B as a serial axis rather than a parallel

axis; that is, successive elements of B along that dimension will

occupy successive locations within the same processor rather than

the same location within different processors. See figure 3. In this

manner no communication is required for any of the assignment

processors,

[I,(1.1:,) B(5.1:,)1memory IL 11 (1 : N) I

I u2a:.) I
I I
i i

IU4(I:N) I

I us(l: > I

Figure h Nai've Layout of Some Arrays

memory I

processors

B(1,1:N)

[L11(l:N)

I U2(I:N)
I

I U3(I:N)
i

l u4(1:_)
I US(I:N)

I

Figure 2: Aligned Layout of Some Arrays

processors

B(1,1:N)

memory B(2,1:N)

B(3,1:N)

B(4,1:N)

B(S,I:N)

L11(1:N)

U2(I:N)

U3(I:N)

U4(I:N)

US(I:N)

Figure 3: Sequential Layout of Some Arrays

statements, and no temporary locations are required. On the

other hand, the multiplication of B by S in line 10 now requires

5 separate computational steps. The cost of lines 10-60 is

Total time for operations = 10

Total time for motion = 0

Total number of memory slices = 10

Another possibility is the layout shown in figure 4. tIere B

is laid out in parallel and each U is aligned with the appropriate

section of B. Copies of L 11 are still required, so one extra memory

slice is needed for a temporary.

Total time for operations --- 6

Total time for motion = 40 or 80

Total number of memory slices = 7
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memory [

processors

Figure 4: Skewed Layout of Some Arrays

memory I

processors,

Ln(1:N)IU2(I:N)IU3(I:N)IU4CI:N)IUSCI:H)]

Figure 5: Compressed Layout of Some Arrays

This layout has the same time and space possibilities as in figure

2, with the NEWS costs of the two motion strategies reversed.

But this layout leads to an even better one.

Note that the U arrays axe now ill disjoint processor sets and

can share a single slice of memory (figure 5). Then the four

multiplications can be collapsed into a single multiplication to be

carried out for all of U2, U3, U4, and b'S simultaneously, resulting

in

Total time for operations = 3

Total time for motion = 40 or 80

Total number of memory slices = 3

This example illustrates a need to optimize the static layout

of user-declaxed arrays. Sometimes dynamic layout is required,

as in the following example.

DO I0 J=I,M

TEMP(I:N) = A(J,I:N)

A(J,I:N) = B(J,I:N)

B(J,I:N) = TEMP(I:N)

10 CONTINUE

In this case it is desirable not to assign TEMP to one fixed set of

locations. Its uses on different iterations do not interact (there

is no dependence among them), so TEMP may be allocated to a

different set of operations on each iteration. In other words, the

compiler can in effect rewrite the code to behave something like

this

DO I0 J=I,M

TEMP(J,I:N) -- A(J,I:N)

A(J,I:N) = B(J,I:N)

B(J,I:N) = TEMP(J,I:N)

10 CONTINUE

3 Overview of Solution

Data optimization processing takes place after the Internal Rep-

resentation (IR) of the source code has been created to expose all

source level computations and after this IR has been optimized.

IR requiring exact locations, such as for data motion or context

setting, has not yet been exposed. The algorithms take machine-

specific time and space cost functions as parameters and can

therefore be applied to a variety of machines by using different

cost functions.

The first phase of data optimization is the Align phase, which

determines preferred relative alignments among occurrences of

named array sections based on dependences. Resolving conflicts

among these preferences indicates a need for data motion. The

Inter phase determines the best location for intermediate results,

tracking multiple copies of array sections produced by conflict

resolution in Align and by Inter's own processing of previously

analyzed statements and subexpressions.

When Align is unable to allocate sections according to their

preferred relative alignment, motion is required. The Motion

phase determines what data is to be moved, which motion in-

structions are needed and their initial placement in the gen-

erated code. A Mini-Veetorizer is then activated to perform

vectorization-like transformations on the code introduced by pre-

vious phases. The exact allocation of array occurrences is now

determined and code is exposed in the IR for context setting and

motion. Standard global optimization is then performed on the

newly added code.

The major compiler phases that are unique to data optimiza-

tion are Align, Inter, Motion, and the Mini-Vectorizer. These are

discussed in more detail in the remainder of this paper.

4 Align

The align phase determines the allocation of occurrences of

named arrays and their sections. Align analyzes usage patterns

in the source, noticing situations where the best allocation of

one array occurrence depends on the allocation of another array

occurrence. We call these situations preferences.

An Identity Preference is between corresponding dimen-

sions of a definition and use of the same array and indicates a

preference to align identical elements of the array in the same

processors for the two occurrences.

A Conformance Preference is between corresponding di-

mensions of occurrences of different arrays that axe operated on

together and indicates a preference to align corresponding ele-

ments of distinct arrays in the same processors.

An Independence Anti-Preference is associated with a

single dimension of an axray occurrence (not a relationship be-

tween them) and indicates a preference to store the distinct ele-

ments along that dimension in different processors.

The three characteristics above refer to allocation across pro-

cessors. There is, of course, a Uniqueness Requirement that

each dimension must have a unique effect on the storage of the

array elements over the entire memory space of the machine but

this effect could well be with respect to the storage within pro-

cessor memory. Therefore, even with this requirement, the value

in a paxticulax dimension may legitimately have no effect on the

allocation of an axray across processors.
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Thesepreferences are discussed below with their implications

for the Connection Machine. Some implications for other archi-

tectures are presented as well.

Identity Preference: This preference is between corre-

sponding dimensions of a definition and a use of the same ar-

ray if there is a true dependence between them. Note that the

allocation of a definition and use of the same array may be de-

termined independently if there is no true dependence between

them. (Also note that output dependences and anti-dependences

have no impact on allocation.)

The identity preferences in our example are shown below

•...._ ".._
I0 B(I:S,I:N) = B(I"5,1:N) * S

60 US(tiN) = B(5,1:N) * LII(I'N)

and

i0 B(I:S,l:N) - B(1:5,1:N) * S

20 L11(1:N) ,, 1.0 l B(1,1:N)
L._

30 U_(14"_) 1 B(2,1:_) i Ll1(?_

40 U3(I:N) = B(3,1:N) L11(I'_

r j

50 U4(I:N) B(4,1:N) * Lll(I:N_/
r-

60 U5(I:N) = B(5,1:N) * Lll(I:N)

On the Connection Machine, an identity preference means

that if the allocation of the array at the definition is not iden-

tical to the allocation at the use, motion will be required. On

a MIMD machine this preference might be used when partition-

ing an application among the processors. On a MIMD machine

an identity preference means that if the definition and the use

are not executed on the same processor, there is a cost for syn-

chronization, and, if the MIMD processors have local rather than

shared memory, there is also a cost for data motion.

Conformance Preference: This preference is between cor-

responding dimensions of two arrays that are operated on to-

gether. The conformance preferences in our example follow:

I0 B(I:5,'I:N) B(I:5,1)N) * S

r
20 Lll(i:R) = 1.0 / B(1,1:N)

30 U2(1 _:N)

40 U3(1 _:N)

50 U4(1:_ N)

60 us(1 _) = B(5,1:N) * Lll(I:N)

In the assignment to U2 there is a conformance preference be-

tween the second dimension of B and the only dimension of Lll.

If these two dimensions are not allocated identically, motion to

align will be required. Restrictions may be associated with each

conformance preference. For example, the conformance prefer-

ence in the statement 30 holds only when the first subscript of B

is 2. Statement 40 has the same preference between the second

dimension of B and Lll, but the restriction holds when the first

subscript of B is 3.

On the Connection Machine system, motion will be mini-

mized if dimensions associated by conformance preferences are

allocated so that corresponding elements align. On a machine

with memory bank contention, a conformance preference means

that delays will be minimized if we allocate these two sections

or at least the corresponding elements of the sections in distinct

memory banks. On a MIMD machine with local memory, a con-

formance preference means that the two sections or at least the

pairs of elements determined by this correspondence must reside

in the same processor to minimize data motion.

Independence Anti-Preference: Both the identity prefer-

ence and the conformance preference attempt to reduce motion.

This anti-preference attempts to preserve maximum parallelism.

Without this preference, the other preferences can always be re-

solved by storing large sections or even entire arrays in a single

processor. While such a resolution will result in no data motion,

it may reduce parallelism and increase memory requirements.

(In our example, loss of parallelism occurs if we break the inde-

pendence anti-preference on the first dimension of B and store

this dimension serially within the processor memory, as shown

in figure 3. With this allocation, a single operation on all of B

must be transformed into five operations, one on each row of B.)

The independence anti-preference is a characteristic of a specific

dimension occurrence if that dimension contains a potentially

parallel subscript, that is if the subscript is not scalar. The in-

dependence anti-preference is included so the algorithm will not

aJways decide to minimize motion at the expense of memory and

parallelism but will make an explicit choice based on cost by

associating a cost with each independence anti-preference.

The relationships described above are represented as arcs in

a graph whose nodes are dimensions of occurrences of arrays and

array sections. Such a graph can be consistent or in conflict. It

is consistent if all the preferences can be satisfied. It is in conflict

if preferences contradict each other. In the above example the

preference graph contMns a conflict. The second dimension of B

must align with Lll where the first subscript of B is 1 and also

where it is 2. If the first dimension of B is stored across the pro-

cessors, the conformance preferences cause a conflict. If the first

dimension is stored down processor memory, the independence

preference causes a conflict. The graph is therefore in conflict.

If the preference graph is consistent, no motion need occur

at runtime. Conflict resolution involves either the introduction

of motion or, if a dimension is to be stored down the processor

memory, additional memory requirements and possibly loss of

parallelism. When a conflict is broken, a preference arc is re-

moved from the preference graph. Removal of a conformance or

identity arc implies the necessity of data motion. To enable the

Motion phase to insert this motion, Align records information

about the removed arcs. Removal of an independence arc results

in increased storage requirements per processor and possible re-

duction in parallelism, but no data motion is required.
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Align processing begins by building the preference graph for

each basic block. If the graph is in conflict, this will involve

conflict resolution. Sometimes resolving a conflict can be ac-

complished in several ways which may differ significantly in their

cost. Costs are associated with the arcs in the graph and Align

attempts to find the least cost resolution. Costs may include the

cost of motion, the cost of memory, and the cost of lost paral-

lelism.

When the block is made consistent, Align processing then pro-

ceeds up the control tree, a hierarchical representation of the con-

trol flow of the program with basic blocks at the leaves. At each

stage in a bottom-up control tree walk, the consistent graphs for

the subnodes of a control node are combined by taking their union

and then including arcs representing the relationships that cross

between the subnodes. When joining control nodes, new identity

preferences may be introduced. Conformance preferences and in-

dependence anti-preferences occur strictly within control nodes.

Conformance preferences arise only within statements and there-

fore no additional conformance preferences can be introduced by

joining the preference graphs of the control nodes on the way up

the control tree.

Since the subgraphs (graphs for the children of the control

node) are known to be conflict free, conflict resolution is per-

formed incrementally by processing only the new identity prefer-

ence arcs added between the subgraphs.

Since small local graphs are processed and then incrementally

combined, the processing time is significantly faster than that of

an equivalent global algorithm. Since it starts at the leaves of

the control tree and works outward, the algorithm gives priority

to preferences arising in inner loops.

The conflict in our example may be broken in a number of

ways. Two are indicated below:

1. Store the first dimension of the 13 array down the processors

so that one copy of Lll can align with all the appropriate

sections of B (figure a). This resolution breaks the indepen-

dence preference.

2. Store B across the processors and align Lll with B(1,1:N)

and each of U2, 03, U4, and US with the corresponding sec-

tion of 13 (figure 4). This removes the conformance prefer-

ence between Lll and the sections of B.

Option 1 uses more memory but incurs no loss of parallelism

and results in no motion for execution of lines 10-60. This option

results in

Total time for operations = 10

Total time for motion = 0

Total number of memory slices = 10

This may be the optimal result. On the other hand, the ad-

vantages of this option may well be offset by the necessity of

either motion to serialize B from its parallel definition or execut-

ing the assignment defining B once for each value of the subscript

in dimension 1. In any case, adoption of this strategy will be un-

enlightening for the rest of the paper. Option 2 will be assumed.

The effect of this decision will be that for each statement the

LHS and tim/3 section are now aligned. Motion will be required

to align these with Lll.

There are a number of possibilities for this motion. At a

minimum, Lll will be moved to align with each LHS at a cost of

1, 2, 3, and 4 NEWS moves, respectively. The total motion time

is ten times the unit cost of a NEWS move. At worst, each B

section will be moved to align with Lll, the operation performed

there, and the result moved back to align with the LHS. This

would require a total of 20 NEWS moves. This option results in

Total time for operations = 6

Total time for motion = 40 or 80

Total number of memory slices = 7

5 Inter

Once allocation of occurrences of named arrays has been deter-

mined, the compiler must deal with the proper allocation of array

temporaries arising from operations, that is, it must decide where

the operations will be performed. If Align was able to satisfy all

preferences, then all operands in a statement as well as the des-

tination of an assignment will have the proper alignment. In this

situation the optimal location for each operation will be obvious.

In many cases, however, some conflicts will have arisen, causing

Align to break preference arcs. If the operands are not aligned,

two or more possible locations for temporaries will exist.

The Inter phase, which chooses optimal locations for array

temporaries, uses a dynamic programming algorithm over an ex-

pression tree. The locations considered are those of the named

sections in the same statement. For each temporary, Inter consid-

ers each of these locations along with the cost of moving operands

to each location to align them for operations. Let M(L1, L2) de-

note the cost of moving an array from location L1 to location

L2. This cost is determined by the Connection Machine instruc-

tion(s) needed to effect the move. Then, for each operation

and each location L, the cost of performing x @ y in L, denoted

C(z • y), is the minimum cost, over all considered pairs of loca-

tions L1 and L_, of computing z in L1 and then moving it to L

added to the cost of computing y in L2 and moving it to L. That

is,

For an assignment statement x -- y where x is in location Lz,

the cost is given by

C(x = y) = m_n(C(y,L) + M(L,L_:))

The statement level cost equation drives the computation for

interior nodes of the right-hand side y.

Note that when an operand is moved (copied) from one lo-

cation to another, an additional copy of it is available for use in

subsequent statements. Inter keeps track of these multiple copies

in determining minimum costs. The algorithm for tracking copies

uses a mechanism similar to that of value numbering. A copy re-

mains valid until an assignment to an), of the elements in the

original array section is made. Tracking of multiple copies can

be done across control flow as well as within basic blocks.

To return to our example, let us assume that Align has de-

cided to allocate B across the processors and to align Lll with

13(1, I:N) in location L1 and each Ui with the appropriate section

of B in location Li. Then statement 20 requires no alignment.
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Theoperation will tal_e place in L1. For statement 30, the cost

is given by

m_n(C(B(2,I:N) * Llt(I:N),L)+M(L,L_))

The locations to consider for L are L1 (holding Llt) and L2

(holding U2 and B(2,t:N)). For L = L1, the cost is

C(B(2,t:N) * Ltt(t:N),L_)+M(Lt,L2)

To perform the multiplication in Lt would require moving

B(2,1:N) to L1, at a cost of one NEWS move. The total cost of

the assignment would then be 2 NEWS moves. For L = L2, the

cost of performing the operation in L is one NEWS move and

the cost of moving the result to L2 is 0. Thus the total cost is

one NEWS move. This option is clearly preferable.

As a result of the choice just made, there will now be two

copies of Lll, the original in L1 and a new one in L2. For state-

ment 40, there are now three possible locations: the two locations

holding Lit, and also L3, which holds U3 and B(3,1 :N). An anal-

ysis similar to the one performed above will determine that the

lowest cost will be obtained by performing the operation in L3.

In order to do this, Lll will be copied to L3. The cost of moving

Lll from its original location to L3 is 2 NEWS moves while the

cost of moving from the copy at L2 is 1 NEWS move. Thus this

copy will be used.

As the algorithm continues for the remaining statements, each

multiplication will be carried out in Li, with the most recent copy

of Lit at Li-1 being copied at a cost of 1 NEWS move.

At the end of the Align phase, the cost of our example de-

pended on an arbitrary choice of locations for the intermediate

operands. Inter assures the best choice and, in fact, does better

than this by tracking multiple copies.

Total time for operations = 6

Total time for motion = 16

Total number of memory slices = 7

Although it is not relevant to our example, we describe an

additional optimization performed by Inter. The cost of com-

putation for a complex arithmetic expression may sometimes be

reduced if reordering of operations is permitted. When such re-

ordering is permitted, a set of adjacent addition and subtraction

nodes can be viewed as an n-ary addition, with some operands

preceded by a unary minus. The same is true for a sequence of

multiplication and division operations. Inter will exploit this fact

by regrouping operands to minimize the cost of motion among

them. Operands in the same location are combined before join-

ing them with other operands. For example, if statement 30 in

our example had instead been

30 U2(I:N) = B(I,I:N) * B(2,1:N) * Lll

then LII would firstbe multiplied by B(I,I:N) in location Lt.

The result would then be copied to L2 for multiplication by

B(2,1:N) and assignment to U2.

6 Motion

After Align and Inter have determined where each occurrence

of an array or section will reside, the Motion phase determines

which references require motion, the position of the motion code

in the IR, the type of motion required and the amount of data

to be moved.

Motion is required:

• when Align had an identity or conformance preference that

it had to break (breaking an independence anti-preference

does not require motion)

• when Inter decides to move a named section

• when Inter decides to move an intermediate result

Motion will attempt to collect motions in a basic block to the

same place within the block so that they can be combined to

minimize cost. For example, two disjoint sets of values may be

more cheaply sent together than separately. Also one motion

may totally subsume another. If this is the case, only the larger

need be performed. An identity preference may exist because

data independence of the subscripts cannot be proved at compile

time. In such cases, Motion may insert a scalar test, which will

be executed at runtime and possibly save the cost of motion.

In our example, the motions of Lll is of the right form to be

converted to a spread but it is not moved far enough for conver-

sion to be cost effective. For this example Motion simply inserts

motion code after the definition of Lll, having no additional ef-

fect on the costs.

7 Mini-Vectorizer

Upon completion of the previous phases, a number of opportuni-

ties for vectorizer-like transformations that further improve per-

formance are uncovered and are handled by this phase. These

transformations are with respect to motion code and therefore

cannot be performed until allocation and motion have been de-

termined. The following transformations are processed by this

phase.

• Motion is associated with a particular loop in a loop nest.

If loops are interchanged the total cost of the motion may

be affected, sometimes significantly.

• If a loop itself is not vectorizable and a series of definitions

or uses of individual elements in an array remain, motion

between the front end and the Connection Machine is re-

quired. The direction of the motion depends on whether

the references are uses or definitions. The mini-vectorizer

may be able to transform the motion from elemental mo-

tion within a loop to array motion outside the loop even if

the operations are not vectorizable.

• If all arrays are stored in locations determined by their

shapes, the only factor determining when arrays can share

a slice of memory is their lifetimes. With the allocation

scheme based on preferences, even if two arrays are live at

the same time, they can be allocated to the same memory

address if they share no processors.

• The same operation performed on distinct sections of the

same array or on different arrays that do not share proces-

sors can sometimes be converted to a single operation on

all sections at once.

The last case above occurs in our example. The four sections

of B are being multiplied by different copies of LIt. In order to

convert this to a single multiply, we must prove that
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i Thefourlocations (set of processors) for the operations

are distinct. (They may, however, have array elements in

common such as Lll.)

• No two LHSs may contain the same array element.

• The same operation is used on each section.

We allocate a single memory address for all copies of Lll,

a single memory address for U2, U3, U4, and U5, and perform a

single multiplication. This transformation saves seven slices of

memory and three multiplications.

The algorithms described above have produced two possibil-

ities for this code sequence, with costs of

Total time for operations = 10

Total time for motion = 0

Total number of memory slices = 10

and

Total time for operations = 3

Total time for motion = 16

Total number of memory slices = 3

Recall that the numbers for the nal've allocation strategy were

Total time for operations = 6

Total time for motion = 720 or 400

Total number of memory slices = 7

On this fragment data layout optimization can either

• improve memory usage by a factor of 2 and execution speed

by a factor of 20 or more or

• increase memory requirements and time for arithmetic op-

erations while eliminating all data motion.

8 Generalized Common Subexpressions

Generalized common subexpression elimination is an optimiza-

tion performed by the Inter phase. It is not relevant to our

example and therefore was not presented above, however, it can

have a significant effect on the cost of motion for for a num-

ber of applications and on a variety of machines and is therefore

included here.

If a SIMD operation is performed on a section or sections

and subsequently the same operation is performed on different

sections of the same array(s), the two operations can be com-

bined. This is not exactly a common subexpression because the

sections may not be the same, but, except for the context (the set

of enabled processors), the operations are, in fact, identical. By

adjusting the context, the expressions can be combined. The op-

erations involved may be either local per processor computations

or they may involve motion operations. Finding common motion

operations is the more interesting (and cost effective) case.

Consider the following assignment:

A(2:N,2:N) = A(2:N,2:N) + A(I:N-1,2:N)

& ÷ A(2:N,I:N-1) + A(I:N-I,I:N-1)

Neglecting boundary conditions, the nature of this assignment

may be captured in the following schematic form:

A = A + west(A) + north(A) + northwest(A)

By rewriting northwest(A) as north(west(A)) and then noting

that north distributes over +, we get

A = (A + west(A)) + north(A + w_st(A))

Viewed this way the two occurrences of A ÷ west(A) can be

thought of as a kind of common subexpression, but our infor-

mal notation, because it glosses over the boundary conditions,

hides the fact that different sets of values are involved. If we

cast this back into correct Fortran (using a temporary variable

because Fortran 8x arbitrarily does not permit one to subscript

an expression), we find that they are not quite common subex-

pressions after all:

TEMP = A(2:N,2:N) + A(I:N-I,2:N)

A(2:N,2:N) = TEMP + TEMP(?,?) !wrong

A solution of this general form will work, but only if the common

subexpression is generalized to contain the union of the set of

values required by all uses. Thus TEMP will contain more values

than either of its uses requires:

TEMP = A(2:N,I:N) + A(I:N-I,I:N)

A(2:N,2:N) = TEMP(I:N,2:N) + TEMP(I:N,I:N-I)

This is worthwhile when the cost of computing the union of two

(or more) sets of values will be cheaper than computing each set

separately. This frequently occurs in codes where various shifted

sections of a single array are to be combined.

To notice opportunities for this optimization we need to re-

move attention from the specific elements being operated on and

focus instead on the array names of the operands and on their

offsets. Specifically, A _9 B and A' @ B' are general common

subexpressions if

• A and At are sections of some array, and B and Bt are

sections of some array

• the relationship between the corresponding subscripts of A

and A' is the same as the relationship between the corre-

sponding subscripts of B and B'

• flow analysis indicates that the arrays involved have not

been altered in the interim

If the operation is a motion operation as opposed to a local

computation, then B and B' may be viewed as the target set of

processors.

9 Related Work

There is a great deal of other literature on compiling Fortran

for parallel computers. Much of this work addresses techniques

for extracting parallelism from programs that may have been

written in a sequential style, for example [2,5,8]. We use some of

these parallelizlng techniques in our "mini-vectorizer" phase, but

regard them as complementary rather than central to our work.

Allen and Kennedy [2] further point out that appropriate pro-

gram transformations may not only improve opportunities for

parallelism but reduce synchronization overhead. This happens

not to apply to our particular practical problem, because the

SIMD nature of the Connection Machine architecture obviates

the need for explicit synchronization, but might well be relevant
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toanadaptationof our data layout techniques to an architecture

with asynchronous parallelism.

We pursue questions of data structure transformation rather

than program transformation. Our main goal is to determine

data layouts that minimize communications overhead in architec-

tures with non-shared memory, once opportunities for parallelism

have already been made explicit. The IVTRAN compiler [10,11]

addressed similar concerns of array layout; our work differs in

considering a richer space of layout possibilities and in handling

a larger set of communications primitives spanning a spectrum

of functionality/speed tradeoffs.

Crystal [4] also deals with questions of data layout. It ac-

cepts and transforms programs in a language based on recursion

equations, and targets systolic architectures. Crystal also em-

phasizes the detection of common subexpressions so that results

computed in one processor may be shared with other processors.

However, Crystal apparently finds only standard cse's that are

costly. The notion of generalized common subexpressions covers

more cases.

10 Summary and Conclusions

In an earlier paper [1] on the Connection Machine Fortran com-

piler, it was demonstrated that the Connection Machine is a

natural target for compilation of Fortran 8x array constructs.

However, careful attention to allocation of data across proces-

sors according to usage patterns is necessary in order to exploit

the full benefits of the Connection Machine architecture. Nai've

allocation strategies give rise to the need for large amounts of

expensive motion code in order to align data for parallel opera-

tions.

The compilation approach presented in this paper performs

analysis of usage patterns and determines the allocation strat-

egy for each occurrence of an array section. The potential per-

formance impact of this compilation technology is measured in

orders of magnitude rather than percentages. The problem as

well as the solution apply to any SIMD machine with local mem-

ory. Aspects of the analysis apply to a variety of architectures

where the presence of data in the right place at the right time

can significantly improve performance.
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Abstract

The problem of testing shared-memory, synchronous

parallel programs is addressed. We use a simple, Pascal-

based general purpose parallel language for SIMD

machine programming and investigate the testing

problem in this context. A scheme for classifying PRAM

programming errors is proposed. Several approaches of

designing testing coverage criteria for PRAM programs

are presented. Various testing coverage metrics are

defined and their properties are discussed. Also presented

is a complete parallel program testing methodology which

incorporates test generation tools for serial programs.

This methodology allows easy implementation of testing

procedures for parallel programs.

Keywords: Software Testing, Testing Coverage Criteria,

Parallel Programming, SIMD, Shared-Memory Machines,

PRAM, Programming Errors.

1. Introduction

With the increasing availability of parallel computers and

supercomputers, the timely development of methodologies

for building and validating parallel software is of crucial

importance. Clearly, the tremendous computing power

offered by parallel machines can be fully utilized only if

we can effectively implement and validate the software

for such machines. However, while much has been done

on programming systems and environments for parallel

computers and supercomputers, little research has focused

on validation techniques for parallel programs.

The software validation problem for parallel machines is

harder than and different from that for supercomputers.

For vectorized/ concurrentized programs executed on

supercomputers, validation is easier as we can generally

assume a correct vectorizing/optimizing compiler and

validate the vectorized code by validating the serial

source code or to choose already validated serial code to

begin vectorization with. Except for possible round-off

errors (due to the fact that vectorization and

concurrentization of serial code might lead to different

round-off error accumulation and therefore give different

answers), this simple approach should be sufficient given
that the serial software validation techniques are fairly

well established and have been used extensively.

For parallel programs which are executed on machines

containing a large number of processors, the validation

problem is more difficult due to the lack of obvious

approaches. In this paper we address the issues involved

in the validation of parallel programs for shared-memory

SIMD machines. Specifically, we investigate the problem

of testing programs for the most powerful model of SIMD

parallel computers, the shared-memory, Parallel Random

Access Machine or PRAM [2,15]. Our aim is to take an

approach genera_ enough to be applicable to a variety of

high-level programming methods for SIMD machines.

PRAM is chosen because it is a general model for

developing and analyzing synchronous parallel programs

[2,15].

We propose a scheme for classifying errors. Two aspects

of PRAM programming, processor activation (the

sequence of sets of processors activated-PAS) and

processor coordination (the sequence of

read/write/computation activities of active

processor-PCS) are formally described, and PRAM

programming errors are characterized in terms of them.

Thus, PRAM programming errors are classified as either

processor activation errors, processor coordination errors,

or computation errors. This error classification scheme

refines the widely used concept of computation and

domain errors for serial programs and provides a

framework for analyzing parallel programming errors.

We then propose a hierarchy of testing coverage criteria

for PRAM programs based on input-driven structures

like processor activation, processor coordination, read-

write sequence, etc. Coverage criteria based on

flowgraphs and dataflow information are also discussed.

The relative strengths of these criteria are analyzed.

Finally, we present a methodology for implementing

testing procedures for PRAM programs. This

incorporates a parallel to serial translator, a path finder,

and a serial program testing tool. The idea is to choose

an appropriate coverage criterion, interactively analyze

the test result and select the next path to be tested, and

use the translator and path finder to assist in test data

generation. As the translator and path finder translate

descriptions of paths within a parallel program to

CH2649-2/89/0000/0559501.00 © 1988 IEEE
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descriptionsofpathswithinanequivalentserialprogram,
serialprogramtest generationtoolsareutilizedto
generatetests.Usingthismethodology,parallelprogram
testingand debuggingtools can be implemented
economically.
Therestof thepaperisorganizedasfollows:Insection2
a generalpurposeparallelprogramminglanguagefor
PRAMprogramming(withminormodification,it can
also be used for interconnectionSIMD machine
programming)is presented.Section3 dealswith
classificationof PRAMprogrammingerrors.Insection4
wedefinefamiliesof testingcoveragecriteriaforparallel
programs.Insection5amethodologyfortestingparallel
programsisproposed.
2. A Language for SIMD Programming

A general purpose high-level language for SIMD machines

should provide means to express parallelism, and to

represent data organization and transfer. The rest of this

section discusses those additional features with brief

explanations.

2.1 Data Representation and Organization

In a PRAM, all processors (or PEs) are connected to the

global or shared memory. A master processor which

controls all PEs is called the control unit (CU). There

are three types of variables: PE or local variables, bound

locally to each PE; shared or global variables, bound to

the shared memory and accessed by all PEs; and CU

variables, bound to the CU. Parallel data objects which

reside in PEs' local memory or PE objects are identified

by the keyword pe preceding the data type in their

declarations, and variables in the memory of CU (CU

objects) are declared as usual. The keyword shared is

used in front of the global data in the shared memory.

2.2 Control of Parallelism

PEs are requested statically using a network declaration.

The language does not concern itself with the actual

number of processors available. A simple par <range>

do <statement> construct is used to represent the

activation of different subsets of PEs whose data are

referenced in the statement. Those activated PEs execute

the statement following do in parallel.

Conditional selection of PEs is specified by where

<predicate> do <statement> {elsewhere

<statement>}, where the predicate involves parallel

data in PEs. All the PEs where the predicate evaluates

to true execute the statement following do while the PEs

where it is false execute the statement following

elsewhere, with the statement in the do clause executed

before that in elsewhere. The elsewhere clause is

optional.

2.3 Data Transfer through Shared Memory

All data transfers among PEs and between PE and the

CU are achieved through writing into and subsequent

reading from the shared memory.

This completes the list of our extensions to Pascal. The

programming language has been used to code a

representative set of parallel algorithms from the

literature. Two example programs are given below (see
ref. [2] for algorithms).

Program 1

procedure OR (n : integer; ear y : boolean);

{Find the OR of n bits in O(1) time oil CRCW

PRAM with common write. }
const

max ---- 256;
network

pe [1..max] : PRAM;

t_r

i : integer;

x : pe boolean;

M : shared array [1..max] of boolean;

begin

{Initialization, read input n bits

into first n cells of shared memory}

{1} par i :_ 1 to n do

begin

{2} x[i] := Mill;

{3} where x[i] --_ 1

{4} doM[l] := 1
end;

{5} y := MI1 l

end;

Program 2

procedure MAX (n,m : integer; ear maxi: integer);

{Find the maximum of n integers in O(log n) time

using EREW PRAM. Assume n : 2m. }
eonst

p ---_256;

network

pe [1..p] : PRAM;

var

i, incr, step : integer;

temp, big : pe integer;

M : shared array [1..2*p] of integer;

begin

{Initialization, read n inputs into first n cells of

shared memory, and set all other cells to -co }

{1} par i :--_ 1 ton do

{2} big[i] :-_ M[i];

{3} incr :--- 1;
{4} for step := 1 to m do

begin

{5} par i:= 1 to n do
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begin

{6} temp[i] := M[i+incr];

{7} big[i]:= max(big{i],temp[i])
end;

{8} incr :---- 2*incr;

(9} par i:--_ 1 to n do

{10} M[i] := big[i]

end;

{11} maxi := Mill

end;

Note that there are three models of PRAM--Exclusive

Read Exclusive Write (EREW), Concurrent Read

Exclusive Write (CREW), and Concurrent Read

Concurrent Write (CRCW)-according to whether

concurrent reads and writes are allowed; and there are

three submodels of CRCW PRAM, depending on how

write conflicts are resolved [2,15]. Programs 1 and 2

above work on different models. We will, however, not

be concerned with the difference between the models.

3. Errors in PRAM Programs

The widely used classification of computation and

domain errors [7] for serial programs is not directly

applicable to parallel programs. In the following

sections, we identify two classes of errors characteristic of

parallel programming for PRAM, namely, incorrect

selection and activation of PEa and erroneous reading or

writing sequences.

Suppose * denotes any aspect of a parallel program P.

We use SPEC(P,*(d)) to denote the correct * of P on

input d according to the specification of P.

(Equivalently, SPEC(P,*(d)) is the * of the hypothetical,

correct version 15 of P on input d.) Further, let

IMP(P,*(d)) denote the implemented or actual * of P on

d, obtainable through an analysis and/or execution of P.

Intuitively, P contains an error whenever SPEC(P,*(d))

differs from IMP(P,*(d)) for any instance of * on some

input d. (When P is understood, we use SPEC(*(d)) for

SPEC(P,*(d)) and IMP(*(d)) for IMP(P,*(d)).)

3.1 Processor Activation Error

Let P be a parallel program with input domain D.

Suppose that P takes t steps to process d • D, using q

logical PEa. (Note that q and t are usually functions of

the input size. Program 2, for example, takes q = n PEs

and t = 4m + 3 ---- O(log2n ) steps to find the maximum

of n numbers, assuming n _ 2 m and ignoring the

initialization step.) An input d causes P to activate a

fixed sequence of PEs. More specifically, let PAS(d) _-_

<Al, A 2, ... , At>, a t-tuple, be the "Processor

Activation Sequence" of P on input d, where each A i (1

_< i _< t) is a subset of (c,1,2 ..... q} and contains the

indices of active PEs at step i during P's execution on d

(assume that the CU is indexed with c, and the q PEs are

numbered 1,2 ..... q). We call each of this subset an

"activation snapshot". Further, let PA(d) = {A [A is a

component of PAS(d)} be the set of all activation

snapshots of P on input d.

One prominent class of errors in SIMD programming is

caused by processors being incorrectly

activated/deactivated, i.e., a wrong set of PEa being

active at some step during the execution of the program.

The discrepancy between SPEC(PAS) and IMP(PAS)

characterizes this type of errors. That is, a program is

said to contain a "processor activation error" whenever

SPEC(PAS) @ IMP(PAS), i.e., SPEC (PAS(d)) _ IMP

(PAS(d)) for some d • D.

As an example of a processor activation error, consider

statement {3} of program 1 erroneously written as

"where x[i] <> 1", this causes the incorrect subset of

PEa to be activated at statement {4}, and thus is a

processor activation error.

3.2 Processor Coordination Error

Another notable feature of FRAM programming is

processor coordination. Since the processors of a PRAM

communicate through a shared memory, readings and

writings are coordinated to achieve interprocessor

communication; in addition, there are algorithms which

specifically exploit the concurrent write features of

PRAM. Let P, D, t, q be the same as above. Define

PCS(d), the "Processor Coordination Sequence" of P on

input d, as <Cl, C2, ... ,Ct> , where each Ci, called a

"PC snapshot", is as follows: (1) If the ith step in the

computation is a reading step, i.e., active PEa perform

reading from the shared memory, then C i ----- [sl, 8 2.....

sr] such that 8i C_A i for l__'_r and u_.l 8i ---- Ai,

indicating that r groups of PEa are reading from r

disjoint shared memory locations in parallel. PEa in the

same group are reading simultaneously from the same

location in shared memory. (2) If the ith step in the

computation is a writing step, i.e., active PEa perform

writing into the shared memory, then C i ---- {81, 82 .....

St} such that 8i C_A, and Uf_18 j _ Ai, indicating that

r groups of PEa are writing into r disjoint shared

memory locations in parallel. PEa in the same group

write simultaneously into the same shared memory

location. (3) If the ith step performs an operation other

than read or write, then C,. ----- ]al, a 2..... a,[such that

ai E Ai, i.e., each aI is the index of a single PE, and

{a 1, a 2..... at) = A i, i.e., C i and A i contain the same

subset of PEa. In short, within a PCS(d), [-,- ..... -]

denotes a read step and {-,- ..... -} denotes a write step,

with PEa performing simultaneous reads or writes

grouped together, and [-,-, .... -[ denotes a computation

step. Also, let PC(d) ---- {C [ C is a component of

PCS(d)} be the set of all PC snapshots for input d.

Difference between SPEC(PCS), the correct processor

coordination sequence and IMP(PCS), the actual

coordination sequence indicates errors. Specifically, we
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sayP containsan "processorcoordinationerror" if
SPEC(PAS)= IMP(PAS) but SPEC(PCS) 4, IMP(PCS),

i.e., SPEC(PAS(d)) _-- IMP(PAS(d)) for all d E O and

SPEC(PCS(d)) 4" IMP(PCS(d)) for some d E O. Thus,

processor coordination errors are attributed solely to

erroneous PE coordination or erroneous reads or writes,

since the PE activation sequence is correct during P's

computation on d.

As an example, suppose statement {4} of program 1 were

erroneously written as "do M[i] := 1", then the active

PEs would write to different locations in the shared

memory while simultaneous writes are intended; this is a
processor coordination error.

3.3 Computation Error

The dichotomy of processor activation error and

processor coordination error for PRAM programs can be

interpreted as a refinement of the concept of domain

errors for serial programs [7]. The other type of errors of

serial programming, i.e., computation errors, can surely

occur in parallel programs too. We say P contains a

"computation error" if SPEC(PCS(d)) = IMP(PCS(d))

for all inputs d e D but P(d) @ 15(d) for some d • D,

where P(d) and 15(d) are, respectively, the outputs of P

and [5 on input d. Computation errors are, therefore,

caused solely by incorrect assignment statements,

incorrect arithmetic operations, etc., when P is given

some input d, because both the sequence of PE

activations and sequence of processor coordinations are

correct during the computation of P on d. (Note that

SPEC(PCS) ---- IMP(PCS)implies SPEC(PAS) ----

IMP(PAS).)

As an example of a computation error, suppose statement

{4} of program 1 were mistakenly written as "do M[1] :=

0", then error is caused by writing an incorrect value into

M[1] and thus a computation error.

One desirable property of our classification is that it

makes the three categories of errors mutually exclusive.

Also observe that, according to this classification,

programs that are functionally correct cannot contain

computation errors; however, this does not necessarily

imply that such programs are free of processor activation

errors or processor coordination errors. Consider this

example of a performance bug: Suppose statement {4} of

program 2 were mistakenly written as "]'or step :_ 1 to n

do", the program will still correctly output the maximum

value for every input, and so the error will not be

detected by merely checking the output values.

Nevertheless, the program contains an obvious error, and

in our classification, a processor activation error.

4. Parallel Program Testing Criteria

An essential component of a program testing

methodology is a test coverage or adequacy criterion. An

ideal criterion should have the following properties: (1)

applicable, in the sense that coverage of the criterion can

be effectively monitored; further, a test set satisfying the

criterion can be effectively constructed. (2) reliable, in

that a test set satisfying the criterion has high

probability of detecting errors. (3) cost effective, in that

the cost of generating and running a test set satisfying

the criterion is acceptable; this implies that the criterion

requires only a reasonable number of test cases.

In this section, we present several approaches of defining

test coverage criteria for parallel programs and discuss

their properties.

4.1 Flowgraph Based Criteria

Three commonly used measures for serial program testing

are statement, branch, and path coverage. To apply

these as well as some other structural testing coverage

criteria to parallel programs, a flowgraph representation

of parallel programs is needed. For this purpose, we can

use any graphical representation for parallel programs

based on a reasonable extension of serial program

flowgraphs. We say statement i is "executed" by PE j, if

statement i involves a variable of PE j. For example, if

the input to program 1 is "00101", then statement {4} of

program 1 is executed by PE 3 and 5 simultaneously.

To apply the statement, branch, and path testing criteria

to parallel programs, we consider a parallel statement

"covered" if and only if it has been executed by at lea-st

one PE. Thus, the test data of one input "1" can

minimally satisfy statement coverage testing of program

l; however, the input "0" does not exercise statement {4}

and therefore does not satisfy statement coverage. The

test set consisting of two input data, "0" and "1",

satisfy branch coverage of program l, etc. The

advantage of these simple criteria is their consistency

with the corresponding seriad testing criteria; that is, like

any structural testing criterion for serial programs, the

"structure" of a parallel program can be analyzed from

its control flowgraph alone. Thus, many testing tools

developed for serial software can be utilized for parallel

software with minor modification.

4.2 Input Baaed Coverage Criteria

With the presence of new programming language

constructs and a variable number of active PEs in

parallel programs, the criteria defined in section 4.1 for

parallel programs are apparently not adequate. As the

execution of a PRAM program entails various PE

activation/deactivation and interprocessor

communication through shared memory, testing coverage

criteria which explicitly require test cases to exercise such

events would probably be more effective.

4.2.1 Path Coverage Testing

Let P be a parallel program with s executable elementary

statements, numbered 1 through s. (An elementary

statement is one that can be executed in one step.)

Define Path(d), the path of P exercised by input d, to be
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(ll,Al)(12,A2)...(lt,At),where1__Ii _s (1 _< i _< t), and

Ii represents the ID of the statement being executed at

the ith step; A i is the ith coordinate of PAS(d),

denoting the set of active PEs at the/th snapshot during

the computation of P on d. This definition of path of

parallel programs is compatible with that of serial

programs; however, as it represents an actual path

traversed on a specific input, all infeasible paths are

excluded.

Once paths are defined for parallel programs, the

corresponding path testing criterion can be formulated as

follows: Select enough test cases to exercise all paths.

This criterion is not practical as most programs contain

an infinity of paths.

4.2.2 Criteria Based on PAS and PCS

Based on the concept of processor activation and

processor coordination, a family of testing coverage

criteria can be defined. These criteria, along with the

path coverage criterion of the previous section, are based

on input-drlven structures of the program and are not

based solely on the program or its specification.

(1) PCS (Processor Coordination Sequence) Testing:

Select test set T C D such that (PCS(d) [ d E D} C

{PCS(d) I d E T}.

PCS testing requires that every possible processor

coordination sequence during P's execution over all

input points be exercised at least once.

(2) PAS (Processor Activation Sequence) Testing: Select

T C_C_D such that {PAS(d) I d E D} C_ {PAS(d) I d E

T}.
PAS testing requires that every possible processor

activation sequence during the computation of P

over its entire input domain be driven at least once.

(3) PC (Processor Coordination) Testing: Select test set

T C_ D such that {PC(d) [d E D} _C {PC(d) I d E T}.

PC coverage testing requires that every possible

processor coordination during the execution of P

over all input points be invoked at least once.

(4) PA (Processor Activation) Testing: Select T c D

such that (PA(d) [d E D} C_ {PA(d) [d E T}.

PA testing requires that every possible processor

activation snapshot during the computation of P

over its entire input domain be tested at least once.

(5) P/S (Processor/Statement) Testing: Select T _ D

such that {E(d) I d E D} _C {E(d) I d E T}, where

E(d) the executability matrix, is a q x s matrix such

that

E(d)[i,j] = [ 1, ifX(d)lid/ _> 1
t 0, ifX(d) [],j] = 0

where X(d), the profile matrix, is a q x s matrix such

that X(d)[i,j] -----number of executions of statement j

by processor i, when P is run on input d. P/S

testing requires a test set T containing enough test

data such that if it is possible for processor i to

execute statement j when P is given some input d E

D, then there is a d E T which drives processor i to

execute statement j.

For two testing coverage criteria C1 and C2, C1 (strictly)

subsumes C2 or C1 > C2, if every test set T that

satisfies C1 also satisfies C2 but not vice versa. C1 and

C2 are incomparable or C1 <> C2, if neither one

subsumes the other [16]. The following lattice diagram

shows the relative strengths of the path testing criterion

and criteria (1)- (5) above.

P at h -----_P CS -------_PAS --------_PA

4.2.3 Criteria Based on Read and Write

Reading from and writing into the shared memory are

conspicuous features of PRAM programs. So an

alternative approach to define test coverage criteria based

on input-driven structures is to concentrate on the

read/write events of PRAM programs. Let RWS(d) -----

<X1, X_, ... , Xt,?, where each Xi, called a
"Read/Write snapshot , is as follows: If the ith step in

the computation is a read or write step, then X i = C i -----

the ith coordinate of PCS(d); otherwise, Xi ----- O. That

is, RWS(d) concentrates on the read/write portions of

PCS(d). Let RW(d) ---- {X [ X is a component of

RWS(d)} be the set of all R/W snapshots. Similarly,

RS(d) and WS(d) consist of, respectively, the read and

the write portions of PCS(d); R(d) and W(d) are

respectively the set of all reads and the set of all writes.

Corresponding to the definitions above, a hierarchy of six

test coverage criteria can be formulated. Their relative

strengths are indicated in the diagram below. Compared

with the criteria in section 4.2.2, the relationship are PCS

> RWS and PC > RW, most other pairs of metrics are

incomparable.

jRS _

RWS -------->RW-------_R

_ WS-----_W

4.3 Data Flow Based Testing

Useful data flow testing metrics will likely be necessary

components of complete testing methods for parallel

programs, especially because the correctness of parallel

programs depends on correct data flow interactions even

more critically than serial programs do. In this section,
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wepresentthreesimplifyingmeasuresto applythedata
flowbased,serialprogramtestingmetricsto parallel
programs.
4.3.1 Criteria Based on PE Variables

In this approach, we consider each PE variable in a

parallel program as a single variable rather than a

collection of variables bound to different PEs; thus, PE

variables can be treated in the same way as arrays of

serial programs. In program 2, for example, definition of

PE variable "big" at statement {7} is considered live at

{10}, definition of variable "temp" at {6} is live at {7},

etc. With this unification of PE variables, iiveness of

each (CU and PE) variable definition at each statement

can be determined statically. Therefore, algorithms that

were designed for computing this for serial programs (see

[14]) can be used to obtain the same information for

parallel programs; and anomaly detection tools based on

data flow information for serial programs can be utilized

for parallel programs with minimal modification.

With the concept of liveness of definitions extended to

parallel programs, concepts such as "data environment",

"data context", and "ordered elementary data context"

for serial programs [13] can be similarly extended to

parallel programs. With theses extended definitions, data

flow based static testing coverage metrics for serial

programs can be applied directly to parallel programs.

4.3.2 Criteria Based on CU Variables

In this approach, we concentrate on the data flow

activities of CU variables and ignore that of PE

variables. In most parallel programs, CU variables are

used to control the execution of loops which contain

parallel statements or to store results of computation.

Exercising a particular program path to test a particular

data flow activity of CU variables inevitably exercises

and tests other constructs.

For example, a for loop index (CU) variable is defined

(initialized) before the loop is first entered, it is used

(incremented) at the end of the loop, and used (in a

predicate) to decide if traversa] is to be continued at the

beginning of the loop. Therefore, a metric such as

"requiring that the definition-use chain of length 2 of

every for loop index variable be tested at least once"

necessarily forces the body of the for loop to be tested at

least once.

4.3.3 Combined Criteria

Static program analysis methods based on combining

data flow and control flow information have been

proposed recently in ref. [9]. The approach is to use a

program dependence graph to model the data and control

dependences between program instructions. Taking the

simplifying measures of unifying PE variables or

concentrating on CU variables, we can extend the concept

of program dependence graph and apply it to parallel

programs. Thus, algorithms and tools based on program

dependence graphs and developed for serial programs [I0]

can be used for parallel programs too. Testing coverage

metrics based on combination of data dependence and

control dependence, e.g., requiring each control

dependence and each data dependence to be tested at

least once, can also be defined.

4.3.4 Discussion

There are obvious advantages of using static data flow

metrics for measuring testing thoroughness for parallel

programs: the_e metrics are essentially the same a_ that

for serial programs, and therefore data flow analysis tools

for serial programs can be readily used. The major

disadvantage, however, is that these strategies are rather

weak. For examples, it can be shown that the metric of

testing all live definitions from the data environment of

every instruction or block of [13] is incomparable with

the branch coverage criterion; the example CU variable

based mettle in section 4.3.2 is strictly subsumed even by

branch coverage. For many parallel software

applications requiring high level of reliability such as in

real time systems, such structural metrics are not

adequate.

5. Practical Testing Strategies

In this section, we present a parallel program testing

methodology which incorporates the coverage metrics

defined in section 4. A preprocessor consisting of a

translator which translates parallel programs into serial

programs and a path finder which, for a path of a

parallel program, finds the corresponding path in the

serial program is the major component of this

methodology. The testing procedures also incorporate a

serial program test data generation mechanism.

5.1 Flowgraph Based Coverage Testing

To perform a statement (or branch) testing of a parallel

program P, a set of paths S --_ {Pl, P2 .... , p,} is first

selected to cover all statements (or branches) of P. P and

S are then input to the translator and path finder. The

outputs are an equivalent serial program 15, and the

corresponding paths S ---- {Pl, P2 ..... Pk}. Once 15 and

are obtained, a preferred serial program test generation
method can be used to derive the desired test set T

{d 1, d 2..... d_}. Then, the test data can be executed

with P. With proper instrumentation (for example,

inserting counters at each decision to decision or d-d path

to monitor branch coverage [8]), the above procedure can

also be carried out incrementally.

To carry out path testing, it is necessary to first apply an

equivalence relation to partition the infinite set of paths

into finite equivalence classes. (For example, using

Howden's boundary-interior method [6] extended to

parallel programs.) Then the preprocessor can be used to

guide test data generation until a representative path

from each class has been covered by a test case.
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Themethoddescribedabovecanalsobeusedto conduct
testingwithastaticdataflowcoveragecriterionlikethe
onesdescribedinsection4.3.

5.2 Input Based Coverage Testing

The input based structure coverage criteria of section 4.2

are not directly applicable as they may require an infinity

of test cases. To perform a testing to cover a particular

input based structure Q (e.g., Q = PCS, then Q coverage

testing is PCS testing), it is therefore necessary to find an

appropriate equivalence relation among instances of Q to

reduce the corresponding infinite criterion to a finitary,

satisfiable one. (Formal methods of defining equivalence

deserves further investigation, even though it seems

unlikely that a generic and meaningful equivalence

relation among parallel program paths can be found, due

to the large variety of data structures, control structures,

and interprocessor communication patterns that can be

present. To reduce the domain of Q into finite classes, a

useful equivalence relation will have to be defined from

the specification and the program by the tester.)

After an appropriate equivalence relation is found and

applied to an infinite input based criterion Q, it becomes

finitary and thus satisfiable, because a test data which

covers an instance of Q covers all equivalent instances.

Let's use Qc to denote this practical Q coverage criterion.

The testing of a parallel program P can then proceed

according to the following procedure:

(1) P is instrumented to monitor the coverage of Qc-

An equivalent serial program 15 is then produced by

the translator.

(2) Choose an input d from P's input domain, say

randomly.

(3) Execute d with P (or 15). The result is analyzed to

determine the path and the instance of Q which

were exercised by d.

(4) Determine the next path p of P to be traversed.

This path, of course, is to exercise an instance of Q

which has not been covered by previous test data.

(5) Input p and 15 to the path finder to produce the

corresponding serial path/_ of 15.

(6) A pre-selected serial software test data generator is

used with 15 and/) to generate the next test case d.

(7) Repeat steps (3) - (6) until the criterion Qc is

satisfied.

The method described above for input based coverage

testing incorporates the essential aspect of Kundu's

method of generating tests for serial programs [ll],

namely, reversing the roles of path selection and test data

generation.

5.3 Input Space Partitioning

Simple heuristics can often be used to partition the input

space into "equivalence classes" for test data selection.

In program 2, say, we can define equivalence in terms of

the degree of parallelism exhibited during execution. As

an example, the input "n=l, m=0" causes the for loop

beginning at statement {4} to be skipped altogether and

thus no parallelism is exhibited. The input "n=2,

m=l" causes the for loop to be traversed exactly once

and hence the par statement at {5} executed with two

PEs exactly once, thus a minimal parallelism is exhibited.

The input "n=4, m=2" causes the for loop to be

traversed twice and hence the par statement at {5} will

be executed twice by four PEs, thus a "nonminimal"

parallelism is exhibited. All inputs with n _> 4 can be

classified as equivalent in terms of exercising nonminimal

parallelism, and thus the three described test data would

suffice. Usually, however, more thorough testing is

needed, and the partition method can be refined to a

desired level to include more test cases.

Consider program 1 for another example. The algorithm

has O(1) time complexity and therefore the method of

partitioning based on exhibited parallelism is not

applicable. Then we may consider the input of n bits as

representing an integer, and define two inputs to be

equivalent if they are congruent modulo a certain

number, e.g., consider inputs x and y to be equiva]ent iff

x ---- y mod 20 if 20 test cases are planned. This is one

form of random testing.

5.4 Use of Serial Programs

Much research effort has gone into building compilers

which detect parallelism in serial programs and generate

parallel codes for the target parallel machine.

Conversely, a parallel-to-serial translator can be

implemented to make some of the tools developed for

serial programs useful in the parallel domain.

For synchronous parallel programs, the same input

should always produce the same output, therefore they

can be translated, one-to-one, into serial programs. As

the serial program gives exactly the same result for every

input point as the corresponding parallel version, one is

functionally correct if and only if the other is. Thus the

parallel program can be validated by testing either the

original or the translated serial program. For example, a

"parallel program mutation testing system" may be

implemented by simply combining a translator and a

serial program mutation system [3]. This is a

straightforward and readily adoptable testing

methodology.

This method, however, has several drawbacks. Firstly, it

does not consider the structural aspects unique to parallel

programs, hence could ignore some of the likely sources of

errors. Secondly, as explained in section 3, programs

which contain errors might still perform the correct

input-output transformation. As it is hard to obtain

timing information about the parallel program by

simulation, this method would fail to detect most of the
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errorsthatarenotevidencedbyincorrectoutputvalues.

5.5 Preproee_or: TranBlator & Path Finder

We have implemented the preprocessor for the execution

and testing of parallel programs written in the Pascal-

based parallel language. The preprocessor consists of two

components--the translator and the path finder. The

translator takes parallel programs as its input, and

produces corresponding serial programs as well as data

files for the path finder. The path finder takes a set of

path specifications for a parallel program as its input and

produces the corresponding paths in the translated serial

program. Implementation details of the preprocessor is

discussed in [4].

6. Conclusion

We have presented a scheme for classifying PRAM

programming errors and proposed various approaches of

deriving testing coverage metrics for shared-memory

parallel programs.

The approaches based on extending the serial methods

can be used to define testing metrics which are easily

understood and applicable. On the other hand, they tend

to define weak metrics due to the fact that they overlook

the features unique to parallel programming.

The criteria based on input-driven structures, combined

with the proposed translator/path finder approach to

testing provide a viable methodology. The advantages of

this methodology are [1] practical-the preprocessor,

consisting of the translator and path finder, is easy to

implement and runs in linear time, [2] economical--serial

program test generation tools, which

programmers/testers are already familiar with, can be

"plugged in", thus our software investment in

testing/debugging tools for serial programs can be

utilized in a parallel environment, and [3] immediately

usable--it can be readily used while various programming

methodologies and new techniques for parallel program

validation are developed.

Testing has been the most widely used method for

validating serial software and there is a growing

attention to the theory and techniques of testing [5]. In

view of the increasing applications of parallel computing

and the lack of effective methodologies for validating

parallel software, the presented approaches and methods

provide useful directions for further research and

development.
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Abstract

Massively parallel bit level processor array architec-
tures are becoming increasingly popular due to their sui-
tability for VLSI implementation as well as because they
can take advantage of parallelism at all levels of granular-
ity (down to hit-level). However, the programming of
such machines requires from the user the ability to under-
stand and exploit low level parallelism and considerable
familiarity with the low level details of the processor
array architecture. This paper discusses a possible solu-
tion to this problem via the usage of a software package
capable of taking a program expressed in a conventional
sequential language and mapping it into code executable
by the processor array. It describes a first attempt at
implementing such a tool and discusses in detail all of its
components and the techniques used. Based on past
experience with this experimental tool, aspects of a
planned new version of the same tool are also discussed.

I. Introduction

Existing and proposed solutions to the problem of

using bit-level processor arrays to execute conventional

programs for sequential machines are described and dis-
cussed in this paper. An existing software package, RAB

(Reconflguration Algorithm for Bit-level arrays) [10] [12],
developed at Purdue, is described in detail as well as

experience with its usage. A new planned version of RAB

is briefly described with emphasis on the differences with

respect to RAB and how it will incorporate lessons
learned with RAB.

Processor arrays with simple 1-bit processing ele-

ments have become a pervasive form of massively parallel

processing architecture. A non-exhaustive list of commer-
cially available machines of this type includes DAP[1],

MPP[2], the Connection Machine [3], and GAPP[4]. Com-
monly perceived advantages of these architectures are,
among others, their suitability for large and dense VLSI
implementations, the ability to support parallelism at all

levels of granularity (down to the bit level) and the fact
that they match many algorithms and data structures of

interest (e.g., image processing and arrays of data). How-

ever, as for other novel parallel processing architectures,

the programming of processor arrays often requires con-

tThis work was supported in part by the National Science
Foundation under Grant DMC-8419745 and in part by the
Innovative Science and Technology Office of the Strategic
Defense Initiative Organization and was administered through
the Office of Naval Research under contract no. 00014-85-k-
0588.
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siderable thought and skill if highly efficient codes are

sought. This is particularly true when complex tasks are

to be implemented using concurrent low-level operations,
as in the case of the bit-level processor arrays mentioned

above. Several approaches to this problem have been
used which include:

• subroutine libraries accessed through a standard

high-level language which have been optimized for a
particular architecture, as in the DAP processor [1];

• parallel languages, which are often architecture or

machine dependent [5];
• microcoded routines to handle standard word level

operations in a general way, without using bit level

optimizations.

These approaches lack portability among different
machines and sometimes ignore optimizations possible at

the bit level. It is often difficult to prove the optimality of

a given mapping using these methods. An alternative

approach (to that of putting the programming burden
solely on the programmer) is to use software capable of

transforming a program expressed in a familiar sequential

programming language into processor array code. Such

large program is akin to an optimizing compiler in the
sense that it must detect and exploit parallelism but, in

addition, it must be able to reexpress high-level computa-
tions as combinations of low-level bitwise operators and

data movements. In the past, related research efforts have

been pursued in this direction [6] and several methodolo-

gies, which were intended for word level processor arrays,
are potentially applicable to bit level arrays. This paper

reports on the techniques used in the major components

of RAB, a large program developed for the purpose men-
tioned above. It also discusses aspects of a second version

of RAB, yet to be implemented, and the improved tech-

niques and approaches to be used in it.

A block diagram relating the main components of

RAB is shown in Figure 1 and is briefly explained next.

The input to RAB consists of C programs which describe

word level algorithms. These algorithms correspond to

nested for loops with static behavior. RAB first expands

the computations in the input program into bit level

operations. This expansion phase uses a library of macro

expansions to replace each word level computation with a

bit level implementation of the arithmetic operations.

This phase is followed by data dependence and broadcast

analysis using a technique called Dependence Arc Set

Analysis[7]. The result of this analysis is a formal descrip-
tion of the internal structure of the bit level algorithm.

This structural information is used to generate an algo-
rithm transformation which yields a restructured algo-
rithm suitable for mapping onto a bit level processor

CH2649-2/89/0000/0567501 .IX) © 1988 IEEE



array. The mapping may be a full design of an algorithm-
ically defined array or full (partial) mapping for a fixed
(variable) size array corresponding to the fourth level of
modules in Figure 1. The last two modules, code genera-
tion and code optimization, comprise the phase in which
code is generated for a particular target architecture and
optimized using a standard compaction technique.

The separate phases of RAB, shown in Figure 1, are
now described in more detail.

H. RAB - Reeonflguration Algorithm for Bit-Level
arrays

H.1 Program Specification

RAB accepts a subset of the C language as input.
This subset consists of nested for loops with static

behavior, which are likely candidates for mapping into
processor arrays given their repetitive and regular struc-
ture. Pointers and function calls cannot be used, and the
nested loops must meet the following requirements:

the lower and upper bounds of the outermost loop
must be integer constants.

the bounds of the nested loops must be linear
expressions of the outer loop variables or integer
constants.

the step of each loop must be one.

no two loops can have the same nesting level.

- arrays of any dimensions are allowed; the range of
each dimension must be an integer constant.

the boolean expression of a conditional statement
must be a linear expression of the outer loop vari-
ables.

all subscript expressions used when referencing ele-
ments of arrays must be linear expressions of the
outer loop variables.

Algorithms which satisfy these requirements include

matrix-matrix and matrix-vector multiplication, FIR and
HR filtering, convolution, and many others used in digital
signal and image processing. Many algorithms which fall
outside this class can be transformed to satisfy the above
constraints using such techniques as loop fusion and nor-
malization [8].

The following is an example of a program which
satisfies the requirements listed above:

for(j1 = 1; Jl <= N1; h++){
for(j 2 = 1; J2 <---- N2;J_++){

Y[Jl] = Y[Jl] + w[j2] * x[jl+J2--1 )
}

}
This program computes a sequence of outputs Y[Jl] as the
convolution of a sequence of inputs x[jl+j2-1 ] with
weights w[j_].

II.2 Bit Level Expansions

This first stage of RAB implements a source-to-
source mapping [9] of the word level 'C' code into an

equivalent bit level form. To some extent it represents a

devolution [9] in that a higher level language feature is
replaced by its meaning in terms of lower level language

features. Several expansions for a given arithmetic
expression are possible, but only a small library of expan-
sions is currently implemented. These expansions exist for

addition, multiplication, division, and subtraction, and all
possible pairwise combinations of these operations. An
example of a bit-level expansion for the convolution algo-
rithm is given below.

for01 = 1;jl <-_- N1;jI++){
for(j2 = 1; J2 <: N2; J2++){
for(is = 1; js <: N_; h++){
for(j t = 1; J4 <= N4; J4++)(
cy[Jt][j2][h]Li_] = (w{j2][jz] _ sum[j_]Li3+j,-1]) [(cyLi_][j2]Lh][j,-x]
(wLi2][Js] IsumLh][j3+j,-1]))
,um[j]l[js+j,-1] = ( w[j2][js] ^ sum[jl][js+j4-1] ^ ¢Y{j]][J2][Js][J,-l] &
xij_+j2-1][h])l (,u,,,Lhl[J_+h-l]_ "xLi1÷i2-1]L],])
}
}

)

In the expansion shown above, the two statements in
the body of the loop compute the carry and sum bits of
the weighted sum implemented by the convolution pro-
gram. All variables have been expanded/renamed so that
each denotes a bit of the corresponding original word
level variable. The two additional loops result from the
need for operating on different bits of variables being
multiplied in the original program.

It is possible to expand a word level 'C' program into
two forms: one form can actually be directly compiled
into executable code allowing the user to see the bit level
expanded version of the program running; the other form

(an example of which is shown above) is directly input to
the analysis stage, where dependence analysis is per-

formed on the expanded code.

One of the main advantages of the expansion process

is that it exposes lower level operations to the view of the
optimizer, allowing for more improvement to the gen-

erated code. This is somewhat analogous to the optimiza-

tions that are possible to an intermediate form in a typi-
cal optimizing compiler.

H.8 Program Analysis (Dependence Analysis)

The techniques used in the mapping phase of RAB
require specific structural information about the expanded
program. They assume that the algorithm is characterized

by its index set jn (i.e., the set of n-dimensional vectors
whose entries correspond to the value of each loop index

for the iterations executed by the nested loop program)
and a matrix of dependencies D where every column
corresponds to the vector difference between the indices of
dependent computations. In other words, if a computa-

tion with index jEJ n (or, equivalently, co_mj_utation at j)

depends on a computation at jlEJn then j--y is a column_
of D. A computation_at j depends_on a computation at jl
if data generated at jl is used at j (this is called a 'true'
data dependence or_flow dependence) or the same data is

generated at j and jl (called output dependence) or data
used at j is modified at jl (called anti-dependence). The
mapping phase of RAB is concerned only with true data
dependencies but the analysis phase can detect all three
types of dependencies. Currently, RAB requires the user
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to removeall dependencies other than flow dependencies
from the expanded program or from the output of the

analysis phase. This could also be done automatically
through variable renaming and expansion[8] but is not
currently implemented in RAB. The analysis phase is

based on Kuhn's Dependency Arc Set Analysis (DASA)
technique [7] and is discussed in more detail next.

DASA is used to detect dependencies between state-

ments referencing arrays. In order for a dependence to

exist between two statements referencing arrays, the fol-
lowing conditions must be satisfied:

1. the array references in the two statements must
have the same name.

2. given that condition 1 is satisfied, the functions

which specify the subscripts of the array references

must take the same value for some index value(s).

3. the index value(s) for which condition 2 is
satisfied must belong to the iteration space.

The analysis module is invoked when the parser detects

that condition 1 holds and DASA is used to verify condi-
tions 2 and 3.

DASA utilizes five relations (represented as convex
sets) to gather information about the dependence arcs and
to determine whether conditions 2 and 3 are satisfied.
Dependencies are considered in relation to the Cartesian

product of the loop indices and the nesting level of the
dependence. Two of the five relations, T and H, charac-
terize the control structure of the loops surrounding the

tail statement (i.e., the point where data is generated)
and the head statement (i.e., the point where data is

used) of the dependence, respectively. Two other rela-

tions, Sg and Su, respectively, correspond to the indexing

function of the generated and used arrays referenced in

the head and tail statements. The fifth relation, Ftla,

represents the lexicographical ordering used to execute the

nested loop program. These relations are represented as

convex sets in a matrix format that is easily implemented

and manipulated in software. As an example, it is shown

below how such relations are represented for the variable

cy in the convolution example; the explanation of this

representation follows its description. The following is

actual output from RAB when used in the debugging
mode.

FOR GEN VAR: cy INDEX: [Jl][J2][Ja][Ja]

FOR USAGE VAR: cy INDEX: [Jl][J2][J3][j4-1]

ORIGINAL MATRIX

-I 0 0 0 0 0 0 0 -1

0 -I 0 0 0 0 0 0 -1

0 0 -i 0 0 0 0 0 -1

0 0 0 -i 0 0 0 0 -1

1 0 0 0 0 0 0 0 30
0 1 0 0 0 0 0 0 25
0 0 1 0 0 0 0 0 10

0 0 0 1 0 0 0 0 20
0 0 0 0 -1 0 0 0 -1

0 0 0 0 0 -i 0 0 -i

0 0 0 0 0 0 -i 0 -I

0 0 0 0 0 0 0 -1 -1
0 0 0 0 1 0 0 0 30
0 0 0 0 0 1 0 0 25

0 0 0 0 0 0 1 0 10
0 0 0 0 0 0 0 1 20

1 0 0 0 -1 0 0 0 0

0 1 0 0 0 -1 0 0 0
0 0 1 0 0 0 -1 0 0
0 0 0 1 0 0 0 -1 -1

-1 0 0 0 1 0 0 0 0
0 -1 0 0 0 1 0 0 0
0 0 -1 0 0 0 1 0 0
0 0 0 -1 0 0 0 1 1
1 0 0 0 -1 0 0 0 -1

In the above representation, each row corresponds to an

inequality of the form [at b_a][jt jhl_-- -< b where at and ah

are vectors that_multiply the index Jt of the tail statement

and the index j_ of the_head statement; b is some con-

stant. Because Jt and Jh are implied, each row shown

above represents only a t (the first four entries) a h (the

second four entries) and b (the last entry). The first eight

rows represent the upper and lower bounds for the loops
surrounding the tail statement; the following eight rows

do the same for the head statement (In this example the

upper bounds for Jl, J2, Ja and j4 are 30, 25, l0 and 20,

respectively; the lower bounds are all 1.) The next eight
rows represent the fact the indices used to reference cy in

the tail and head statements differ only in J4 (by one).
The last row represents the lexicographical ordering in

terms of the index Jl. Another three similar matrices are
also considered by DASA where the lexicographical order-

ing is represented in terms of two, three and four loop
indices. These matrices are not shown here.

If a solution space results from the convex analysis of

the intersection of the relations, T, H, Fth , and Sg com-
posed with S_ l, then a dependence exists for the condi-

tions defined by the forward relation Ftl a. For example,
the set of inequalities shown above is inconsistent but

that where the lexicographical ordering is represented in

terms of the four loop indices is consistent and detects

that a dependence is associated with the variable cy (the
associated dependence vector is shown in the next para-

graph). Further details about DASA can be found in [7]
and [9]. DASA is also used to analyse data broadcasts. A

broadcast is required when a data item is used by more

than one computation at the same instant of time. To

avoid a broadcast it suffices to schedule those computa-
tions to be executed at different instants of time so that

the data item can be %uffered" in one computation and

later passed to the other. This is similar to a data depen-

dence except for the fact that the dependence is

"undirected", i.e., the order in which computations use

the data can be reversed. According to the above con-

siderations, the vector difference between computations

that use the same data item is referred to as a buffering
vector and DASA is used to detect such vectors as well as

dependency vectors. The synthesis phase of RAB takes

into account the fact that either the detected buffering

vector or its complement can be used to identify a valid
mapping.

As an example of the final output of the analysis
phase, the dependence matrix for the expanded convolu-
tion is as follows:
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[_ 0 0 1 1 !]

0 1 0 -1

D= 1 --Js 0 0 forjs =I,...,N s givenN s < N 4.

-1 Js 0 0

Column 1 of this dependence matrix corresponds to the

used variables ey[jl][j_][Jsl[j,--1] and the input variables

w[j2l[Js],columns 2 and 3 correspond to the used vari-

ables sum[jl][Js+j4-1], and the last three columns
corresponds to the input variables w[j2][jz] and

x[jl+h-l][j,-1].
The distance vectors for the generated data items are

used in the synthesis phase to preserve the semantics of

the program; the bufferingvectors (or theircomplements)
for the input data items are included in the dependence

matrix in order to assign differentexecution times for the

computations requiring the same variable. The next sec-

tion describesthe methodology used to generate an algo-
rithm transformation for a variable sizearray.

II.4 Time and Space Mappings

The synthesis phase of RAB utilizesa well known

transformation methodology sometimes referred to as the

data dependency method[16]. This methodology generates

a transformation matrix, T which maps the index points

of the bit-levelalgorithm into the space-time domain (i.e.,

processors and instants of time). The firstrow of T,

_reZ(IXn},(Z denotes the set of integers)corresponds to the
time mapping; the last two rows, denoted SeZ (2_),

correspond to the the space mapping.

Time Mapping

The linear time mapping, 7r e Z(lxn} maps the index

set of the algorithm into the unidimensional time space,

lr:Jn---* t. Given _r, the time of execution of a computa-

tion indexed by j is:

f(j-) (1)
=1 disp rr [

where _disp 7r = min{lrdi, d i E D } and

O = --min{_rj: j e jn} _]_1.

The constant O in (1) forces the first computations to be
executed at time t= 1. The parameter disp 7r represents

the number of parallel arithmetic computations executed
in each processing element. In RAB the value of disp zr is
restricted to one because this is representative of the

array used with RAB (GAPP) and some other available

architectures (i.e., MPP, DAP, CLIP). Given that

disp zr = 1, the total execution time of an algorithm is

{1-}-i_l_ri INi-Li) t (2)

where N i and Li correspond to the upper and lower

bounds of the index Ji respectively and _ represents the

number of clock cycles needed for the execution of the

body of the nested loop program. To insure that the ord-

eri__ng determined--by zr is valid, the restriction that

Irdi ) 0 for all di e D is imposed. This insures that all
dependencies are respected, i.e., a data item is never used

before its generation.

The time transformation 7r is found by trying to

minimize the function (2) which is monotonic with respect
to the entries of _r. Due to the monotonicity of the func-

tion, a heuristic approach similar to the one presented in

[11] is used to generate r. The absolute value of the

entries of 7r are progressively increased (starting from

zero) and all possible combinations of their signs are con-
sidered with the exception of those obtained by negating

previously generated r's. The validity of each of the 7r is
checked and the valid time transformations are ordered

according to the execution time . Possible 7r's, which
might result from further increases in the absolute value

of the entries of a particular r, need not be considered

because the monotonicity property mentioned above

insures that they result in execution times larger than the
known minimum. The ordered list of 7r's is also used to

generate space transformations as discussed next.

Space Mapping

The space mapping determines what processor is

used to execute any given computation at the instant of
time determined by the time mapping. It must be selected

so that processors can exchange any data item within the

time interval that separates its generation and usage. A
structural model of the target processor array is used in

this phase and it consists of a q-dimensional index set L q

(q--_ 1 or 2) and a matrix of interconnection primitives P.

Each point g c L q corresponds to the relative location

of a processing element in the systolic array. The matrix

of int_erconne_ction primitives is sue_h that if_l_ e P then_for

any g e Lq, C is connected to teF----g + p_if t 't e Lq and _ is
connected to an input-output port if ¢¢t_ L q. In other

words, L q and P define the topology of the processor

array. In addition to this, RAB needs additional informa-

tion for other phases. For timing purposes and to evaluate

in expression (2), it uses the longest time T taken by any

basic operation executed by the processors of the array (in

many arrays all basic operations take the same time to

execute). The time _ results from counting the number of

basic operations used for the bit-level computations in the

body of the expanded loop program and multiplying it by

r. The set R of resources available in each processing ele-

ment is used in the microcode optimization phase as dis-
cussed in section II.5.

For the GAPP (6 × 12) processor array chip the

index set is given by

L2 ={(t'l, _2):1_-_ t' 1 _12, 1_-_ t_ _-__6}

and the matrix of interconnection primitives is

tP= 0 1 --1

The set R of shareable resources available in each process-

ing element of GAPP consists of its four 1-bit registers,

one RAM port and one ALU, and the worse case execu-

tion time 7 of a basic operation is assumed to be three

clock cycles (one clock cycle to place data in proper regis-
ters and execute a "full add" operation, and two clock

cycles to place data in the proper register for communica-

tion purposes).
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In mapping an algorithm into a systolic array, the
main goal is to insure that the data communication
between processors can be accomplished using the given
interconnection primitives. In other words, if a computa-

tion performed by processor _ at time t 1 depends on
data generated by processor g 2 at time tz, then there
must be a_composition of intereonneetion primitives that
connects tz to g I in time t 1 -tz. The composition of
interconnection primitives is given by the matrix
K c Z (r × m). To insure that a direct path is taken for the

movement of data, the entries in a column of K are res-
tricted to have the same sign. Given these parameters,
the spatial transformation S must satisfy the following set
of diophantine equations

SD ----PK (3)

where S e Z (q x n), D e Z(n x m), P e Z(q x r), and
K e Zffx m).

The sum of column i of the K matrix represents the total
number of data movements for the corresponding data
item associated with column i of the dependence matrix.

This sum is bounded above by rTrdi, where r represents
the ratio between computation and communication delays

in the array. This upper bound represents the time

between computations that is available for communica-

tion according to the schedule defined by _r. Only one

intercommunication primitive for each unique data link is

included in the P matrix, i.e., even if a data link is bi-

directional only one primitive corresponding to one of the

directions is included in P. Consequently, the matrix of

interconnection primitives used with RAB for the GAPP

architecture contains only the first three columns of the P
matrix.

If no solution exists to (3), another _r is selected from
the ordered list with minimal increase in execution time.

If solutions exist to (3), the transformation matrices (com-
posed of an S and the corresponding _r) are ordered

according to the AT (area × time) criteria. The first
transformation matrix in the ordered list for which a

conflict does not occur is chosen. A conflict occurs when

two or more computations are mapped into the same PE

to be executed at the same ti_me. In other words given

two computations indexed by j, and ])l, a conflict occurs

when T jl_ T j"---- 0 or

TO t - j")=0 (4)

where jl _j, represents the conflict vector. The conflict

vectors are generated using an analysis scheme similar to
the one used with the generation of buffering vectors for

input variables, ff the conflict vector exists within the

given iteration space, the corresponding T is disregarded
and the next transformation matrix in the ordered list is

checked. The procedure is continued until a conflict-free

algorithm transformation can be found for the partial

mapping of the bit-level algorithm into the variable size

array. The conflict-free transformation matrix for the
example convolution algorithm is cfor Nt:h[L-_3=3 _ lq_:s)

T--|IO0
0 0 1

for time _ 27_ and space _ 21 PE's. This transforma-

tion optimizes AT where area corresponds to the number

of PE's since only one GAPP chip is required. A different

mapping for the same convolution program which results

from using a different expansion and time and space map-

pings is reported in [12].

II.5 Code Generation and Optimization

The current version of KAB does not have code gen-
eration implemented in software. The designer must hand

code the algorithm generated in the mapping phase.

However, RAB provides a capability for compacting the
microcode in order to minimize its running time. This is
done by detecting what processor instructions can run
simultaneously without violating data dependencies and
machine dependencies. While data dependencies result
from the structure of the algorithm (see section II.3)
machine dependencies (also called resource dependencies)
result from the existence of limited resources in each pro-
cessing element. A given statement Sj is machine depen-

dent on a statement S i if S i precedes Sj and S i uses

resources required for the execution of Sj.

Machine dependencies can be divided into two
categories: explicit machine dependencies and implicit

machine dependencies. Explicit machine dependencies
result from the apparent limitations of the architecture.

For example, statement S_ is explicitly machine depen-
dent on statement Si if both statements require a write to
two different RAM locations and the given architecture

only has one RAM port. Implicit resource dependencies
are inherent in the semantics of the instructions. For

example, in a GAPP array, the ALU of each PE always
executes a "full add" operation every clock cycle, regard-

less of the instruction being executed. As a consequence,

the architecture of each PE exhibits implicit resource

dependencies with the use of the calculated variables sm,

bw, and cy (which denote sum, borrow, and carry respec-

tively). Thus, if a statement explicitly uses a calculated

variable, then it will always depend on the previous state-
ment.

An optimizer specialized for the GAPP array per-
forms code compaction using a modified version of a tech-

nique developed by Ramamoorthy ([13], [14]) known as

Precedence Partitioning. The straight-line microcode is

parsed in a sequential manner placing used and generated

variables in a symbol table. If a used variable is encoun-

tered, the optimization function checks the symbol table

to see if this variable has been generated in a previous

statement resulting in a data dependence (in this case all

types of dependencies are checked, i.e., flow-, output- and
anti-dependencies). The resources required for the paral-

lel execution of two statements are also pairwise checked

if they are data independent. If the required resources

exceed the resources available, then a machine depen-

dence exists between the two statements. The dependen-

cies are represented in a ((v-l) × v) connectivity matrix,

where v is the number of statements in the straight-line

code. The element Cij = 1 if statement j is dependent on
statement i and 0 otherwise. The precedence partitioning
algorithm uses this matrix to partition the set of compu-

tations into independent blocks by locating columns con-
taining zeros, allocating the corresponding statements to a

block and deleting the row corresponding to the allocated

statement. The partitions are executed serially but the

statements within the same partition block are executed

in parallel. An example of the precedence partition for
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straight line code is given below. An example using

GAPP instructions would require detailed knowledge
about the GAPP architecture, which is beyond the scope
of this paper.

For the following straight line code
(1) A = B + C

(2) D=A+E
(3) F=D+E
(4) G = H + I

the connectivity matrix is given by

[ 101i1C= 000

The following partitions result from this matrix: { 1, 4 },

{2},{3).

HI. Past Experience and Future Work

Experience and insights provided by the development
and usage of RAB showed some of limitations of the

approaches used for the purposes described above. How-

ever, it also revealed opportunities for new improved
techniques that can be applied to the problems that RAB

attempts to solve. RAB was developed as a first attempt
to demonstrate the viability of a tool that uses algorithm

transformations to support the systematic mapping of

high-level programs into bit-level processor arrays. The

techniques used represent the state-of-the-art in that field

as of 1985. Since then significant progress has been made

in this area. Additionally, several idiosyncrasies of RAB

limit the possibility of easily incorporating such new tech-

niques, considering different processor array architectures
and testing the validity of the concepts in a wide range of

programs. Finally, as expected, experience with RAB

revealed many insufficiencies of the known techniques and
generated many new interesting questions that must be

addressed if a truly useful tool with an acceptable level of

generality is to be implemented. This prompted the
author and his co-workers to start the development of a

new software package which improves on RAB in the fol-

lowing regards:

Bit-levd expansions: Currently, the optimality and

generality of the mappings provided by RAB is greatly

affected by how bit-level expansions are derived from

word-level operations. This is due to the very large

number of expansions that are possible for any single

word-level operation. Because RAB needs to have a copy

of each possible expansion explicitely stored (i.e., the

expansions are stored and not generated when needed), it

is infeasible to consider every possible expansion. In addi-

tion, assuming that all possible expansions were available,

RAB has no means of knowing or estimating which

expansion yields in the best design or mapping. As a

consequence, RAB needs to to be fully executed for every

single possible expansion in order to guarantee optimality.

This is also too expensive in practice.

To deal with the problems mentioned above,
automatic programming and program transformation

techniques are being considered which allow for the on-

line generation of expansions from a reduced number of

moasic" stored expansions. The "derived" expansions are

the result of applying transformations to the basic expan-

sions by exploiting properties such as commutatitivity,

distributivity and associativlty of the bit-level operations.

In order to estimate or identify the best expansion, some
dependence analysis is performed and attached to each

expansion. By analysing relevant characteristics of data

dependences, it is possible to arrive at relative perfor-

mance of different expansions and, furthermore, guide the

generation of additional expansions with improved

characteristics. The knowledge of the dependence struc-
ture of the expansion used is also beneficial in the analysis
phase, as discussed later.

RAB was intended solely for numerical computing. It

is possible to use the same approach for symbolic process-

ing, image processing or other specialized application as

long as the expansions are provided for the basic opera-
tions that characterize the "algebra" of the application.

These expansions will be included in the new version.

Program Analysis (Dependence Analysis): Currently,
RAB analyzes the full expanded program by using the
DASA technique which yields structural and dependence

information about the program as a convex set. The ine-

qualities that define this convex set are then used to

derive a matrix where each column is a dependence vec-

tor. This process has two disadvantages. First, the
analysis is unnecessarily complex in the sense that no
attempt is made in RAB to exploit the fact that the

"complex" expanded program is the result of a "simple"

known expansion applied to a "simple" program.

Secondly, information about the structure of the program

is lost in the process of generating the matrix of depen-

dencies. In addition, in order to be able to use a matrix

representation for dependencies, it is often necessary to

"fuse" loops or consider only those expansions where loops

are "fused". The problems mentioned above are avoided

in the new approach in the following ways. The depen-

dence analysis of the expanded program is obtained by

combining the results of the dependence analysis of the

original word-level program and the dependence analysis

of the expansion. The computational cost of this approach

is smaller than that of analysing the full program. With

regard to the generation of the dependence matrix, this

feature will remain in the new approach only for the pur-

pose of interaction with the user. However, for purposes

of optimization in the synthesis phase, convex set infor-

mation is used instead. In addition, loop fusion is not

needed explicitly, and, instead, constraints in the form of

inequalities are sufficient to convey how loops are

arranged.

Mapping and design phase: Currently, RA_B is fairly

inflexible in the type of constraints that it can take into

account for mapping and design purposes. The same can

be said about the optimization criteria. This is due to the

fact that different constraints are represented differently

and, to a certain extent, built into the code. The same

can again be said of the objective functions to be optim-

ized. The new approach provides a unique form for the

representation of any type of constraint (in essence, a set

of inequalities) and optimization procedures that are
independent of what the constraints and objective func-

tions are (within certain limits which have to do with the

convexity of the objective function and the space of feasi-

ble solutions). Therefore, constraints and optimization

criteria can be easily added, deleted or changed. By hay-
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ing the expansion, analysis and synthesis phases of RAB

use the same convex set representation, a more modular,
efficient and coherent mapping and design procedure will
hopefully result. In cases where specialized optimization
procedures are used often (e.g., to optimize execution
time) this approach can be complemented by software
modules which implement such procedures or related
heuristics. For example, several different nested loop pro-
grams were processed by RA.B and this revealed that the
search spaces for the optimal time and space mappings
were extremely large, and the execution time of this code
was excessive. This led to the consideration of projection
techniques for space mappings that are now described.

With projection techniques, an n-dimensional itera-

tion vector v is employed in determining the space map-
ping I17]. The iteration vector is the right null vector of
the space transformation matrix S, that is Sv = 0. It can
be interpreted geometrically as the direction of the pro-
jection of the index set onto the processor space. Two
computations indexed by i and j are m_apped into the
same processing element if and only if i -- j + _v, for
some integer _. For a given processor space, it is unique
if the following two conditions are imposed:

1) The greatest common divisor of the elements of
must be one,

2) the leading element of v must be positive.

For a given iteration vector _ that satisfies these condi-

tions, many S matrices may be defined that form a basis

for the same processor space. Searching for an iteration

vector that defines the space mapping rather than an S

matrix avoids this redundancy. The topology of the pro-

cessing element space remains fixed, and only the label-
ling of each processing element is different. If the linear

schedule 7r has been determined, the iteration vector v
must satisfy Tryw # 0, if the mapping matrix T is to be

nonsingular. This follows from the fact that if _vw = 0,
the _ matrix will be in the row space of S. Hence, compu-

tations to be executed at the same time will be mapped

into the same processing element. The number of process-

ing elements can be used as a measure of the optimality
of a given space mapping.

Code generation and optimization: Future work will
focus on a retargetable code generation module for RAB.

A first step in this effort is an intermediate language that

is appropriate for a variety of highly parallel processor

arrays. The basic problems of instruction selection, regis-

ter allocation, storage allocation, and machine-dependent

optimizations that are important to code generation for

uniprocessors are also important to code generation for

processor arrays. Additional complexity is present in that

the code generator must separate the program into serial
and parallel segments. The instructions to execute the

parallel segments must use the parallel execution

resources of the machine efficiently. In uniprocessors,

some optimization of machine code is almost always possi-

ble by looking at only a small portion of a program, but
this characteristic does not hold for parallelization of

machine code. It is necessary to look at a large part of the

whole program to insure that the parallelized version of
the program is correct and equivalent to the serial ver-
sion.
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Abstract:

This paper covers some issues and techniques for compiling

collection-oriented languages for use on parallel and vec-

tor machines. Collection-oriented languages are centered

around data structures which represent collections of el-

ements and include operations for manipulating the col-

lections. Many of the collection-oriented languages, such

as PARALATION LISP, CONNECTION MACHINE LISP (CM-

LISP), and SETL, allow the creation of nested collections,

collectionswhose elements are themselves collections.Nested

collectionsare most conveniently manipulated through the

nesting of parallel constructs, which is analogous to the

nesting of serialloops. However, paralleland vector ma-

chines operate most efficientlywhen operating on long vec-

torsof atomic values (flatcollections).This paper describes

techniques for translatingnested parallelisminto flatparal-
lelism.

This paper discussesa compiler that translatesa sub-

set of PARALATION LISP intothe instructionset of a virtual

machine. The instructionsof the virtualmachine are simple

vector instructionswhich could be further translated to a

broad classof architecturesincluding vector machines, sin-

gle instruction parallelmachines, and multiple instruction

parallelmachines. Another transistorhas also been imple-

mented that translatesthe virtualmachine instructionsto

instructions for the Connection Machine (CM-2), a mas-

sivelyparallelsingleinstruction computer. The quicksort

example in thispaper has been executed on the CM-2.

Keywords: paralation lisp,scan, parallelprefix,com-

piler,Connection Machine.

1 Introduction

Collection-oriented languages, such as PARALATION LISP

[8], CM-Lisp [11], SETL [9], NIAL [7], APL [5,6] or APL2

[1], are based on data structures which represent collections

I MIT Artificial Intelligence Laboratory and Thinking Machines Cor-

poration. Author's current address: MIT AI Lab, Cambridge, MA
02139

2Harvard University and ThinkingMachines Corporation.Author's
current address: Thinking Machines Corportion, 245 First Street, Cam-
bridge, MA 02142

of elements, and operations for manipulating the collections

as a whole, such as multiplying two arrays or taking the in-

tersection of two sets. The collections can be unordered,

such as zet_ in CM-lisp and JetJ in SETL, or ordered, such

as fields in PARALATION LISP, rectors in CM-LIsP tupleJ in

SETL and arrays in NIAL, APL and APL2. The techniques

discussed in this paper are relevant to both ordered and un-

ordered collections. We believe that the collection-oriented

languages are excellent languages for cleanly implementing

a broad set of applications.

Conventional yon Neumann languages, such as Pascal

and Fortran, also support collections, usually in the form

of an array data type. However, the operator_ of coUection-

oriented languages are different because they focus on ma-

nipulating collections as a whole. For example, multiplying

all elements of a collection by some constant, sorting the

elements, or summing all the dements into a single value

are basic collection-oriented operations. Because the opera-

tions of collection-oriented languages operate on whole col-

lections of elements, these languages tend to be much higher

level than conventional languages. This typically leads to

code that is clearer, easier to write and more concise 1. Also,

because the code does not include specifics on how to imple-

ment the various operations, it leads to code which is more

easily mapped onto a broader set of architectures. On the

other hand, collection-oriented languages have historically

been hard to compile to run as efficiently on serial machines

as conventional languages, and have therefore never gained

great acceptance.

In this paper we cover some issues and techniques for

compiling collection-oriented languages onto parallel and

vector machines. We axe particularly concerned with the

languages that allow nested collections. In such languages,
each element of a collection can itself be a collection. Of

the above mentioned languages all but APL allow such

nested collections. The compilation techniques mostly in-

volve translating operations on nested collections into a flat

t Unfortunately, APL has given the computer community the impres-

sion that collection-oriented languages are difficult to interpret. This is
not the fault of the semantics of the language but rather of the cryptic
syntax.
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form--operations on vectors of atomic values. When op-

erating on nested collections, there are often two types of

concurrency available: the concurrency available from the

operation itself when applied to one of the nested collec-

tions, and the concurrency available since the operation can

be applied to each collection independently. By translating

into a fiat form we can take advantage of both types of con-

currency in a homogeneous way using a simple vector model

with very little runtime support.

Although the techniques discussed in this paper could be

used for many collection-oriented languages with nested col-

lections, the techniques will be presented in the framework

of a compiler for PARALATION LISP [8]. PARALATION LISP

consists of a new data structure and a small set of operators

that are added into COMMON LISP. The data structure, the

field, is an ordered collection much like an array, but related

fields are grouped into paralations to describe and exploit

locality. The parallel computation operator, oltrise, can be

applied to any COMMON LISP code, and executes the code
over all of the elements of a set of fields, elvise can be

nested. The remaining two operators perform general com-

munication between paralations. The first operator, match,

encapsulates a communication pattern into a mapping. The

second operator, <% transfers a field according to a map-

ping.

The compiler translates to a language called Scan-Vector

Lisp (SV-LIsP). This language is a subset of COMMON LISP

with the addition of a set of instructions for manipulat-

ing vectors of atomic values. These vector instructions can

be broken into four classes: the elementwise instructions,

the permutation instructions, the Jean instructions, and the
vector-scalarinstructions. The elementwise instructions ex-

ecute an elementary arithmetic or logical operation, such

as +,-,*, or, and not, over the indices of the input vec-

tors. The permutation instructions permute the elements of
a vector based on another vector of indices. The Jean in-

structions execute a prefix operation on a vector; the name

scan comes from APL. The vector-scalar instructions are

used to create vectors and to extract scalar elements from

a vector.

Figure 1 illustrates the organization of the compiler dis-

cussed in this paper. The discussion of the compiler is bro-

ken into two main parts: the mapping of PARALATION LISP
data structures onto SV-LIsP data structures and the trans-

lation of PARALATION LISP code onto SV-LIsP code. Fig-

ure 2 illustrates how the compiler fits into a larger system

that compiles into the instruction set of an actual target

machine, the CM-2. The particular vector instructions of

SV-LISP were chosen because they can be further translated

to a large variety of architectures. This allows the front end

of the compiler to be ported to many computers, including

vector machines such as the CRAY or Convex machines,

single instruction parallel machines such as the CM-2, and

multiple instruction parallel machines such as the Alliant.

We have implemented a simple back end that compiles to
the CM-2 instruction set.

Source LangUage: Paralation Lisp

IData Structures (Section 3.1)] [ Operations (Section 3.2)

(Section 5.1) (Section 5.2)

Target Language: Scan-Vector Lisp

Data Structures (Section 4.1)[ I Operations (Section 4.2)

Figure 1: Organization of the compiler. To translate PARA-

LATION LISp onto scan-vector lisp both the data structures

and the operations must be translated.

IPARALATION LISP I

This paper

I SV-LISP with Segmented Instructions ]

,_ See [3]

SV-LIsP without Segmented Instructions ]

_. A COMMON LISP compiler

Vector and Host Machine Instructions ]

See [3]

IcM2InstructionsI

Figure 2: This figure shows the organization of the full com-

piler that translates PARALATION LISP into CM-2 instruc-

tions. This paper focuses on the first step.

The purpose of implementing this compiler was to ex-

periment with the ideas of compiling nested parallelism and

to see what issues are involved in compiling a collection-

oriented language onto a vector model. The compiler is

therefore by no means complete: it only supports a small,

but important, subset of PARALATION LISP. The compiler,

however, produces very efficient output code. The CM-2

code generated by the quicksort example described in Sec-

tion 2 is only a factor of two slower than the fastest sorting

routine for the CM-2, and is faster than a version written

in *LISP[12].

We will discuss some of the important techniques used

by the PARALATION LISP compiler, including the compila-

tion of nested parallel conditionals, and the compilation of

nested parallel communication. The compilation of a quick-

sort algorithm will be used as the central example. The

most interesting and important elements of the compiler

are:

. The representation used for the PARALATION LIsP

collections, fields.
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. The creation of two versions of each function, one to
be called at top level and one to be called nested inside

the PARALATION LISP olwise form.

• The stepping-up and stepping-down manipulations

which are used when entering and leaving the

PARALATION LISP apply-to-each form.

* The implementation of the i/statement.

After a illustrative example (quicksort), the remainder

of this paper defines the source language and the target
language in detail and then describes the transformations

performed by the compiler.

2 Quicksort Example

This section is an overview of the issues addressed by our

compiler that uses quicksort as a concrete example.

The basic idea of quicksort [4] is to start with a sequence

(an ordered collection) of values. If the sequence is already

sorted, it returns the sequence; and if not sorted, it executes

the following steps:

1. Pick a random pivot value from the sequence

2. Determine for each element whether it is less than the

pivot or greater-or-equal to the pivot.

3. Split the set into two sequences such that all elements

less than the pivot are in one set, and all elements

greater-or-equal to the pivot are in the other.

4. Call the quicksort routine recursively on each sequence.

5. Append the two sequences returned from the recursive

call.

There are two ways in which we can parallelize this rou-

tine. Firstly, when we split the set in two, we can execute

the recursive call on each set independently and therefore

in parallel. Secondly, the process of selecting a pivot, and

then splitting based on the pivot can be executed in paral-

lel. Ideally we would want to take advantage of both these

kinds of parallelism, which are discussed in Section 2.1.

To take a closer look, we can step through the execution

of the actual PARALATION LISP quicksort code. Only the

results of the program will be discussed in this example;

the language constructs are explained from a more general

point of view in the next section. The program is written

in a verbose style to facilitate line by line analysis (that is,

temporary results are saved in named variables even though

they are only needed once).

;; count the number of unique values in a field
; ; of keys

1 (defun value-count (keys)

2 (length (<- keys :vith #'arb

3 :by (collapse keys))))
4

6 ;; sort a see of keys

6 (defun qsort (keys)
7 (if (> (value-count keys) 1)
8 (let* ((pivot-value

9 (eli keys (random (length keys))))

10 (side (elwiso ((key keys))
Ii (if (< key pivot-value)
12 0

13 I)))

14 (sub-data

18 (collect keys
16 :by (match #f(O 1) side)))

17 (sorted-sub-data

18 (elwise (sub-data)

19 (qsort sub-data))))
20 (expand sorted-sub-data))

21 keys))

The value-count function defined in lines1-3 takes a

collectionof keys and uses a paralation libraryfunction to

count how many unique values occur in it. When there is

only 1 unique value, all of the values are the same, and

are thereforeproperly sorted. This is the base case (the

termination condition) of the recursiveqsort function.

qsort begins by checking for its base case in line7. If

there isonly 1 kind of value in keys, it does not need to be

sorted, and line21 returns keys as the result. In general,

the test for the base case fails, and a random pivot-value

is then picked. For example, if qsort is called on:

keys = [7 9 2 11 19 6 12]

value-count would have returned 7, and perhaps 9 would

be selected as the random pivot value. Next, lines 10-13

calculatea flagvalue, side. Each value compares itselfto

the pivot value,returning 0 ifitis lessthan the pivot and

1 otherwise:

side= [0 I 0 i I 0 1]

In the next step,lines14-16, paralationlibraryfunctions

axe used to splitthe keys into two collectionsbased on the

two distinct values (0 and I) in side. Each collectionis

nested in a largercollection:

sub-data: [[7 2 6] [9 11 19 12]]

At this point, although a nested collection is being used,

they do not seem necessary. A fiat vector of the split num-

bers, along with some representation of the lengths of the
subeolleetions, captures the state information equally well.

In fact, that is the basis of our compiler's representation of

nested coLlections. Simply put, a collection of collections

can be represented by two collections: one containing the

data and another containing the lengths of the subsets. For

example, sub-data can be represented with the following

two fiat vectors:

[7 2 s 9 1_ 19 121

[3 4]
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In the next step, it becomes clear why it is desirable to

hide this representation from the user: Lines 17-19 contain

a parallel recursive call that creates yet another level of

collection nesting. For example, the recursive qsort call

that operates on the left half might cause a split based on

a pivot value of 7 while the other call mSght split based on

a pivot value of 12:

call l's sub-data = [[2] C7 6]]

call 2's sub-data = [[9 11] [19 12]]

Viewed together from the macroscopic viewpoint, the

two parallel recursive calls operate on a collection of col-

lections of collections, and the nesting of collections grows

a level deeper with each recursion, even as the number of

qsort invocations that are executing in parallel doubles. A

programmer using a collection oriented language does not

have to be concerned about such details, any more than a

C programmer must worry about allocating automatic (lo-

ca/) variables on a stack. Our compiler, and programmers

using vector models directly, must deal with these issues

explicitly.

Inductively assuming that qsort works, we can return

to line 20 of the top level call to tt qsort. It uses a library

function to transform a collection of sorted subcollections:

sorted-sub-data = [[2 6 7] [9 11 12 19]]

into the final result by flattening the collection of collections

into a single collection.

qsort result-- [2 6 7 9 11 12 19]

2.1 Two Kinds of Parallelism

The parallelism involved in a pivoting and splitting can triv-

ially be exploited in parallel by a vector model. The paral-

lelism involved in the parallel recursive calls to qsort, al-

though apparent to the programmer, cannot be directly ex-

pressed using flat vector operators. By flattening the nested

collections, we can take advantage of both kinds of paral-

lelism on flat parallel hardware.

We now consider how this quicksort can be implemented

to run in parallel. We consider two types of parallelism.

First, the value-count routine, the comparison of the p±vot-

value, the collect and the match can all be implemented

in parallel as discussed later in Section 5.2. We call this

the intraroutine parallelism. This type of parallelism seems

natural for vector or SIMD architectures. The second kind

of parallelism occurs on lines 18-19 where quicksort is called

recursively twice. Each of these calls can run in parallel. We

call this the interroutine parallelism. It seems more suited

to coarse-grained MIMD architectures.

If we took advantage of intraroutine parallelism but ig-

nored interroutine parallelism, the code would execute rapidly

in the first stages, where the vectors of data to be sorted are

large, but would become very inefficient in the final stages

of quicksort. There would be many invocations of quick-

sort that would have to be run separately, and each would

be operating on a vector that was small compared to the

number of processors available. The original PARALATION

LISP compiler and the CM-LIsP compiler both took this

inefficient, but easy to implement, approarh.

On the other hand, one can imagine an implementation

on a coarse grained machine that only took advantage of the
interroutine paralleism. Such an approach would be efficient

in the later stages of quicksort, but it would be inefficient

in the early stages. Small numbers of processors would be

responsible for operating on relatively large vectors.

An important goal of the compiler discussed in this pa-

per is to take advantage of both kinds of parallelism in a

efficient and simple way and map them onto a strictly SIMD

model. The compiler does this and compiles the quicksort

into a routine which has an expected complexity of O(lg n)

calls to a set of simple data parMlel operations such as per-

mute, scan, and elementwise arithmetic and logical opera-
tions.

3 Source Code: Paralation Lisp

This section summarizes the PARALATION LISP language;

for more details the reader should see [8]. PARALATION LISP

consists of a new data structure, three primitive operators,

and a set of other operators built on the primitive operators,

all added to COMMON LISP.

3.1 Data Structures

The data objects permitted in PARALATION Lisp are all the

standard COMMON LISP data objects with one additional

object, the field. The field, is a linear-ordered collection of

elements. A field can be heterogeneous and the elements can

be any PARALATION LIsP value--including another field--

thus allowing nested collections. Here are some examples of
fields.

A homogeneous field:

#Y(7 9 2 l:t 19 6 12)

A nested homogeneous field:

#F(#F(4 8 3) iF(9 1 12 7) iF(2 9))

A heterogeneous field:

#F(7 #F(4 Nil 3) T "horse")

A structure field:

3.2 Operators

The three additional primitive operators are an iteration

operator and two field operators. The iteration operator,

elwise, is used to iterate any PARALATION LISP code, in-

cluding another elwise, over all elements of a field. The two
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primitivefield operators, match and <-, perform communi-

cation among the elements of fields: match encapsulates a

communication pattern into a mapping, and <- transfers a

field according to a mapping. Several other operations are

supplied by PARALATION LISP but can be defined in terms

of match and <-. All the COMMON LISP sequence functions
can also be used on fields.

The operators of PARALATION LISP that are needed for

the compilation examples are outlined below. The ideas

behind paralations and mappings, which are both important

concepts of the language, are not discussed because they are

not germane to a discussion of compiler issues.

Elwise: The elwise operator is used to apply a body over

each element of a field, or set of fields.

(elwise bindings

body)

executes the body for each element of each field in the bind-

ings and execute the body. So, for example, the form:

(el.£se ((a 1)

(b B))

(+ a b))

will pairwise add the elements of A and B and return a

field of the results (the body in this example is simply a

function call to +). Each binding of an elwise must be from

the same paralation; the result returned by elwise is a new

field in that same paralation. The elwise body can include

any valid PARALATION LISP form.

Match and Move: The match operation takes two key

fieldsas arguments; one from a source paralation and one

from a destination paralation. It returns a mapping. A

mapping can be thought of as a bundle of one-way arrows

that connect certain sitesof the source paxalationto certain

sitesof a destination paralation.Two sitesare connected if

their key fieldvalues are equal. A mapping is an encapsu-

lated communication pattern.

The <- (move) function accepts a mapping and a field

from the source paralation of the mapping as its arguments.

<- simply pushes this source data feld into the tails of the

mappings arrows, causing a field in the destination parala-

tion to pop out at the other end of the mapping. The ele-

ments in this field are calculated based upon what arrived

over the arrows. When several arrows leave a single source

site, a concurrent read takes place. When many arrows col-

lide at a single destination site, the multiple incoming val-

ues are reduced into a single value by repe_Aedly applying

a user-specified, two-argument combining function. (Com-

bining will not be needed for the examples presented in this

paper, but it is an important part of the paralation model.)

Finally, when a destination site receives no incoming val-

ues, a value is taken from a user-specified default field in

the destination para]ation.

match creates mappings which describe communication

patterns; <- makes use of mappings, and includes the func-

tionality of both concurrent read and combining. We now

outline some of the operations that can be defined on top

of the match and <- operations.

Vref: The vref operation "sums" the elements of a field

according to any binary operator. So, for example:

(vref #F(7 4 i 11 2 6) :with 'max)

Collapse and Collect: The collapse operator takes a set

of keys and generates a mapping in which all elements with

equal valued keys are mapped to the same position. The

collect operator takes a mapping and a field and appends

all the elements which are mapped into the same position

into a subfield. This can be implemented using a <- with

a combiner of concatenate. The collect operator returns a

field of fields. As an example of collect and collapse consider

the following operation:

(let ((A #F(a0 al as as a4 as))

(B #F(k0 kl k0 ks kl kl)))

(collect I :by (collapse B)))

:=_ #F(#F(ao el) #F(al a4 as) #F(a3))

Expand: The expand operator takes a field of fields and

appends all the subfields into a single field. So, for example,

expand applied to the result field given above returns:

(expand (collect A :by (collapse B)))

=:_ #F(ao as at a4 as a3)

3.3 Restrictions

The compiler implements a smMl enough subset of PARA-

LATION LISP that the subset is more concisely described by
what it does include rather than what it does not include.

The subset only supports homogeneous fields and the

data type of each elements of a field must be either an inte-

ger, boolean, field or structure. Since the elements can be
fields, the subset supports nested fields. Many other data

types, such as floating-point numbers or characters, would

be easy to add but were left out for the sake of simplicity.

The subset supports the following sequence operations

on fields:elt, length, sort, reduce, and concatenate.

Other sequence operators would be easy to add but these

were the only ones we needed for our testcode.

The subset supports the three primitive operations of

PARALATION LISP, elwise,match and <-. However, it only

knows how to match integer and boolean keys. The sub-

set supports most of the operations on integer and boolean

values inside an elwise. It also supports nested operations

on fields. For example, any of the above mentioned se-

quence functions can appear in an elwise. The only con-
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ditionalthe subset supports is the i/special form, and it

places the restriction that the results returned from both

the then-expression and the else-expression must be of the

same type. The reasons for these restrictions are discussed

in [3].

4 Target Code: Scan-Vector Lisp

We now describe the target code of the compiler, SV-LIsP

(Sctm-Vector Lisp) [3]. SV-LIsP is a small subset of COM-

MON LISP with the addition of a new data type, the Free-

tot, and a set of instructions for manipulating this data

type, the pvector instructions. The pvector data type--a

vector of atomic values--is much more primitive than the

field data type of PARALATION LISP since it neither allows

nested collections nor collections of structures. Likewise,

the pvector instructions--which include palrwise adding the

elements of two pvectors or permuting the atomic elements

of a pvector--are more primitive than the match and <-

instructions of PARALATION LISP.

Section 4.3 describes segmented versions of all the pvec-

tor instructions. The segmented versions break a vector

into contiguous segments and operate independently within

each segment and are used by the compiled code for ma-

nipulating nested fields. All the segmented versions of the
pvector instructions can be translated into a small number

of calls to the unsegmented versions [3]. This translation is

implemented as a second phase of the compiler. The com-

piler first translates into SV-LIsP with segmented pvector

instructions, and then translates this into SV-LIsP with

only the unsegmented pvector instructions (see Figure 2).

Translating PARALATION LISP to SV-LIsP rather than

directly onto a parallel machine, such as the CM-2, has some

important advantages. First, it separates the novel tech-

niques of compiling collection-oriented languages onto a set

of vector instructions from standard compiler techniques.

The novel techniques, such as flattening nested parallelism,

are used when translating from PARALATION LISP into SV-

LISP while the standard techniques, such as compiling re-

cursive routines, are used when translating from SV-LIsP

into actual machine instructions. Second, SV-LIsP is rela-

tively easy to port to new machines. Assuming a COMMON

LISP compiler exists for a machine, PARALATION LISP can

be ported to that machine simply by implementing a sub-

routine for each of the pvector instructions, and interfacing

these subroutines into COMMON LISP.

The pvector data type and the pvector instructions of

SV-LIsP were selected because they can be implemented

efficiently and straightforwardly on a broad variety of pax-

allel and vector machines [3]. The pvector data type can

be mapped onto a parallel machine by placing one element

of the vector in each processor of the machine. If a vector

is longer than the number of processors, multiple elements

can be placed on each processor. The pvector instructions

can then manipulate the pvectors in parallel: each processor

manipulates one value.

4.1 Data Structures

COMMON LISP Data Types

Integers,Booleans, Structures

Additional Data Types

Integer-Pvectors,Boolean-Pvectors

Figure 3: The data types of SV-LIsP.

SV-LIsP has five data types. Three of these come from

COMMON LISP: integers, booleans and structures. Two of

them axe new: boolean pvectors and integer pvectors. Pvec-

tors axe arbitrarily long linear-ordered collections of atomic

values. The values are booleans in boolean pvectors and

integers in integer pvectors. 2 Every pvector can have a dif-

ferent length and the only operations that can create or

manipulate the pvector data types are the pvector instruc-

tions discussed in Section 4.2. If one was to implement

a complete PARALATION LISP rather than the subset dis-

cussed in this paper, SV-LIsP would need to be augmented

with some other types such as floating-point numbers and
floating-point pvectors.

4.2 Operations

Figure 4 lists the operations of SV-LIsP. These operations

axe broken into two classes, operations from COMMON LISP

and the pvector instructions. The COMMON LISP opera-

tions axe defined in the COMMON LISP reference manual

[10]. In this section we define the pvector instructions.

COMMON LisP Operations

Special Forms and Macros:

if, defstruct, defun, let, let*, progn, setc

Scalar Arithmetic and Logical Operations:

+,--, and, or, =,<, ...

Pvector Instructions

Elementwise Instructions:

p+, p-, p-and, p-or, p= , p<, p-select ....

Permutation Instructions:

permute, select-permute

Scan Instructions:

+-scan, max-scan, min-scan, or-scan, and-scan

Vector-Scalar Instructions:

insert, extract, distribute, length

Figure 4: The operations of SV-LIsP.

2The term pvector is used instead of vector so as not to confuse it

with the COMMON LIsP vector data type--a llnear-ordered conection
whose elements can be of any type.
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Elementwise Instructions: Each elementwise instruction

operates on equal-length vector,, producing a result vector

of the same length. The element i of the result is an ele-

mentary arithmetic or logical primitive--such as +,-,., or

or not--applied to element i of each of the input vectors.

For example:

A = [5 1 3 4 3 9 2 6]
B = [2 5 3 8 1 3 6 2]

A p+ B = [7 6 6 12 4 12 8 8]

A p× B = [10 5 9 32 3 27 12 12]

Permute Instructions: The permute instruction takes

two vector arguments--a data vector and an indez vector--

and permutes each element in the data vector to the location
specified in the index vector. For example:

A (data vector) = [a0 al a2 a3 a4 as as a¢]

I (indexvector) = [2 5 4 3 I 6 0 7]

C _--permute(A,I) = [o_ a4 as as a2 al as aT]

It is an error for more than one dement to contain the same

index; by definition a permutation is a one-to-one mapping.

SV-LISP also includes a select-permute instruction which

permutes elements between vectors of different lengths by

masking out certain elements and placing defaults in certain

positions.

Scan Instructions: A scan instruction executes a scan

operation on a vector, s Scan is exceedingly useful in par-

•dlel algorithms and can be implemented very efficiently in

parallel hardware [2].

The scan operation takes a binary associative operator

(9 with identity 0, and an ordered set [a0, al, ..., a__z] of n el-

ements, and returns the ordered set [0, a0, (as (9 al), ..., (a0 @

al (9 ... @ a,,_2)]. For example:

A = I5 1 3 4 3 9 2 6)

+-,can(A) - [0 5 6 9 13 16 25 271

max-scan(A) = [0 5 S S 5 5 9 91

SV-LIsP only includes +, maximum, minimum, or and and

as operators for the scan instructions.

Vector-Scalar Instructions: SV-LIsP includes four in-

structionsthat take both scalarand vector arguments. The

extract instruction extracts a scalar value from a vector

based on a scalar index. The insertinstruction inserts a

scalar value into a vector based on a scalar index. The

distributeinstructiongeneratesa vector with a scalarcopied

SThe term scanistakenfrom APL [5].Many otherterms have
beenusedforthisoperationbut scanseemsto be the firstand most
concise.The term prefizcomputationisoftenusedin the computer
sciencetheorycommunity.

across the whole vector. The length instruction returns the

length of a vector. For example:

A = [a0 al a2 a3 a,
V = v

I = 3

L = 5

extract(A, I) = as

distribute(V, L) = Iv v v v v]

as]

4.3 Segmented Pvector Instructions
A vector can be partitioned into contiguous segments of ele-

ments by keeping a second vector which specifies the length

of each segment. For example:

Vector = [5 1 3 4 3 9 2 6]

Segment Descriptor : [2 4 2]

Segmented Vector = [5 1] [3 4 3 9] [2 6]

A = [5 1] [3 4 3 91 [2 fi]
s = I1 o] [2 o 3 1] [o 1]
I = [0 3 11

S (segment descriptor) = [2 4 2]

+-scsn(A,S) = [0 51 [0 3 7 101 [0 21

permute(A,B, S) = [z 51 t4 9 3 31 [2 61

extract(A, I, S) = [5 9 6]

Figure 5: Examples of the segmented versions of the pvector
instructions.

The segmented versions of the pvector instructions take ex-

tra arguments that specify how the vectors are segmented and

operate independently within each segment (see Figure 5). The

segmented version of the permutation primitive bases its indices

relative to the beginning of each segment so values permute within
a segment. The segmented version of the scan instructions restart

at the beginning of each segment. The segmented version of the

elementwise operations are unchanged.

5 Translation

We now discusshow PARALATION LISP is translatedintoSV-

LisP.In keepingwith the restofthepaper, we firstdescribedata

structuresand then describeoperations.

5.1 Data Structures

In coUection-oriented languages, different mappings of the high-

level collections onto the target architecture can give rise to orders
of magnitude differences in the efficiency of code on the architec-

ture. A compiler must therefore pay specia/attention to how the

mappings effect the efficiency of code. This section discusses how

the compiler maps the collections of PARALATION LISP, fields,
onto the primitive data structures of SV-LISP, pvectors. The

mapping discussed allows a particularly efficient manipulation of
nested fields by the vector instructions of SV-LIsP. The rep-
resentation of nested fields is based on segments as introduced
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in Section 4.3 and allows the generated code to operate over all

subfields in parallel

All fields are constructed from the pfie/d structure--a COM-

MON LISP structure type with two slots. The first slot stores a

segment-descriptor, which describes the length or segmentation of

the field (see Section 4.3). 4 The second slot stores the actual val-

ues. This slot contains a pvector if the field contains only atomic

values, contains another pfield if the field is nested, and contains

a user-defined structure if the field is a field of user-defined struc-

tures. We now discuss each of these cases. We only consider

homogeneous fields since the subset of PARALATION LISP we are

considering only supports homogeneous fields.

Simple Field: To represent a simple field--a field whose ele-

ments are all atomic--we use a single p field structure. The first

slot contains a defudtion of a single segment. The second slot

contains a pvector with the values of the field. For exs_ph:

#F(ao al a2 as a4)

#

pfield ]
segdes: [53

values: [a0 al a2 a3 a4]

We use a p field structure instead of using a pvector directly since

it allows us to check if two equal length fields belong to the

same parMation, s Using the pfield structure is also useful for

the stepping-up and stepping-down manipulations discussed in

Section 5.2.

Nested Field: We represent a nested field--a field whose ele-

ments are themselves fields--by nesting the pfield structures and

using segments of a singlepvector to represent each subfield. For

example:

#F(#F(aoo aol) #F(a10 all a12) #F(a20))

pfield l [

segdes: [3]

pfieM

values: segdes: [2 3 t]

values: [aoo aol al0 all a12 a_o']

In this example, the segdes slot of the inner pfield describes the

segmentation of the values slot. This technique can be applied re-

cursively to represent a nesting of arbitrary depth. A fieldnested

n deep can be represented with n segment-descriptor structures

and n pfield structures.

As mentioned in the introduction, the purpose of represent-

ing nested fields with a single value pvector is to get both the

paraLleLism on operations within each bottom levelfieldand the

parallelism over all the bottom levelfields.

4In the actual compiler the segment-descriptor contains severa/de-

scriptions of the segmentation, each useful in different contexts. For the

purposes of this paper, we assume the segment-descriptor only contains

the lengths of each segment.

SSince the segment-descriptor isactuallya structure,we can check

iftwo fieldsare from the same paralationby seeingifthe two segment-

descriptors are eql.

Structure Field: We represent a structure field---a field whose

elements axe e_ch a m_ defined structure---by pulling the struc-

ture out f_om inside the field.For example:

#

pf_Id
segdes: [3]

uv-structare J
values: u: [u0 ul u2]

y: [vo vl v2]

In this example, the field of three uv-structures Is mapped onto a

single uv-structure whose slots contain a pvector with the values

of all three of the original uv-structures.

Figure 6 illustrates a final example of a field with both nesting

and structures.

A mapping is represented by a pair of pvectors that capture

the site to site equality relationship defined by the original key

fields supplied to eml_¢h. The pvectors are canonicalized to make

the use of the mapping by <- more efficient [8].

/l!:0o
pfie/d

segdes: [2]

values:

zyz.structRre

x: [=o =13
Y: [Yo Yl]

Z:

pf_d
segdes: [3 1]

uv-structure
values: u: [uoo uol uo2 u:o]

v: [Voo vOl Vo2 Vlo]

Figure 6: An example of how a nested field with structures is

represented. In the example, the zvz-struct and the uv-struct

are user-defined structures.

5.2 Operations
We now discuss the manipulations necessary to translate code

from the subset of FARALATION LISP into SV-LIsP. We break

the discussion into four parts: compiling two versions of all code,

one parallel and one serial;compiling the elwise form; compiling

conditionals; and implementing the PARALATION LISP collection

operations.

Compiling Two Versions

When a function is defined in PARALATION LISP, it must work
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bothif called at top level (not within an elwise), and if called

within an elwise. Consider the following example:

(defun plus-times (a b)

(* a (+ a b)))

Called at top level

(plus-_imes 5 2)

35

Called within an elwise

(elwise ((a #F(2 I 6))

(b #F(3 S 2)))

(plus-times a b))

#F(10 6 48)

In the Rrst case, the compiler uses a serialversion of plus-times

while in the second case the compiler uses a parallel version ofthe

routine. The serial version uses the standard COMI_ON LzsP +

and * operations while the parallel version uses the pvector prim-

itivesp-* and p-*. Figuxe 7 shows an example of the translation

of a PARALATION LISP routine into the two SV-LIsP routines.

I (defun plus-times (a b c)(+ a(* b c)))

(defun s-plus-times (a b c)

(+ a(*bc)))

(defun p-plus-times (a b c)

(p-+ a (p-* b c)))

Figure 7: Compiling both a parallel and a serial version Of

a routine. The parallel version replaced all function calls with

their parallel versions.

The compiler keeps two versions of every user-defined function

and every function supplied by PARALATION LISP. To generate

the parallel version of a new function, the compiler replaces each

function call within the routine with its parallel version, and also

executes some manipulations on the special forms. The mest

interesting of these manipulations is for the if special form and

will be discussed in Section 5.2. The lot, lot* and progn special

forms require no manipulations.

Compiling E|wise Forms

The compiler applies several manipulations to translate an e/wise

form. First, it executes the same manipulations required when

creating a parallel form of a function as discussed in the last sec-

tions. Second, it inserts code that copies all the free variables---

variables that appear in the body but not in the binding hst--

across the elements of the elwise. Third, it inserts code that

steps-down all the values bound in the binding list, and steps-up

the result of the body.

We first discuss copying free variables. In PARALATION LISP,

if a variable appears in the body of an elwise but not in the

binding hst, the variable is implicitly copied across the elements

of the etwise. For example, in the form:

(le_ ((b 3))

(elwise ((a #F(4 I 2)))

(+ a b)))

#F(7 4 S)

the value of the variable b is implicitly copied across the three

elements and added to each. When translating from PARALATION

LISP to SV-LIsP, the translator inserts code that execute this

copy at run time. The particular code inserted depends on the

type of value that needs to be copied. If the value is a scalar, the

distribute pvector primitive (see Section 4.2) is inserted. Figure 8

illustrates an example of this manipulation. If the value is a

structure of scalars, a distribute primitive is inserted for each slot

of the structure, If the value is a fieJd, a dis_ribute-_e_ent

operation is inserted that creates a nested field with the original

field in each dement. The type of a variable can often be inferred

at compile time so that the correct code can be inserted at compile

I (elwise((a A)) ](+a b))

(simp'elwise(IbA) I
(distribute b (pfield-segdes A))))

(+ a b))

Figure 8: An example of the code inserted for copying free

variables. All free variables are removed by this manipulation.

The simp-el.±se form is a version of el.ise that does not

accept free variables.

time (in the above example b must be a scalar since we are adding

it). If the type cannot be inferred at compile time, the compiler

inserts code that executes a type dispatch at run time.

We now discuss steppin9-down and stepping-up. Stepping

down and up are crucial to the implementation of operations

on nested fields. Stepping-down consists of stripping off the top

pfield from each value being bound in the elwise bindings, and

setting a variable called the current-segdes to this value. So for

a nested field, each time the field is passed inside another eiwise

another of its pfield structures is stripped off. Stepping-up is

the inverse of stepping-down. When leaving an elwise stepping-

up consists of tagging on a pfield structure to the result returned

from the body of the elwise and restoring the value of the current-

segdes. Figure 9 illustrates the code inserted by these manipula-

tions.

(simpelwise ((a A)

(bS))

(+ _,b))

(let ((a (pfield-values A))

(b (pfield-values B))

(current-segdes (pfield segdesA)))
(make-p field

:segdes current-segdes

:values (p-+ a b)))

Figure 9: An example of the stepping-down and stepping-up

manipulations.
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To see how stepping-down and stepping-up are used, we con-

sider an exaxnple. Consider the following code:

(le_ ((field-of-fields

#FCtF(7 4) .F(11) #F(8 t 17))))

(elwise ((field field-of-fields))

(elvise ((value field))

(+ value value)))

:_ #F(#F(14 8) #F(22) #F(16 2 34))

Based on the representation discussed in Section 5.l, the original

field is represented as:

field-of-fields =

p//etd
segdes: [3]

pfield

vMues: segdes: [2 I 3]

values: [7 4 11 8 I 17]

When entering the outer elwise, the stepping-down code strips off

the top pfleld leaving:

I Ifield = segdes: [2 1 3]

values: [7 4 1% 8 I 17]

And when entering the inner elwise,the next pfield isstripped off

leaving:

value = [7 4 11 8 I 17]

Now when p-+ is applied to value, the result is:

[14 8 22 16 2 34]

When exiting the inner elwise the stepping-up code appends a

pfield back on returning:

segdes: [2 1 3]

values: [14 8 22 16 2 341]

And when exiting the outer elwlse another pfleld is appended

returning:

segdes: [3]

pfield

values: segdes: 1"2 I 3]

values: 14 g 22 16 2 34

Which is the representation of the desired result:

#F(#F(14 8) #F(22) #F(16 2 34))

In this exarnple, the code that executes the addition runs

in parallel over all elements therefore taking advantage of the

parallelism within each subfield and also the parallelism among

the subfields. This technique works regardless of the depth of

the nesting and regardless of the complexity of the operations

executed within the elwise.

One way of thinking about what is going on is that the com-

piler converts an elwise, which is a mapping of a function over

many sets of chtta, into s new function over one larger set of

dAtw--the data sets all appended together. The effect of stripping

offa pfield by the translated elwir_ is to remove a level of dividing

boundaries and therefore effectively appending the data sets. So,

in the example, inside the inner elwise there are no longer any di-

viding boundaries--all the original values are appended into one

long vector.

Compiling Conditionals

When creating a parallel version of a function, the functions in the

body can be simply converted to calls to their parallel versions.

On the other hand, the special forms do not obey the normal rules

of function application and therefore cannot simply be replaced

by a parallel function (for example, the if form only evaluates

the second argument if the first evaluates to T). In this section

we briefly discuss how the parallel version of the if special form

is implemented by the compiler discussed in this paper. A more

complete discussion can be found in [3].

The problem with the if special form is that some elements

will take one branch while others will take the other branch. At

run time, _s long as there are some elements that want to take

ea_ branch, both branches must be executed. Since only a small

numb_ of elements might take one of the branches, it would be

inefficient to execute the code in that branch over all elements

(this assumes that it is cheaper to operate on shorter vectors,

which is the ease if multiple elements are placed on each physical

processor). This can be particularly bad for nested conditionals.

The compiler, therefore insertscode that packs the elements that

take each branch into pvectors that only contain the elements

which take that branch. After both branches are executed, the

results are merged.

Figure 10 shows an example of the translation.

(if flag I
(funcl a)

(rune2b))

(if(or-reduce flag)

(if(or-reduce (p-not flag))

(recursire-flag-met ge flag

(let ((a (recursive-pack a flag)))

(funcl a))

(let ((b (recursive-pack b (not flag))))

(func2 b)))

(f_ci a))
(rune2b))

Figure 10: Translating the parallel version of the i_ special

form. If the flag is gIL in all of the segments, only rune2 is

executed. If the flag is T in all of the segments, only funcl is

executed. If some flags are T and other NIL then the respec-

tive segments are packed before execution and merged after

execution.

Operations

There are several PARALATION LISP operations that need to be

implemented. We only need to implement the unsegmented ver-
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slonsbecause we can use the same translator that generates par-

allel versions of the routines to generate parallel versions of the

PAltALATION LISP operations. The operations we have imple-

mentedincludeleag_h, eli, _tch, <-, expand, collectand

collapse. The length and e11_ are implemented with primitives

length and extract. We now show the code needed to implement

expand, omitting the others due to space limitations.

(defun expand (field)

(le_ ((child-field (pfield-values field)))

(,.aka-pfield

:values (values (pfield-values child-field))

: segdes

(make- segmen_-des cript or

: lengths (vo : : +-reduce

(segment-lengths

(pfield-eagdes child-field))

(segment-head-flags

(pfield-segdes field) ))))) )

6 Summary

In this paper we have presented techniques for mapping the nested

execution of parallel constructs into fiat parallel models. Since ac-

tual para/lel hardware is usually fiat in nature, these techniques

are useful to implementors of high level collection oriented lan-

guages. These languages express parallelism in a natural way that

at first does not appear to be supportable by massively parallel

machines. These techniques form a bridge from the convenience

and power of nested collectionsand operations to the speed and

simplicity of machines like the CM-2.
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ABSTRACT

Image Processing problems are often ideally suited to

implementation on massively parallel machines. Providing a

machine independent image processing language that can be

readily targeted at massively parallel machines can be of great

benefit in aiding researchers to use such machines. Such a

language can free the user from having to learn the details of

directly programming such a complex machine. We discuss the

implementation and use of such a language, the AFATL (Air

Force Armament Laboratory) image algebra, on a massively

parallel machine. We introduce the problem of specifying

image processing algorithms in a machine independent way,

introduce the image algebra, provide an overview of how image

algebra constructs are implemented in Connection Machine

*lisp and provide examples of the use of image algebra for a

variety of image processing operations. Finally, we discuss the

generality, level of portability, and the efficiency of the existing

implementation.

INTRODUCTION

Massively parallel computers offer great potential benefits

to end users. Sometimes, however, users who could benefit

directly from the use of such massively parallel machines are

reluctant to use them. In some cases the decision not to use a

massively parallel machine is driven by the high cost of such

architectures, but in other cases the primary motivation for not

using massively parallel machine is a lack of understanding of

the computing paradigm on which such architectures are based

or a reluctance to tackle the problem of adapting current pro-

grams and programming techniques to a radically different

architecture To confuse the i_ue even further, differ, e-!

massively parallel machines have different architectures, con-

straints, host systems, and so forth, making the porting of pro-

grams prepared for massively parallel machines difficult.

One approach to solving this problem is to develop a gen-

eral purpose high-level language that expresses massively paral-

lel computations in a machine independent way. This solution

suffers from the problem of being architecture class specific.

Programs in such a language will not in general express algo-

rithms in a way that easily permits them to be ported to

different classes of architectures such as sequential or pipeline
machines.

f This work supported in part by the U.S. Air Force and DARPA under eontrae_

F08635-84-C-O2(J5, and wa_ conducted using the computational resources of the

Northeast Paxaltet Architectures Center (NPAC) at Syracuse University, which is
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One can overcome this problem of architecture class

dependence in a specific application domain by developing a

high level application specific language that is architecture class

independent. In this paper we discuss implementation and use

of such a language, the AFATL (Air Force Armament Labora-

tory) image algebra [1,2,3], on a massively parallel machine.

The architecture independence of this algebra is a result of its

formal mathematical structure and method of development.

Implementations of the image algebra have been developed for

three kinds of processor architectures: sequential, vector paral-

lel, and massively parallel. We discuss a massively parallel

implementation in this paper.

In the next section, we introduce the image algebra. We

follow that with an overview of a Common Lisp implementa-

tion of the image algebra on the CM2 Connection Machine.

We then provide examples of the use of this image algebra

implementation. We summarize with a discussion of the gen-

erality, level of portability, efficiency, and extensibility of the

existing implementation.

IMAGE ALGEBRA

The image algebra was designed to provide a mathemati-

cal system to support implementation, comparison, and analysis

of image processing transformations. A number of architecture

specific image processing notations have been developed in

recent years [4], but programs developed in such languages are

not easily ported to other architectures. Other image process-

ing notations have been based on mathematical models of

images [5], but most have not been demonstrated to be capable

of describing certain classes of image processing transforma-

tions. The AFATL image algebra (henceforth referred to sim-

ply a_ image algebra) was developed with the intent of avoiding

these pitfalls. The algebra was developed after carrying out a

study of over 200 image processing algorithms. The operands

and operations employed in these algorithms were analyzed to

determine the fundamental components upon which they are

built. The image algebra was then developed by extracting the

relevant components di_overed during that study.

The image algebra has been shown to be sufficient to

express all image transformations over images with finitely

many gray-values [61 as well as all image transformations

described by finite program schemes [7]. Informally stated,

these results mean that the image algebra can express any

usable image transformation. Of greater interest, however, is

the algebra's coherent set of operands and operations and the

ease with which the algebra can be used to describe image



transformations. In the rest of this section we describe the

image algebra briefly, concentrating on those components most

relevant to our discussion of massively parallel implementation
of the algebra.

An algebra consists of a set of operands together with a

set of flnitary operations on those operands. We briefly

describe the operands and operations comprising the image
algebra in the following paragraphs. In the limited space pro-

vided, we are unable to give a complete presentation of the

image algebra. The interested reader should refer to [21 for a

more complete discussion.

The operands of the image algebra are values and values

sets, coordinates and coordinate sets, images, and generalized

templates. Informally speaking, a value set can be any set that

might be used for image pixe] values such as the reals (R),

integers (Z), binary representations of subsets of the integers,

and so forth. The coordinate sets of the image algebra are sub-

sets of R n, that is, they are subsets of real n-space. In imple-
mentations of the image algebra, we restrict our attention to

finite coordinate sets such as rectangular subsets of integral
cartesian space Z 2. We use symbols X and Y to represent coor-

dinate sets, with elements x and y respectively. An image is
simply the graph of a function from a coordinate set into a

value set. The set of all real valued images over coordinate set
X is denoted R x.

The fundamental operations on images in R x are, for the

most part, pixelwise induced operations on the reals. That is,

functions f:R--*R and g:R×R--*R induce similar functions

R X --*R x and RX×RX-*RX, also denoted by f and g, and
defined by

f(a) = {(x,c(x)): c(x) = f(a(x))}

g(a,b) = {(x,c(x)):c(x) = g(a(x),b(x)}.

For example, sin(a) = {(x,sin(a(x))): x E X }, and

a*b = {(x,.(x)*b(x)):x_X}.

In addition to these pixel-wise operations on images,

several unary operations on images and image dot product serve

to map real images into real values. The image sum operation,

E, is defined on image aER x as

_a = _ a(x).
xEX

Besides these unary and binary operations on images, the

Image Algebra supports what are called generalized template

operations. Each of these operations takes as operands an

image and a generalized template. The generalized templates

formalize and extend the concept of mask or template entities

used in neighborhood image processing algorithms.

Roughly speaking, if one wants to compute a generalized

template operation on a real-valued image over coordinate set

X, giving as its result a real-valued image over coordinate set

Y, one uses a real-value template in the set (RX) v (the set of

functions from coordinate locations in Y into real-valued images

in X. That is, if template t is an element of (RX) Y, then if

yffY, t(y)ER x, that is, t(y) is an image on X. For convenience

sake, we write t_ to mean t(y). The image assigned to a result

location is used to weight each of the values in the source image

and then gather those values together to yield the result image

value at that location. The weighting and gathering of values is

specified by an operation taking an image and template as its

operands and yielding an image result.

Although there are three fundamental image template
operations in the image algebra, we consider only one of them,

generalized convolution, in this paper. The other image-

template operations provided by the image algebra are multipli-
cative maximum and additive mazimum. Additive maximum

generalizes the gray-scale morphology to non-rigid structuring

elements [8], and multiplicative maximum provides a pseudo-

linear operation with characteristics that are currently under
exploration.

Given an image a on coordinate set X, and a template

t E (RX) Y, we define the generalized convolution of a with t,
written not as follows:

a(_t _ e where cER Y and for all y in Y, c(y) = E(a*ty).

In Figure 1, we show an image a, that will be convolved

with template t to yield a result image e, that is,

e = a(_t

Figure 2, shows how the generalized convolution operation is

applied to determine the the value of e at the pixel location yp

First one obtains the image try, then one multiplies this image

pointwise with the source image a. The sum of the pixel values

in this image are added together, the result providing the value

of c(y_).

1 2 3

4 5 6 _) t

7 8 9

image a

Figure 1.
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__z___

formation of

image c
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8

o

t
f'\

0 1

0 4

4 0

5 0

0 0

a*ty t

2 3

5 6

0 0 0 7 8 9

ty_ image a

Figure 2.

Note that in using a template operations to compute the

result value at a pixel location, such as Yl in Figure 2, one need

only consider multiplication at the locations in the support of

the image try, that is, the locations where ty_ is non-zero. The

support of ty_, denoted $(ty_), is highlighted in Figure 2. Thus,

- s(trE)a(x)" One can think of the template, then, asE(a*tyl) -- xe
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mapping each result image location into its source support. In
this sense, then template operations of the image algebra are

backward driven, since the result pixel location is first mapped

to a support, then an operation involving the support and the

image operand is performed to yield the result pixel value.

Many different formulations of neighborhood operations

have been developed and implemented in computer systems.

Such formulations may provide an operation similar to the

image algebra image-template operation but restricted in some

sense. One type of restriction is so prevalent we have given it a
special name. A template t is said to be translation invariant if

given x, y, and z satisfying x, x-_EX and y, y-k-z CY we have

ty(x) = ty+z(X-l-z), i.e. when translating the result location argu-

ment of the template, the template image yielded is identical

(up to the same translation). Translation invariance is not

required of image algebra templates. As shown in Figure 3, the

example template t of Figures 1 and 2 may assign to point Y2
an image completely different from that assigned to point Yr

0 0

18
0 5

y2
"- -a_. 23

0 0

formation of limage c a*ty_

0 0 0 1

"3

0 1 3 t 4

0 0 0 7

0

18

0

2 3

5 6

8 9

ty_ image a

Figure 3.

One important generalization of templates is to provide

for the definition of families of templates where each particular

element can be distinguished by parameter values. If P is a set

of parameter values, a real-valued parameterized template t

with parameters in P is a function of the form

t: P _ (RX) Y.

The parameterized template maps its parameter into a normal

template. The ability to define parameterized templates is of

great benefit in describing complex image processing and vision

algorithms. We discuss parameterized template definitions
further in the next section.

The subalgebra of the image algebra providing only the

operations of generalized convolution, image multiplication, and

image sum is isomorphic to linear algebra [9]. Removal of the

requirement for translation invariance provides the capability to

express non-linear transformations such as warpin_ with

image-template operations. The conceptual power of such tem-

plate operations comes from the distinction drawn between the

template operation, e.g. generalized convolution, and the assign-

ment of images to result locations by the template.

MASSIVELY PARALLEL IMPLEMENTATION

The image algebra described briefly in the preceding sec-
tion, while not in any way limited to implementation on mas-

sively parallel processors, can easily exploit the power of such

computer architectures. The obvious paradigm for parallel

implementation of the image algebra is to equate coordinates in

coordinate sets with processors in the machine architecture.

Unary and binary image operations can then be implemented in

a SIMD fashion. The implementation of image template opera-

tions, on the other hand, is somewhat more complicated.

Let us consider a model for implementing the expression

a®t. Our paradigm above indicates that each coordinate,

whether in the source or result coordinate set, will be associated

with some processor. As noted in the previous section, the tem-

plate operations are backward driven, so we will consider the

set of result processors as controlling the template operation.

Consider the processor associated with result location y. This

processor will need to compute the support of t at y, $(ty), then

for each location x in $(ty)it must compute a(x)*ty(x) and sum
these values to determine the result value at y. If template t is

translation invariant then such an operation is clearly SIMD. If

t is more complex then SINfD implementation becomes more
difficult.

We now discuss a language interface for providing the

image algebra to users. Let us first note that the image algebra

is not a programming language. In comparison to scalar arith-

metic, one can consider the image algebra to be the arithmetic

of images. We have implemented a subset of the image algebra

as an extension to Common Lisp ll01. Our massively parallel

implementation of the image algebra has been conducted on a

CM2 Connection Machine using *lisp [11]. This provides us

with several key benefits: we have the benefit of working in the

rich development environment provided by Common Lisp; and

all image algebra constructs described in this paper have been

able to undergo parallel development in a uniprocessor imple-

mentation carried out in Kyoto Common Lisp on various Sun

workstations. This exemplifies the architecture independence of

the image algebra. Aside from execution speed, there is no way

of distinguishing what underlying architecture the image alge-

bra algorithmist is using.

Our implementation has undergone several stages and is

_onqnuing to evolve. In the current implementation a seamless

extension of Common Lisp is provided by execution of an image

algebra read function. The user interface provided by this func-

tion can distinguish between forms that employ image algebra

constructs and execute appropriate code to implement those

image algebra operations. The new data type :l.mage is pro-

vided by this interface. While images are represented in the

CM2 implementation as *lisp pvars, the user of the image alge-

bra need not be concerned with this detail. Common Lisp

arithmetic forms are extended to have appropriate meanings

when operating on images. Image algebra operations with no

analogues in Common Lisp are provided via defined functions.

It is interesting to note that many of these functions are already

directly available in *lisp, indicative of the close relationship
between the Connection Machines model of computation and

the image algebra. Parameterized templates are defined with a

form analogous to defun and are used in image-template

operations. As implementation of unary and binary image
operations is relatively straightforward, we will concentrate in

the rest of this section on definition and use of templates.
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As noted in the previous section, a parameterized tem-

plate is a function mapping a parameter value into a template,

which is a function from coordinates into images. One can,

however, more compactly specify a template by considering

only the support (non-zero portion) of the image it yields. This

view leads to a significantly more efficient implementation and

permits more compact specification of templates. Parameter-

ized templates are declared much like Common Lisp functions

with the special form clef template. The clef template

form specifies the template name, its parameter names, the

result location coordinates, and a template body which con-

structs the support of the template when given bindings for

parameter values and result coordinate location. The special

form weight is evaluated to yield a single pixel in the support.

The forms that may appear in a template body under our

current image algebra implementation are limited. Scalar arith-

metic functions may be used, as well as predicate functions, do,

lf, let, let*, when, and weight. The syntax for template

definitions is given below:

deftemp:l.ate template ((var)*)

[ (coordinates (var)* ) ) ]

body

The parameter names for the template are contained in the list

following the template name, this is followed by an optional

coordinate specification giving a sequence of names correspond-

ing to the result location's coordinates, and the template tx_ly

containing forms to assign weights to the support follows.

Templates are used in the context of image-template

operations. The generalized convolution operation, O, has the

following form:

gcon image (template (parameter)*)

Note that the template argument is evaluated with its parame-

ters, indicating that the specific template associated with the

parameter values has been computed. The weight special

form has the following form:

weight expression ((expression)*)

and assigns the value of first expression to the source image

support location addressed by the coordinates given in the list

of expressions.

Perhaps a simple example will help illustrate the use of

clef template. Consider a translation invariant template

with no parameters whose support contains the result pixel

location, its immediate right neighbor, and its immediate left

neighbor, each with weight. 1/'3. Such a template can be

defined as follows:

(deftemplate smooth 0

(coordinates (yO yl))

(weight 1/3 (yO yl))

(weight 1/3 ((I+ yO) yl))

(weight 1/3 ((I- yO) yl)))

Note that this template has an empty parameter list.

Hence there is only one template in the family described by this

template definition. Note also the coordinate specification nam-

ing the horizontal and vertical coordinates in the result image

coordinate set. These pseudo-variables, y0 and yl, will take

on values corresponding to result image coordinates when the

template is evaluated. In this simple example, the first

weight form assigns weight 1/3 to the source coordinate point

in the same location as the result coordinate. The second and

third weight forms assign 1/3 to the source coordinate points

corresponding to the nearest right and left neighbor locations to

the first support location. This template might be used in a

generalized convolution operation to horizontally smooth an

image a as follows:

(gcon a (smooth))

The user interfacepresents image-template operations and

templates in a fashion that is completely analogous to their

image algebra definitions. The implementation of image-

template operations on the CM2 isnot, however, directly analo-

gous to this interface. Let us look at how the generalized con-

volution of an image and template is implemented. Consider

,!,_evaluation of

(gcon image (template arg))

In our CM2 implementation, template will have been

declared by evaluating a deftemplate form. Deftemplate is

a macro yielding a defun of a like named function as its result.

This function takes the following parameters:

(1) any parameters declared in the deftemplate

specification,

(2) parameters specifying with image-template operation is to

be performed, and

(3) an image.

Evaluation of the gcon form will dispatch the template

function with the appropriate parameter values. In this case,

the dispatched function is roughly equivalent to

(template arg 'gcon image)

The template function constructed as a result, of evaluation of

deftemplate computes the result image pvar in parallel on

the CM2. The image-template operation determines what

weighting and combining operations to perform as well as deter-

mining what value to use as a result upon finding an empty sup-

port. The evaluation of welght forms executes a weighting

and combining operation. The result returned by the template

function is the computed image pvar.

Several alternative implementations that more directly

represent the semantics of the image algebra were considered

but found to be too complex to efficiently implement on the

Connection Machine. While the algebra specification of an

image-template operation looks like a forward-directed opera-

tion, the template is implemented in a more backward-directed

fashion, computing result locations by iterating over the sup-

port.

It is of interest to note that template bodies need not

necessarily be transparently SlMD in nature. Consider the fact

that do forms with initial and exit specifiers depending on the

result location may be specified. This means that the number

of elements in a template's support may vary from result loca-

tion to result location. This has required the implementation of

a general parallel do (*do) structure. The final example in the

section following uses precisely such a template.

EXAMPLES OF USE OF IMAGE ALGEBRA ON

THE CM

In this section we provide a few simple examples of the

definition of templates in the Common Lisp image algebra nota-

tion and the use of these templates with the generalized convo-

lution operation. It must be noted that the image algebra con-

sists of much more than just a few convolution operations and
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completealgorithmsfor suchapplicationsastrackingand
identificationofobjectscanbeimplementedusingtheimage
algebra.

Thefirstexamplewepresentisthesmoothingtemplate of

the last section. The source template is as follows:

(deftemplate smooth 0

(coordinates (yO yl))

(weight I/3 (yO yl))

(welght 1/3 ((1+ yO) yl))

(welght 1/3 ((i- yO) yl)))

The actual *lisp code generated for this template is listed here,

(*DEFUN SMOOTH (#:SMOOTH-SOURCE-IMAGE-13

#:SMOOTH-SOURCE-WEIGHTING-OP-135

#:SMOOTH-ACCUMULATION-OP-136

#:SMOOTH-OFF-SOURCE-RETURN-VALUE-134)

(mALL

(*LET

((#:SMOOTH-TARGET-IMAGE-132

(!! #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134))

(X (SELF-ADDRESS-GRID!! (!! 0)))

(Y (SELF-ADDRESS-GRID!! (!! I))))

(*SET #:SMOOTH-TARGET-IMAGE-132

(*FUNCALL

#:SMOOTH-ACCUMULATION-OP-136

#:SMOOTH-TARGET-IMAGE-132

(*FUNCALL

#:SMOOTH-SOURCE-WEIGHTING-OP-135

(!! 0.333)

(PREF-GRID!!

#:SMOOTH-SOURCE-IMAGE-133

(ROUND_ (I-!! X)) (ROUND!! Y)

:COLLISION-MODE :MANY-COLLISIONS

:BORDER-PVAR

(!! #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134)))))

(*SET #:SMOOTH-TARGET-IMAGE-132

(*FUNCALL #:SMOOTH-ACCUMULATION-OP-136

#:SMOOTH-TARGET-IMAGE-132

(*FIINCAIt
#:SMOOTH-SOURCE-WEIGHTING-DP-135

(!! 0.333)

(PREF-GRID!!

#:SMOOTH-SOURCE-IMAGE-133

(ROUND!! X) (ROUND!! Y)

:COLLISION-MODE :MANY-COLLISIONS

:BORDER-PVAR

(!! #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134)))))

(*SET #:SMOOTH-TARGET-IMAGE-132

(*FUNCALL #:SMOOTH-ACCUMULATION-OP-136

#:SMOOTH-TARGET-IMAGE-132

(*FUNCALL

#:SMOOTH-SOURCE-WEIGHTING-OP-135

(!! 0.333)

(PREF-GRID!!

#:SMOOTH-SOURCE-IMAGE-133

(ROUND!! (1+!! X)) (ROUND!! Y)

:COLLISION-MODE :MANY-COLLISIONS

:BORDER-PVAR

(!! #:SMOOTH-OFF-SOURCE-RETURN-VALUE-134)))))

#:SHOOTH-TARGET-IMAGE-132)))

Figure 4 shows an image of an sr71 airplane, sr71. Figure 5

shows the result of evaluating the expression

(gcon srTl (smooth))

_iiiiiii

Figure 4.

Figure 5.

The Second example demonstrates a translation variant

template in which the support may be empty for some target

pixel locations. The template we present can be used to cause

all pixels within a given rectangular regions in an image to take

on the value 0. The rectangular region to be set to zero is

specilied by template parameters.
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(deftemplate matte (x-low x-hlgh y-low y-hlgh)

(coordlnaCes (x y))

(when (or (> x x-hlgh)

(< x x-low)

(> y y-high)

(< y y-low))

(weight 1 (x y))))

Note that when evaluating the result of a generalized con-

volution operation if the template support is empty at some

location y, then the result value at y will be 0. Any processor

not executing a weight operation in evaluating a template will

have empty support and hence be assigned this value. The

matte template yields an empty support at each location inside

the specified rectangle. Figure 6 shows the result of evaluating

the expression

Figure 6.

Tile third example shows the definition of a template that

can be used to achieve rotation of a source image. We demon-

strate this technique with a simple neacest-neighbor rotation in

which the nearest point to the ideal rotation source is chosen

and placed in the target image. A more appropriate and physi-

cally accurate interpolation of the source gray-value could be

described by suitable modification of the template definition.

The template definition is as follows:

(deftemplate rotate (i J theta)

(coordlnaCes (yO yl))

(weight I ((+ (* (- yO i) (cos _he_a))

(* (- yl J) (sin theta))

1)

(+ (- (* (- yO l) (sin theta)))

(* (- yl J) (cos theta))

J))))

The definition of the rotate template assigns to each result

location a single support pixel which is the nearest neighbor to

the inverse of the rotation specified. This, once again, brings up

the backward-driven nature of the template definition. The

template tells use where to find the source values associated

with a result location. Other warpings, such as projective

transformations can be specified with template operations in a

similar manner.

Figure 7 shows the result of executing the following

expression:

(gcon sr71 (rotate 84 64 0,436))

i!iiiii

Figure 7.

Our final example demonstrates the versatility of tem-

plates by providing a translation variant shrinking template

definition. The support at different points in this template have

different positions, weights, and numbers of elements, as deter-

mined from the template arguments. Each result pixel y is

assigned a support containing the location yP, where p is

specified as a parameter to the template. The template
definition is as follows:

(deftemplate power-shrlnk-y (power)

(coordinates (x y))

(if (/= y o)

(do ((i (expt (-y 0.5) power)

(i+ i)))

((> i (expt (+ y o.5) power)))

(welght_ I (x (expt y power))))))

The *lisp code generated for this template is shown here.
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(,DEFUN POWER-SHRINK-Y

(# :POWER-SHR INK-Y- SOURCE- IMAGE- 150

# :POWER-SHRINK-Y-SOURCE-WEIGHTING-OP- 152

# :POWER-SHRINK-Y-ACCUMULATION-OP- 153

# :POWER-SHRINK-Y-OFF-SOURCE-RETURN-VALUE- 151

POWER)

(*ALL

(*LET

( (# :POWER-SHR INK-Y-TARGET- IMAGE- 149

( !! # :POWER-SHRINK-Y-OFF-SOURCE-RETURN-VALUE-151))

(X (SELF-ADDRESS-GRID ! ! ( ! ! O) ) )

(y (SELF-ADDRESS-GRID!! (!! I))))

(IF!! (/=!! Y (!! 0))

(*LET

( (# :DO-PASSED-EXIT-P-155 T! !)

(I (EXPT!! (-!! Y C!! 0.5)) (!! POWER))))

(BLOCK NIL

(TAGBODY

# :DO-LOOP-TAG-BODY- 154

(*SET # :DO-PASSED-EXIT-P-155

(AND! ! # :DO-PASSED-EXIT-P-155

(NOT!! (>!! I (EXPT!! (+!! Y (!! 0.5))

(!_ POWER))))))
(IF (NOT (*OR #:DO-PASSED-EXIT-P-155))

(RETURN-FROM NIL) )

(*WHEN # :DO-PASSED-EXIT-P-155

(*SET # :POWER-SHRINK-Y-TARGET- IMAGE- 149

(*FUNCALL

# : POWER- SHR INK-Y-ACCUMULAT I ON- OP- 153

# :POWF_/_- SHR INK-Y-TARGET- IMAGE- 149

(*FUNCALL

# :POWER-SHRINK-Y-SOURCE-WEIGHT ING-OP- 152

(!! I)

(PREF-GRID ! !

# :POWER- SHRINK-Y- SOURCE- IMAGE- 150

(ROUND _ _ X)

(a0t_D__ I)
:COLLISION-MODE :]_NY-COLLISIONS

:BORDER-PVAR

(_

# :POWER-SHRINK-Y-OFF-SOURCE-RETURN-VALUE- 151) ) ) ))

(*SET I (I+!! I)))

(GO # :DO-LOOP-TAG-BODY-154) ) )) )

# :POWER- SHRINK-Y-TARGET- IMAGE- 14g) ) )

Note that this code has implemented the MIMD do of the

template by iterating enough times to cover the range (expt

(- y 0.5) power) to (expt (+ y 0.5) power) for any

processor with address y. Figure 8 shows a simple line drawing

of a skull, and Figure 9 contains the result of application of the

following expression involving that image:

(gcon skull (power-shrlnk-y I.I))

Figure 8.

Figure 9.

SUMMARY

As noted in the introduction, one can make massively

parallel computers accessible to researchers in a specific applica-

tion area by providing a domain specific user interface that will

execute efficiently on such machines without requiring

knowledge of the underlying architecture. In the case of the

image algebra, this has been achieved by carefully choosing a

set of operands and operations that, while capable of expressing

all image processing transformations, is not dependent on the

particular attributes of any special computer architecture or

class of architectures. At the same time, the image algebra is

clearly well suited to implementation on massively parallel

machines such as the CM2.

The particular choice of Common Lisp for this implemen-

tation has provided great portability for user programs. The

image algebra has been as easy to implement on uniprocessors

as on massively parallel machines. The only differences discer-

nible to the user are the dramatic difference in speed of execu-

tion of the developed algorithms and the different behaviors of

systems when error conditions arise.
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The current Connection Machine implementation, while

relatively efficient., can be improved in several ways. Many of

the constants appearing in template bodies could be assigned to

pvars using *let. Templates could be implemented as func-

tions that generate optimized versions of themselves when

dispatched from particular image-template operations. A

variety of data flow analysis techniques and peephole optimiz_-

tions could be used to improve the code generated for tem-

plates. One example of where data flow analysis might pay off

is in the substitution of front end control flow for distributed

control and termination on execution of do's with constant

bounds. Another is in combining the weighting and combining

operations into single *lisp operations, rather than sequences of

operations.

Despite the rudimentary nature of the current implemen-

tation, the results we have seen are quite promising. Inter-

preted execution speed of image algebra code compares favor-

ably with hand coded versions of similar algorithms and the

implementation can be easily modified to add further func-

tionality. Work continues on expanding the subset of the image

algebra currently supported.
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ABSTRACT

MPP Pascal is one of the high level

languages available on the Massively

Parallel Processor (MPP) at NASA's

Goddard Space Flight Center. The MPP is

a SIMD computer that obtains its computa-

tional power by employing 16,384 bit-

serial processing elements to solve a

single problem. MPP Pascal is a subset

of the language Parallel Pascal, which

extends the Pascal language by providing

constructs for explicitly expressing

parallelism in the form of array opera-

tions and functions. Access to several

of the MPP's unique hardware features is

available through language constructs

that map directly onto the architecture

of the machine. This paper presents the

language MPP Pascal and discusses the

implementation decisions pertinent to

mapping parallel constructs onto the MPP.

These issues are presented in order to

provide insight into the design and

development of future language systems

for massively parallel computers.

INTRODUCTION

The emergence of parallel computing has

produced a variety of architecture

designs capable of peak processing rates

many times greater than that of the

fastest sequential machines. Each new

architecture requires new programming

techniques to achieve the potential

processing rates of that machine.

However, to achieve peak processing

rates, the parallelism of the problem

must match the parallelism of the machine

at the time of execution. Mapping a

problem to a machine requires both

suitable algorithms and suitable program-

ming languages for expressing those

algorithms. Without an appropriate

algorithm, the computational power

present through parallel processing is

lost.

By design, high level programming

languages mask the underlying hardware

architecture to provide a machine

independent method of representing

algorithms. To support high level

languages, compilers must be capable of

manipulating instruction sequences to

produce efficient code for parallel

machines.

However, compiler technology does not

offer the capability to transform

programs written in a high level language

into efficient executable code for

parallel computation. Decomposing a

problem so the inherent parallelism

matches the machine is difficult even for

experienced programmers. Current

compiler technology cannot decompose

serial code effectively. Even when an

algorithm is expressed in a parallel

language, compilers are not capable of

efficiently partitioning data and mapping

communications.

Attempts at creating parallel programming

languages and environments have not

succeeded in eliminating the limits of

compiler technology. This inherent

problem prevents the parallelism of the

problem and the parallelism of the

machine from being in balance at execu-

tion time.

To create the proper balance between a

programming language and the Massively

Parallel Processor (MPP), MPP Pascal was

designed to take advantage of the

hardware features of the MPP. This paper

discusses the language MPP Pascal and

issues pertinent to its implementation.

A brief overview of the MPP is presented

prior to discussing the language and

implementation.

THE MACHINE

The MPP is a single-instruction/multiple-

data stream (SIMD) computer consisting of

16,384 simple, bit-serial processing

elements (PE's). Each PE has 1,024 bits

of local memory and the ability to
communicate with its four nearest

neighbors. The PE's can be logically

thought of as a 128 by 128 array. The

array of PE's is controlled by the array

control unit, which is comprised of three

separate processors that run asynchro-

nously: the PE Control Unit (PECU), the

CH2649-2/89/0000/0595501.00 © 1988 IEEE
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Main Control Unit (MCU) and the Input

Output Control Unit (IOCU) (Figure 1).
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The PECU broadcasts instructions to the

PE's, which operate in lockstep on data

held in their local memories. Since the

PE's do not have the ability to modify

memory addresses issued by the PECU, each

instruction in the array is performed on

a bit-plane operand (16,384 bits). All

arithmetic and relational operations are

implemented as subprograms, and need to

be built from basic single bit instruc-

tions.

Connected to the PECU through a set of

control register queues is the Main

Control Unit (MCU). The MCU coordinates

all processors in the MPP, and invokes

operations in the PECU by issuing

requests through the register queues.

The MCU was designed for high speed, 16-

bit integer calculations, and is similar

in architecture to a reduced instruction

set computer (RISC). As the master

controller, the MCU communicates with the

other processors and initiates all

processes. Moreover, all scalar opera-
tions are carried out in the MCU.

When the MCU requests an I/O operation,

the IOCU responds by initiating a data

transfer either between the array and

staging memory, or the staging memory and

the host Vax computer. The stager is a

permutation device with a large internal

memory. Its primary function is to

rearrange data as it moves between the

host memory and array, so the internal

data representations are correctly

formatted for the target memory. This

process is commonly referred to as

corner turning.

The MPP is connected to a host Vax

computer, which provides the entire

program development environment. Access

to the MPP is controlled by programs

running in the Vax, and all I/O opera-

tions during program execution are

handled by the front end.

THE LANGUAGE

MPP Pascal evolved from the language

Parallel Pascal as it was designed by

A.P. Reeves [1]. Parallel Pascal

introduces extensions to standard Pascal

for advanced architectures (i.e., vector

and parallel computers) by providing

language constructs for explicitly

expressing parallelism in the form of

array operations and functions.

Original efforts at NASA's Goddard Space

Fllght Center focused on implementing

Parallel Pascal, as defined by Reeves, on

the MPP. Various problems with the

implementation of Parallel Pascal led to

a machine specific version of the

language, called MPP Pascal.

MPP Pascal is a subset of the language

Parallel Pascal. The semantics of

several Parallel Pascal constructs are

redefined to match the parallelism of the

machine. In addition, a new keyword was

added, and several language constructs
removed. The differences between the two

languages are directly attributed to the

architecture of the MPP and provide

direct access to hardware features that

were masked by Parallel Pascal.

The most significant modification to

Parallel Pascal is the semantic defini-

tion of the keyword parallel. In

Parallel Pascal, the keyword parallel can

only be used in conjunction with data of

type array, and is treated as a compiler

directive informing it of the intended

use of an array.

In MPP Pascal, the keyword parallel array

refers to a primitive data item that

matches the parallelism of the MPP

exactly (i.e., a 128 by 128 array) (Table

1). A parallel array may have an

associated type of integer, real or

Boolean, and is manipulated by the same

primitive operators as other Pascal

primitive data types (+, -, *, /, div,

mod, and, or, not, <, >, <=, >=, =, <>,

:=) and primitive functions (abs, exp,

In, sqr, sqrt, trunc, round, odd, pred,

succ, sin, cos, arctan). The operators
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act on parallel arrays on an element by

element basis. For example, the addition

of two parallel arrays result in a

parallel array, where each element is the

sum of the corresponding elements of the

operands.

TABLE 1: Syntax for MPP Pascal Extensions

Parallel Arrays

type < identifier > = parallel array [{ < index type >,}

0..127,0_127] of <element type>;

Stager Arrays

type <identifier> = stager array [{<index type>,}

0_127,0..127] of <element type>;

Where Statement

where <mask expression> do <statement>

or

where <mask expression> do <statement>

otherwise <statement>

Other constructs shared by both MPP

Pascal and Parallel Pascal are array

manipulation functions. In the case of

MPP Pascal, these functions are only

defined for parallel array data items.

The reduction functions (sum, prod, max,

min, all, any) operate on a parallel

array and produce a scalar result of the

appropriate type (Table 2). The trans-

formation functions (shift, rotate) move

data elements to neighboring locations.

TABLE2: Pradefined Functions for Parallel Arrays

Reduction

sum arithmetic sum

prod arithmetic product
all boolean and

any boolean or

rn_ arithmetic maximum

rain arithmetic minimum

Permutaion

shift end-off shift, zero fill

rotate end-around shift

Given the semantic meaning of parallel

array, it is not possible to access

individual elements through indexing

operations. Therefore, the where-do-

otherwise construct was introduced to

provide a mechanism to selectively

process elements of a parallel array.

Similar to the if-then-else construct,

which causes conditional execution, the

where-do-otherwise statement causes

conditional assignment. All assignment

statements in a where block selectively

store data based on a logical bit-plane

mask.

A syntactic construct that was added to

the language MPP Pascal, which is not

part of Parallel Pascal, is the keyword

stager. Similar to the keyword parallel

in Parallel Pascal, the keyword stager in

MPP Pascal can only be associated with

arrays, and is treated as a compiler

directive indicating the memory location

of the specified variable. The only

valid functions for stager arrays are

get, put, swap and transfer. These

functions move data between the staging

memory and array memory or between

staging memory and disk files maintained

by the host Vax computer. Stager arrays

cannot not be part of any arithmetic

expressions. The stager can be viewed as

either temporary memory or as an I/O

buffer.

As mentioned previously, various data

types and statement constructs were

omitted from the initial implementation

of MPP Pascal. These items were not

needed to support the scientific applica-

tions that were being developed on the

MPP, and could, therefore, be implemented

at a later date. The pointer and set

data types were omitted along with

operations and operators that were

specifically included for use with data

of these types. In addition, the case

statement and recursion are not sup-

ported.

THE IMPLEMENTATION

The architecture of the machine suggests

a decomposition of the executable image

that maps well to the environment of the

MPP. The language system is comprised of

three integrated components: the primi-

tive library, the I/O run-time library,

and a compiler that generates code for

the MCU. Each of these components

corresponds to the three processors

available in the MPP's array control

unit (Figure 2).

The primitive library contains the set of

subprograms required to support the

arithmetic, relational and function

operations for parallel array data. All

parallel operations are implemented

through these primitives. The sub-

programs associated with these parallel

operations execute in the PECU. To

perform the sequence of parallel opera-

597



Vax 11/7'80

. I_
(MCU) ] _ Assembly1

J

Figure 2. /Vchtteclure of MPP Pascal

tions specified by a program, a series of

primitive subprogram calls are invoked.

As mentioned previously, the MCU in-

itiates PECU operations, and therefore,

must be programmed to initiate array

operations that correspond to the

semantics of the user program.

To improve efficiency, parallel arrays of

type integer are stored and manipulated

based on their required bit length. In

Pascal, the program can specify a

subrange of acceptable values for integer

variables. MPP Pascal uses this capa-

bility to reduce memory requirements in

the array and reduce execution time.

Given the bit-serial nature of the

array, processing time is greatly reduced

for shorter integer representations.

The I/O run-time support library provides

the subprograms needed to perform I/O

operations in the MPP. Subprograms are

available that transfer data between the

MPP and host Vax computer (get and put),

as well as providing routines to move

data between the array and stager

memories (transfer and swap). All I/O is

initiated by the MCU and responded to by

the IOCU. The asynchronous processing

capability of the three array control

units allows for I/O, array and scalar

operations to execute simultaneously.

MPP Pascal utilizes this capability by

initiating PECU and IOCU processes and

continuing with MCU computations.

The final component required for execut-

ing a program on the MPP is the control

program, which resides in the MCU. The

MCU program is the only component that

varies from program to program. A

compiler transforms MPP Pascal programs

into assembly language for the MCU in a

two step process. The first step

translates MPP Pascal into Parallel

Pcode, and the second step transforms

Parallel Pcode into MCU assembly lan-

guage.

Parallel Pcode is an intermediate

language for a hypothetical stack

machine. Parallel Pcode is an extended

version of Pcode, which is the inter-

mediate form produced by the original

Pascal compiler. In fact, the MPP Pascal

compiler is a modified version of the

original Pascal P4 compiler. The

original compiler was modified to accept

the parallel constructs of MPP Pascal and

produce the new intermediate form. The

compiler performs all syntax analysis.

The second step in the compilation

process is code generation. The Parallel

Pcode is processed and converted to

assembly language. The MCU assembler

representation of a program includes

calls to the primitive library, I/O

library, and scalar instructions.

Experience showed that the speed of the

MCU was insufficient to keep the array

busy when short operands are involved in

a sequence of parallel operations. The

overhead associated with calculating

address and executing the primitive call

exceeded the time required to perform the

operation. To eliminate much of the

overhead required to calculate addresses

for parallel operations, all address

calculations are done at either compile

time or at the beginning of an executable

process.

This modification to the language

Parallel Pascal led to the elimination of

recursion and argument passing by value.

The difference in execution time between

code generated by the MPP Pascal and

Parallel Pascal compilers on the MPP can

be attributed mainly to the reduction in

address calculations. The overhead

associated with address calculations even

affects the computational speed of

complex operations, such as floating

point arithmetic. Thus, recursion is not

addresses are allocated statically by the

code generator.

The differences in computation time

between Parallel Pascal and MPP Pascal

justify the changes made to the language.

The potential power of the MPP is easier

to harness with the modified language,

since the architecture is not hidden by

the language. Originally, much effort

was put into writing a compiler that

generates efficient code for the machine.

However, the compiler itself could not

compensate for the speed of the scalar

MCU processor. Therefore, the language

needed to be modified to help reduce the
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overhead associated with a high level

language such as Parallel Pascal.

CONCLUSION

The implementation of MPP Pascal utilizes

the architecture of the machine to

provide an efficient mapping from program

syntax and semantics to program execu-

tion. Moreover, it combines the func-

tionality of a high level language and

the characteristics of the architecture

to provide an efficient implementation

environment for applications.

Other computer architectures would, in

general, require a different implementa-

tion or language constructs than those

needed for the MPP. MPP Pascal demon-

strates the close association needed

between hardware and a programming

language for generating highly efficient

executable code for a parallel computer.

Until programming tools are capable of

utilizing parallel hardware technology,

language implementations similar to the

one described for MPP Pascal will be

prevalent in high speed scientific

computing.
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ABSTRACT

A formal model for SIMD computation is presented that captures
the essential operating features of current SIMD computers, yet
which allows for extensions and variations of existing
architectures. The fundamental components of the model are a

host computer, a set of processsing elements P, a set of control

units C, a set of input/output controllers %0, and a set of external

devices D. Each component sends or receives data or
instructions to/from other components. The communication

patterns among the model components are described by six
networks, each of which governs the communication between a

single pair of components. The networks are represented as
functions or collections of functions with formally specified
mathematical properties that have natural interpretations in the
context of SIMD computation. Using the functional approach, a
set of four assumptions for SIMD computers is proposed, and
consequences of these assumptions are explored.

Keywords: SIMD computation, computational model

1. INTRODUCTION

During the past forty years, the yon Neumann model of

computation has been used to describe a wide variety of
sequential computers. The major components of this model are
an arithmetic-logic unit, a control unit, memory, and an
input/output system. The simplicity and generality of the yon
Neumann model is largely responsible for the creation of
programming languages and systems software that can be

transported between computers with different underlying
architectures.

Parallel computers can be obtained by replacing the individual
components of the von Neumann model by multiple units that
may interrelate in different ways. For example, a parallel

computer with multiple ALUs can have memory that is shared
between all of the processors or is distributed among them.
Input and output may be performed by only one distinguished
processor or by all of the processors. Communication between

the processors may be accomplished by explicit interprocessor
channels, or through a bus or switching network.

pRECEDING PAGE BLANK NOT FILMED
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Rather than attempting to extend the von Neumann model to

parallel computers in general, these computers can be classfied
by considering the way in which data and control flow in a
parallel computation. From this perspective, the fundamental

distinction is between single-instruction, multiple-data-stream
(SIMD) computers and multiple-instruction, multiple-data-
stream (MIMD) computers. In SIMD computers, the execution
of a program can be regarded as the execution of the same
instruction on a number of independent data streams. The
Connection Machine System, the Distributed Array Processor,

and the Massively Parallel Processor are examples of such
SIMD machines. In MIMD computers, the processors typically
execute mutually independent programs on independent data

streams. The Intel iPSC hypercubes and INMOS Transputer
networks are examples of MIMD computers.

In this paper, a formal model is proposed for SIMD
computation. At a minimum, such a model must include a
control unit to manage the computation, a collection of N
processing elements, and an interconnection network that allows

data to be routed between processors. In a seminal paper (Ref.
7), SIMD computers are modeled in just this way. Although
Siegel uses his model to investigate important relationships
between the organization of the processing elements and the
structure of the interconnection network, the model does not
easily handle parallel input and output, nor is it able to describe
SIMD computers with more than one control unit.

The intent of the SIMD model is to capture the essential features
of computation on currently available SIMD machines, while
allowing for potential extensions and variations of current

architectures. Using the model, it is possible to represent the

fundamental concepts of SIMD (or data parallel) computation,
including virtual processor topologies, processor selection
(masking), and data routing between processors. Furthermore,

the semantics of any high-level SIMD programming language
can be expressed in terms of the model, which thus supports the
development of machine-independent software.

2. BASIC ORGANIZATION OF THE MODEL

The SIMD computational model is defined formally as a
collection of basic components and networks:

M = <H,C,P,D,'I.O,N>. The basic components of the model
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Figure 1. Model of SIMD organization

are the control units C = {CU0 ..... CUK-1}, the processing

elements P = {PE0 ..... PEN-I}, the devices D =

{D O..... DM_I} , and the input/output controllers 1,O =

{IOC0 ..... IOCL-1}. A host computer _ executes a high-level
language program by sending corresponding macroinstructions

to one or more control units in C. Each control unit generates

microinstructions and sends them to processing elements in P,

input/output controllers in 1,O, or (input/output) devices in D.
In the model, the host computer is restricted to the storage and
compilation of high-level programs. The input/output
controllers are viewed as interfaces that control transfer of data

(including buffering) between the processing elements and the
devices. Figure 1 shows the basic organization of the model.

The communication patterns among the components of the
model are described by a collection of six networks, collectively

known as :N: the instruction network _x, the input/output
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processor (IOP) network 13, the input/output device (IOD)

network "/, the controller network 5, the device network "q, and

the interconnection network I;. For example, the

interconnection network describes how data may be passed

between the processing elements in P. The instruction network
similarly describes how microinstructions are sent from the

control units in 13 to the processing elements in P.

In the model, each of the networks cx, 13,5, and "q is represented

as a function, while the networks "t' and lg are represented as
collections of functions. If a network is seen as a collection of

functions, it will be useful to regard it as a relation. Choosing

functions for Ix, 13, 5, 1"1,and I_ corresponds to an instantiation

of the model, which produces a particular SIMD machine. The

choice of "t'depends on other considerations that will be
discussed later. This functional view of networks was first

presente_d by Siegel (Ref. 7). The use of functions to represent



networksallowsmathematicalformalismssuchasfunctional
notationandcommutativediagramsto beappliedto the
descriptionandanalysisoftheSIMDmodel.

Asafirstillustrationofthefunctionalapproachtonetworks,
considertheinstructionnetwork.Thisnetworkisafunction¢t
fromthesetP of processing elements to the set C of control

units. Each PE i in P is then associated with the control unit

CUj = offPEi) in C which sends it instructions. For a given

control unit CUj in C, all processing elements in 0t-l(CUi) are
assumed to receive the broadcast instruction at the same insiant.

3. COMPONENTS AND NETWORKS

3.1 Basic Components

The utility of the model will depend in large part on the particular
properties of the units that make up each component of the

model. A control unit in C generates a sequence of
microinstructions for each macroinstruction. These

microinstructions can be instructions to the processors,
input/output controllers, or devices. It is assumed that

microinstructions are broadcast simultaneously by a control unit

to its targets, and that the broadcast occurs concurrently with the
interpretation of program instructions. In the model, it is
possible for different instructions to be broadcast at a given time
by different control units. That is, synchronization across
control units is not assumed. Each control unit contains the

logic necessary to determine the IOD network configuration _/for

any program instruction. The role of 7 will be discussed in
more detail below.

microinstruction PE.
I

I MicroinstructionRegister

Conditional Mask

Flag

I Absolute MaskFlag

I lgORegister

! J

IOP Network

Memory I ALU
Stack

LocalRegisters] I Serf-addreSSRegister

!

[nterconne_tion

Network

Figure 2. Organization of a Processing Element

The organization of a typical processing element in P is shown
in Figure 2. Microinstructions are sent to the processor on the

instruction network ct. The interconnection network x and the

data transfer registers input DTR and output DTR are used for

interprocessor data transfer. If a_ E, and PEi and PEj are

elements of P with PEj= _(PEi), then data in the output DTR of

PEi is transferred to the input DTR of PEj in one instruction

cycle. We require that 6(il) # c(i2) whenever il # i2, so that no

data collisions can take place during a single instruction cycle.

Each element of P is given a unique address, which is contained

in the self-address register. The input�output registers are used
for transferring data between the PEs and the input/output

controllers. The local registers have been depicted as a group
since the issues of intermediate data storage and DTR to memory
transfers will not be discussed here. The activities of the

microinstruction register, the ALU, the DTRs, and the
input/output register are assumed to be concurrent.

A processing element may ignore a microinstruction, depending

on the status of the two mask flags. The conditional mask flag
uses program data to control data-dependent operations, while
the absolute mask flag uses the contents of the self-address
register to control address-dependent operations.

The input/output devices in D represent any memory outside the
processing elements that is used for data storage or retrieval. A

device that receives an instruction from a control unit in C will

execute that instruction. Device instructions will generally
involve data transmission on the IOD network, but they may
also specify such file operations as "open" or "close". The

interpretation of device instructions will proceed concurrently
with memory accesses, activity on the IOD network, and other
processing activities.

Each input/output controller in 1,O contains the logic needed to
perform two tasks: the interpretation of instructions received on

the controller network 8 and the distribution of data to and from

the devices and processing elements. Interpretation of
instructions and data transfer between devices and processing
elements takes place concurrently.

The collection of functions denoted by "y can be regarded as a

relation that associates a set of devices in D with each

input/output controller in 1,O. We will see below that the form

of the relation _, is restricted by properties of the relation between

the processing elements in P and the devices in D. Each

input/output controller must include sufficient logic to compute

the relation ',[ from a high-level description of the relation

between processing elements and devices.

3.2 Networks

Four of the networks of the SIMD model can be specified as

single functions: the instruction network _, the input/output

processing element (IOP) network 13, the controller network 8,

and the device network r 1. Each of these corresponds to a

natural partition of the elements making up one of the
components of the model.
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Recallthattheinstructionnetworkisdefinedbythefunctiona:

P _C where a processor pa P is controlled by, and receives

microinstructions from, the control unit ct(p)a C. If we assume

that every processor is controlled by some control unit, then the

set P of processors can be naturally partitioned as the union of

the sets {a-l(c) : ca C}, where et-l(c) is the set of processors

that are controlled by control unit c.

The assumption that every processor is controlled by some

control unit is equivalent to the assertion that the function et is a

total function. If a is partial, only designated processing
elements would receive microinstructions for further distribution

to the remaining processing elements. In this case, the partition

can only be applied to the subset dora 0t of P, which consists of

those processors that are controlled by control units. Here,
dom f and range f denote the domain and range of a function f.

The IOP network is defined by a function 13: P-->IO, where

input and output for a processor pep is controlled by

input/output controller _(p)a 1,O. If every processor is directly

controlled by an input/output controller, then the processors in P

can be partitioned as the union of the sets {_-l(i) : ie'l,O},

where input/output controller i handles the data transfers

involving the processing elements _-l(i).

The assumption that every processing element is controlled

directly by an input/output controller is equivalent to assuming

that 13 is total. This may not be a reasonable assumption in

general, since certain computers (e.g. GAPP systems) have only
a particular subset of their processing elements directly
connected to input/output units. In such machines, the

interprocessor network E is used to shift data between this

subset and other processing elements.

The controller network is defined by a function 8: 'I,O--->C. As

we have seen above, if 8 is a total function, it partitions lO as

the union of the sets {8-1(c) : caC} where a control unit c

controls each member of 8-1(c) by broadcasting instructions to
it.

The device network is similarly defined by a function rl: D_C.

Iflq is total, the sets {rl-l(c) : cEC} partition D, where once

again a control unit c controls each member of rl-l(c) by

broadcasting instructions to it. This network represents a
relationship between control units and devices that cannot be

derived solely from topological considerations, rl may be
regarded as representing an aspect of system software, rather
than hardware.

To focus on networks that represent realizable SIMD computers,
we will make the following assumptions:

(1) ot:P--->C is a total function

(2) range ot u range 8 = C

(3) [3 is a surjection

(4) 13-tS-t _ c_-I

Each of these assumptions corresponds to an important feature
of the SIMD computational model. As previously noted,

Assumption 1 is equivalent to saying that each processor
receives microinstructions from a control unit. Assumption 2
states that every control unit must be connected to at least one
input/output controller or one processing element. Similarly,

Assumption 3 states that every input/output controller handles at
least one processing element. Finally, Assumption 4 is
equivalent to saying that if a control unit sends microinstructions
to a processing element, then some input/output controller that it
handles must also be connected to that processing element.

The above assumptions are sufficiently powerful to imply
interesting and not immediately obvious properties of machines
that are represented by the computational model. For example,

Assumption 4 states that for any control unit c, [_l(8-1(c))

¢x-l(c), which implies that dora _ _ dora a. Since Assumption

1 states that a is a total function, it follows also that [3 is a total
function.

Now suppose that p is a processing element controlled by some

control unit (i.e. pedom ¢x). Then pc _x-l(cx(p)), which is

contained in _-l(8-1(ct(p)) by Assumption 4, so that 8(_(p)) =

a(p). Thus Assumptions 1 and 4 together yield a = 8_.

The idea underlying Assumption 4 can be restated in the
following manner. If an input/output controller is connected to a
processing element, then the control unit handling the
input/output controller must also handle that processor. This can

be formalized as (4') ¢x-1 _ 13-18-I. Just as Assumption 4 and

the totality of the function a imply that a = 8[_, Assumption 4'

and the totality of the function [3 can be shown to imply that a =

813. It is also true that Assumption 3 and ¢x = 8_ imply that

range ce = range 8. We have therefore obtained the following
results:

Proposition 1: (a) If 0t is total, Assumption 4 implies a = 8[3.

(b) If 13is total, Assumption 4' implies a = 8[3.

PrQposition 2: Assumptions 1-4 imply that ¢x and 8 are

surjections.

Since the considerations underlying Assumptions 4 and 4' are

so similar, it is natural to investigate the circumstances under
which they constitute the same assumption. This tams out to

be the case when the functions ¢x and 13 have the same domain,

which happens when a processing element receives
microinstructions from some control unit if and only if it is

directly handled by some input/output controller. The proof of
this result, along with other consequences of the assumptions,
can be found in Ref. 5.

3.3 Parallel Input and Output

The discussion of the networks of the computational model has
so far omitted the input/output device (IOD) network

represented by y. The IOD network associates input/output

devices in I) with input/output controllers in 1,O. It mediates

the transfer of data, by means of the controllers, between the

devices in D and the processing elements in P. The IOD
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networkarisesnaturallyoutof the relationship between devices
and processing elements that is determined by such high-level
language input/output instructions as "read" or "write". Such
instructions specify which devices are to be associated with
which processing elements, and thus provide an input/output

relation R between processing elements and devices. This

input/output relation can be used to derive the IOD network _,,
which is naturally represented as a relation between the

input/output controllers and the input/output devices.

In particular, a high-level input/output instruction that states that
certain processing elements should receive data from or write

data to a given set of devices corresponds to a relation R

contained in P × D, where (p,d)_ R if device d transfers data to

or from processor p. We can now define the IOD network yas a

subset of'tO x D : Y = {(i,d) : 3 pc P with (p,d)_ R and [3(p)
= i}.

If 2S denotes the set of all subsets of a set S, the relation R can

be viewed as a function r: P---)2 D, where the set r(p) contains d

if and only if (p,d)_ R. From this perspective, the definition of

_, can be expressed more simply as y(i) = r([3"l(i)), or still more

simply as T= r_3"l, where _i) is the set of devices that transfer

data using the input/output controller i.

These ideas are illustrated by the network configurations shown

in Figure 3, which is derived from the following high-level
language directives: "read data from device 2 into even

processors with positive index, and write copies of the data from
odd processors to device 0 and device 1". For this

configuration, the IOC network is defined by [3(PE2i+I) = lOCI

for i > 0, 13(PE2i) = IOC2 for i > 0, and [3(PE0) = IOC0.

The IOD network is _IOC0) = O, y(IOC1) = {D0,D1}, and

T(IOC2) = {D2}. _i) = 0 is to be interpreted as "no data is sent

to or received from any device through controller i".

File 1 File 2 File 3

3.4 Interconnection Network

The interconnection network is represented by a family of

functions X = {(_ : P---cP}, where each function _ represents a

transfer of data (that can be performed in one instruction cycle)
between the DTR registers on different processors. The model

makes the following assumptions about the interconnection

network: (i) each _e E is assumed to be a bijection (a one-to-

one, onto mapping) from P to P, and (ii) using appropriate

masks, the collection Z can generate all permutations on P. The

assumption that each member of Z is a one-to-one function

avoids the need to store data in additional registers during the

instruction cycle. Since P is finite, _ being one-to-one implies

that c is also onto.

Recall from Figure 2 that each processing element has absolute
and conditional mask flags, as well as input and output DTR
registers. Using these flags, each processor can be classified (at
any particular moment) as either active or inactive. Each

member function c_ Z uses the following rule to determine the

contents of a processor's input DTR. If p is active,

DTR'o(p)(input) 6--DTRp(output); if p is inactive,

DTR'o(p)(input) 6-- DTRe(p)(output). For processor j, DTR'j

denotes the post-instruction contents of the register and DTRj

denotes its pre-instruction contents. The symbol <--- denotes

assignment. The rule can be justified as follows: Before any

interconnection function in Z is executed, each processor p
performs an operation that copies its output DTR to its input
DTR. Every processing element, whether it is active or inactive,

is eligible to receive a value in its input DTR. If the processing

element is active, it will send a value from its output DTR;
otherwise, no value will be sent.

The importance of the assumption on permutation generation is
that masked interconnection functions can be used to construct

virtual processor topologies from the existing interconnection
network. The provision of such topologies must include the

corresponding parallel data routing capabilities. As an example,
we will show how the cube functions associated with the 3-
dimensional hypercube shown in Figure 4a can be used to
simulate the shift operations (SHIFT EAST, SHIFT WEST,

SHIFT NORTH, and SHIFt_SOUTH)needed for the-2x4 grid
shown 7n Figure 4b.

Figure 3. A Sample IOD Network

While the IOD network "_governs the relationship between the

input/output devices and the input/output controllers, the devices
themselves are managed by the control units. This connection is

under the control of the device network r I. Thus there are

complex interrelationships between T and the other networks of

the model. A detailed discussion of the way in which the IOD

network y relates to the other networks of the model is found in
Ref. 5.

Figure 4a. A Hypercube Network
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Figure 4b. A 2 x 4 Grid

Every application of an interconnection network function must
be associated with a mask which indicates whether each

processing element will be active or inactive. Such masks will
be very space-intensive, since each requires N bits. A useful
subset of masks (first introduced by Siegel in Ref. 7) requires
only 2*log2N bits for each mask. A mask in this subset is

represented as a string of characters CoC1...Ck.I, where k =
log2N, and each Ci is drawn from {0,1,X}. A processor is
active if its binary representation matches the mask, where 0
matches 0, 1 matches 1, and X matches either 0 or 1. The
application of a mask to a function will be denoted by appending
[mask] to the function.

The grid shift operations can now be obtained in terms of the

3-dimensional cube functions as follows (composition is left to
right):

SHIFT EAST
SHIFT-WEST
SHIFT-NORTH

= cube0[XXX] cubel[XX0]
= cube0[XXX] cubel[XX1]
= SHIFT SOUTH = cube2

If the Siegel subset of masks is enhanced by complementation,
cube functions can be used to express data routing for a wide

variety of topologies, including grids and toruses of all
dimensions and binary trees. These results are established in
Ref. 5. Siegel has shown in Ref. 6 that the cube functions do
satisfy the permutation hypothesis.

4. SIGNIFICANCE OF THE MODEL

4.1 Instantiation

We will now show how the model can be instantiated to produce
a typical SIMD computer, the Thinking Machines Corporation
CM-2. This computer contains a large number (between 8,192

and 65,536) of processing elements, along with at least one
VAX or Symbolics host computer. Program instructions are
sent from one to four host computers to at most four sequencers,
which in turn generate microinstructions and distribute them to
the processors. The CM-2 is equipped with a high-speed
input/output device called a data vault. The interface between the

data vault and the processors is governed by eight input-output
controllers.

To instantiate the model, the following choices are made:

Control Units: As many as four control units (1 <K<4),
identified with the CM sequencers

Processing Elements: N processing elements (N = 2 i,
i = 13, 14, 15, or 16)

Input/Ou _tput I_vices: the data vault (M = 1)

Input/Ou _tput Controllers: eight input-output controllers
(L=-8)

The first four networks of the instantiated model are defined as
follows:

Instruction Network:

Pi _ CU[i/16384] for i = 0,...,N-1

Input/Output Processing Network:

Pi _ IOCli/8192] for all i

Controller Network: lOCi ---> CU[i/2]

Device Ne_ork: CUi ---> DO for all i

The form of the input/output device network 7 will depend on

the specific input or output high-level language instructions that
are coded. Since the processing elements of the CM-2 are

organized as a hypercube, the interconnection network

corresponds to the cube functions that have been described
above. All functions of this network are clearly bijections, and

Siegel has shown in Ref. 6 that it can be used to generate all
permutations.

The CM-2 instantiation satisfies the assumptions proposed

above. Since the function _ is a total function and a surjection,

Assumptions 1 and 2 are satisfied. It is clear that [3 is a

surjection, as required by Assumption 3. Assumption 4 is
straightforward to verify; it states that whenever a control unit is
connected to a processing element, then it must also be
connected to an input/output controller that handles that

processing element.

4.2 Programming Language Development

The programming languages (FORTRAN 8X, C*, Parallel
Pascal, and *LISP) that are currently available for SIMD
computers owe their syntax and semantics to their familiar

sequential ancestors: FORTRAN, C, Pascal, and LISP. While
the semantics of each of the serial languages is based on a
sequential model of computation, its parallel version contains
extensions that handle data parallel instructions based on a
specific underlying model of S1MD machine organization. Since

each language contains different extensions, its utility for general
data parallel programming could be correspondingly limited.
For example, it is difficult to use some of these languages to
express parallel input and output. Also, it is often an involved
process to develop high-level code for arbitrary processor
topologies. Just as the von Neumann sequential computational

model fostered the development of transportable sequential
programming languages, the model proposed here should do the
same for data parallel programming languages.

The model has been used as the basis of the syntax and
semantics of the data parallel programming language DAPL

(Refs. 3,4), which is currently under development. It also
forms the context for the formal semantics of the SIMD

algorithmic language described in Ref. 9. DAPL is an object-
based language which provides the programmer with a number
of basic geometric structural types that can be combined into the
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data structures representing the virtual topologies needed for data

parallel application development. The language also associates
natural communication operations with the geometric structures,
so that a programmer can use high-level language constructs to
route data between virtual processors.

As a preliminary target machine for DAPL, a 1024 processor

SIMD computer has been simulated by Klein and Rice (Refs. 1,
2). The simulation, which is based on the computational model
presented in this paper, was specified in CSP and developed in
occam on a network of INMOS Transputers. An instruction set

that included parallel instructions for input/output, broadcasting,
masking, routing, assignment, and arithmetic operations was
implemented. An interactive menu system permits the user to
specify and execute a single data parallel instruction or execute a
program consisting of such instructions. This menu also allows

the user to select the dimension of the hypercube interconnection
network (1 __ dim ._ 10) and to perform basic input/output
operations on sample data sets.

5. EXTENSIONS AND CONCLUSIONS

An important advantage of the SIMD model presented here is
that it can be extended to future developments in SIMD
machines. One particular example is the possibility that a
parallel computer may be partitioned into several SIMD
machines, which are controlled in a MMD fashion. Such a

MSIMD machine, which has been proposed by Siegel (Ref. 8),
can be included straightforwardly in our model, since each

control unit CUi E C controls a disjoint set of processors. For a
second example, if shared memory is to be added to a future
SIMD machine, the model could be extended to include the

shared memory units SM,={M0 .... ,MT-I}, and the shared

memory network It: P-->$M, which associates each processor

with the shared memory unit that it can access.

The SIMD computational model presented in this paper adopts a
functional approach. The model's components are sets
representing the processing elements, control units, input/output
devices, and input/output controllers of a modeled machine.
These components are related by a number of networks, each of
which is represented as one or more functions. Assumptions
about the components of a SIMD computer can be translated into

assumptions on the sets and functions of the model, and the
implications linking these assumptions can be investigated.

The model is sufficiently complex to model all current SIMD
computers, including such features as multiple control units and
multiple input-output devices. It is easily extensible to future

SIMD machines, including MSIMD computers and SIMD
computers incorporating shared memory devices. A particular
SIMD computer is modeled by choosing parameters that
determine the size of the model's fundamental sets and by
defining networks that express the relationships between those
sets. Finally, the model has recently been used to support the

design of a programming language for SLMD computers, and it
has served as the target for the simulation of general SIMD
machines. It is reasonable to hope that this computational model
is a step toward one that will be as significant for SIMD
computation as the von Neumann model has been for sequential
computation.
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ABSTRACT

While massively parallel processing promises a high perfor-

mance implementation for various applications, it also ex-

hibits the difficulty of programming in a modular way. Pro-

grams for conventional programming models can be struc-
tured as a hierarchy of clients and servers that can be in-

dividually implemented using fine grained parallel proces-
sors; however, the clients and servers in this approach are

separate entities and, hence, create a von Neumann bottle-

neck that is unacceptable for fine grained parallel systems.

In this paper, we present methods of merging distributed

clients and servers to allow efficient parallel operations. In

particular, we propose parallel primitives as well as nor-

malized representation schemas for efficiently implement-

ing various abstract data types. The mapping strategies to
reduce communication cost for various abstract data types

on the hypercube structure are also discussed.

Keywords: Abstract Data Types, Distributed Represen-

tation, Mapping Strategies, Multiple Entry Data Struc-

tures, Performance Analysis, SIMD Hypercube Machines.

INTRODUCTION

Fine grained parallel supercomputers hold great promise

for achieving potentially dramatic speed ups in computing

power. To realize the full capabilities of these machines for

various applications (robotics, expert systems, simulation,

databases), ingenious and fundamentally new kinds of data

parallel algorithms must be devised. These include memory

based models for databases, parallel pattern matching and

constraint resolution for expert systems, and direct model-

ing of physical systems for simulation purposes.

A major problem which impedes the widespread use of fine

grained parallel architectures is the difficulty of program-

ming these machines in a modular way. Conventional dis-

tributed and coarse grained parallel programming models

do not scale up to fine grained parallel systems. Programs

for the former systems can be structured as a hierarchy of

clients and servers that can be individually implemented

using fine grained parallel processors (Ref. 1), such as

broadcasting sequential processors (BSP) for high perfor-

mance abstract data type components, systolic arrays for
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functional components, and processor networks for inter-

face components. However, the clients and servers in this

approach are separate entities, thus creating a yon Neu-
mann bottleneck that is unacceptable for fine grained par-

allel systems.

In this paper we investigate efficient implementation of ab-

stract data types on SIMD hypercube machines. To achieve

high performance in parallel programs, the requests of var-
ious clients of an abstraction should be processed in par-

allel. One way to overcome the yon Neumann bottleneck

is to merge the clients with the servers of an abstraction.

We first explore the essences of this implementation theo-

retically, and then realize it for various abstract data types.

In particular, we propose parallel primitives as well as nor-
malized representation schemas for efficiently implementing

different abstract data types. Since the performance of an

abstract data type component may vary considerably de-

pending on the placement of its data elements on the phys-

ical processors, the mapping strategies to reduce communi-
cation cost are also discussed. These abstract components

can serve as building blocks for implementing other paral-

lel components, such as parsers, constraint resolvers, and

pattern recognizers.

A THEORETICAL EXPLORATION

In this section we investigate the essential elements in im-

plementing a high performance abstract data type compo-
nent on SIMD hypercube machines.

An abstract data type component is a collection of functions

that implement some mathematical objects, such as lists,

queues, and sets. Internally, an abstract data type, A, is a

tuple

A = (D, F)

where D is a data structure that can be expressed as a state

machine, and F is a collection of functions that operate

upon D. The data structure, D, is also a tuple

O = (O, R)

in which O denotes the collection of data elements for stor-

ing states of D and R denotes the relations among these

elements. Thus, O can be expressed by
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O= {oi[l <i<n}

where n is the total number of data elements in 0, and R

is a function defined on o,, 1 < i < n. For data intensive

applications on SIMD machines, R can be defined ms a col-

lection of relations (ri I 1 < i < n} such that, for element

oi, the associated relation ri denotes the absolute position

of oi in D or the relative relations between oi and other

elements %, j y_ i. In this case, D can be expressed as a
collection of ol and ri; i.e.,

D : {(oi,r_) [ 1 < i < n}

where n may be very large.

A data structure, D, may be represented in several ways on
SIMD machines. To search for the best representation of a

data structure, we first notice that an SIMD machine such

as the Connection Machine (Refs. 2-3) may contain up to

tens of thousands of processors,and at a given time can

operate only on data elements of identicaltype. In order to

fullyexploitthe underlying architectureof SIMD machines,

a data structure must be represented in a distributedway

by having one processor per data element. This represen-

tation iscalleda distributedrepresentationwhich can also

be defined by a mapping function h from D to the network

of processing elements, say {PEy}, i.e.,

h:(oi,ri)----*PE i for l<i<n and I<j<N

where N is the total number of PE's. Distributed repre-

sentations can facilitate concurrent operation upon a large

set of data and, hence, achieve the maximum degree of par-

allelism for the implementation of an abstract data type.

However, a distributed representation for D by itself does

not guarantee that requests from multiple clients can be
processed simultaneously. To achieve this, the clients and

servers of an abstraction must be merged so that a PE

which acts as a server for an abstraction can also act as a

client of that abstraction. This is implemented via a kind

of distributed representation called a normalized represen-

tation which is defined by the above mapping function with

address(eEj) = f(oi)

where f is a one-to-one function. That is, the address of

PE which is allocated to oi, by using h, can be computed

simply from oi or even i. The ability to normalize the data

structure is the key to the parallel processing of multiple

client requests.

In addition to multiple entry data structures based on nor-

malized representations, we have to provide parallel prim-

itives for an abstraction so that multiple requests can be

processed simultaneously. First, consider the computation

pattern of a basic parallel primitive f. The computation

pattern of f is used to denote the effect of f by showing

the operation points and data flow patterns in the network

of PE's. The data flow patterns in a computation pattern

are also called a communication pattern. Let g denote the

computation pattern of f. Then g is defined as follows.

g - U gi

where N is the total number of PE's, and g, is the compu-
tation pattern by tracing the effect of applying f to PEi.

A computation pattern g is said to be regular if all of the

g,'s have the same pattern; otherwise, it is irregular. In

terms of the number of phases in g and the change in com-

munication pattern across different phases, the useful par-

allel primitives on SIMD machines can be classified into five

types (see Figure I). They are

(A) Single phase, single PE (local processing). This is the

simplest type of primitives. A set of PE's perform the

same operation (i.e., f_) upon their own local data el-

ements. No communication is required for this type of
primitives.

(B) Single phase, two PE's. A set of data elements are

moved or copied from original locations (a set of PE's)

to new locations (a new set of PE's). The computation

pattern here may be regular or irregular. The messages
transferred can be regarded as requests from a set of

clients to a set of servers. If required, the servers may

return some results to the clients.

(C) Multiple phases, identical pattern (multiple PE's).

The computation pattern for this type of primitives

consists of k phases, where k is determined statically

or dynamically, and k > 1. The computation pattern

is identical in each of the k phases.

(D) Multiple phases, deterministic pattern (multiple PE's).

This type of primitives performs a series of operations

in a deterministic fashion (usually, tree-like fashion) on
a hypercube structure. Thus, the computation pat-

tern for this type of primitives is regular, but changes

from phase to phase. The set of active PE's is not de-

fined and thus we may have many different primitives

for this type. Two simple examples are aggregate and

broadcast. Aggregate is used to collect some summary

information from a set of PE's, while broadcast is used

to duplicate a data element to a set of PE's.

I
Single PE

(Alflocal

processing

Basic Parallel Pr;rnltlvee

I
I I

Single Phase Multiple Pheeee

I I (Multiple PE's)

Two PE'I

(B) :trenefer

f ]
Identical Deterministic Random Pattern

Pattern Pattern (E):multt-slep

(C):shttt (O):roductlon Irene|or

Figure 1. Classifications of basic parallel primitives.
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(E) Multiplephases,randompattern(multiplePE's). The

computation patterns here are irregular. The addresses

and the number of intermediate PE's are determined

dynamically. Since more than one message may pass

through some PE's, this type of primitives implements

the concept of pipelining in transferring messages to

destinations.

It should be noted that primitives of types B and E may

make heavy use of random communication feature of the

underlying architectures, and primitives of type D take ad-

vantage of the hypercube structure of PE's. The above

primitives form a basis for constructing higher levels of

primitives to efficiently implement an abstract data type.

A useful primitive may be a combination of several of the

above operations.

PRACTICAL IMPLEMENTATION

In this section we discuss practical methods to implement a

high performance abstract data type component on SIMD

hypercube machines. In terms of ri, we first classify ab-

stract data types on SIMD machines into the following

three categories:

(1) Unrelated collections: For an unrelated collection, we
have

ri=0, l<i<n.

This means that there is no relation among different

data elements. Thus,

D= {oil 1 <i<n}.

Examples of unrelated collections are sets, bags, search

tables, and symbol tables.

(2) Crystalline collections: Here, for component A =

(D,F), each element, o,, has an absolute position in

D. In this case, r, is defined by storing the logical in-

dices of o, in r,; i.e.,

r, = /(i), l<i<n.

Examples of crystalline collections are lists (with in-

dices), vectors, matrices, etc.

(3) Amorphous collections: Here, for component A =

(D,F), the position of oi in D is determined by the

position of oi relative to other elements oy, j # i. In
this case, r_ is defined by storing in r, the addresses of

neighboring elements of o, in D; i.e.,

r, -- f(&oj_,...,&ojk), l<i<n

where 1 <_ Jl,'" ,Jk _< n; &o2m, 1 < m < k, denotes the

address of element oj_ ; and oy_,. • •, oy_ are neighbors

of o, in D. Examples of amorphous collections are lists,

trees, graphs, and semantic networks that use pointer-

based representation.

For an abstract data type A = (D, F) with D = {(oi, ri)},

the simplest one of its distributed representations is to al-

locate a distinct PE for each (o,, r_) in any convenient way.

This representation can be created efficiently and allows

clients to access any point of its data structure directly;

however, it may need a traversat of the whole data struc-

ture, which is time-consuming, to locate a specified ele-

ment. A suitably normalized form of an abstraction allows

its elements to be locatable efficiently. Two approaches are

possible for the normalized representation of abstract data

types in SIMD machines, and are described in the following.

(1) Based on vectors with indexed access. If the data el-

ements of an abstraction are identified by unique sets

of indices, then the locations of the data elements (i.e.,

the addresses of the PE's allocated for those data ele-

ments) can be uniquely determined from these indices.

(2) Based on vectors with hashed access. If the data ele-
ments of an abstraction are identified by unique keys,

then we can apply a parallel hash function on these keys

to determine the distinct addresses of all data elements.

This approach requires a predetermined hash function

along with a collision resolution scheme.

Several type-independent primitives are useful for many ab-

stract data types and are described below.

(1) a(op) (Ref. 4): The symbol a denotes ApplyToAll; it

applies the same op to all of the data elements at a

time; it is a "single phase, single PE" operation.

(2) Copy: This primitive is used to copy data elements from
one set of PE's to another set of PE's; it is a "single

phase, two PE's" operation.

(3) Multiple copies: This primitive will copy data elements

from one location (RE) to multiple locations (RE's)

(e.g., broadcast); it is a "multiple phases, deterministic

pattern" operation.

(4) /(op) (Ref. 4): The symbol / denotes insert; we also

denote this by reduce(op); it reduces a set of elements

using op and returns a scalar value; it is a "multiple

phases, deterministic pattern" operation.

In the following subsections, we discuss the data represen-

tation and primitive operations for unrelated, crystalline,
and amorphous collections, respectively.

Unrelated Collections

An unrelated collection may be in either a random or a nor-

malized representation. The random representation is cre-

ated through the parallel evaluation of "predicates" upon

a collection of data elements having a distributed repre-

sentation. An unrelated collection will be in a normalized

representation if it is created through the use of parallel

functional operations such as the union, intersection, and

difference operations for sets. The characteristics of unre-
lated collections are that their data elements are identified

by distinct keys, and thus their normalized representation

are based on vectors with hashed access.
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Two useful primitives for unrelated collections are de-

scribed in the following.

Normalize: It is used to transform an unrelated collection

in a random form to the normalized form, and is a "multiple

phases, random pattern" operation.

Search: It is used to search for a set of keys in parallel. It

is also a "multiple phases, random pattern" operation.

Before mentioning any algorithm, we introduce the follow-

ing notations:

p denotes the address of the current PE,

var is a variable in the host,

var(p) is a local variable in PE(p),

vector[O..S - 1}(p) is a local vector of size S in PE(p),

":=" denotes a local assignment within a PE,

%--" indicates data movement from one PE to another,
and

,,Cop), indicates an inter-PE data movement which has

specified the operation op to be performed by the desti-
nation PE.

The last two notations are implemented via four net-

work primitives, namely, send, receive, EmptyQueue, and

ResetQueue. The functionalities of these four primitives
are explained below.

(1) send: It is used to assemble packets for each active PE,

and then pump them into the interconnection network.

(2) receive: It enables a PE to fetch the packet at the

head of its input queue if that queue is not empty.

(3) EmptyQueue: It is used to check the existence of any
received packet in the input queue for each PE.

(4) ResetQueue: It is used to discard all packets remaining

in queues or in the network.

As an example, consider the parallel retrieval of attributes

of a set of keys from a search table. In BSP, this must

be done in several cycles. In each cycle an identifier is

broadcast to the processors one of which returns the desired

attribute (Figure 2a). To retrieve these in parallel we must

first obtain a normalized representation of the search table,
which is based on vectors with hashed access. The code for

parallel fetch is as follows {see Figure 2b):

Procedure ParallelFetch (client : Boolean;

id, idc : KeyType; n : Natural;

status : StatusType; var attr : AttributeType);
var j, source : O..n - 1;

idp : KeyType;

P acketType : {retrieve, attributes } ;
begin

if client(p) then {

j(p) := h(idc(p));

send ("retrieve",ide(p),p) to PE(j(p)); }

while NOT EmptyQueue(p) do
if NOT EmptyQueue(p) then {

receive ( PacketType(p), idp(p), source(p));

if PacketType(p) = "attributes" then

{ store the received attributes in attr }

(s) Sequential retrieval

h(e) It(a) h(b)

clients:

(b) Parallel relrieva/

Figure 3. Retrieval of attributes from a search table.

elsif PacketType(p) = "retrieve" then
if status(p) = FREE then

send ("attributes", "id does not exist")

to PE(source(p));

elsif id(p) = idp(p) then
send ("attributes", attributes(p) , p)

to PE(source(p));

else {
j(p) :-- (p + 1) mod n;

send ("retrieve", idp(p), source(p))
to PE(j(p)); }}

end;

Here, client(p) specifies whether eE(p) has a key ide(p)

the attributes of which need be fetched; n is the total num-

ber of processors. The search table is represented by two

variables, id denoting keys and attributes, at each PE.

If PE(p) has a key stored in it then its status is set to

OCCUPIED in which case id(p) contains the key and

attributes(p) contains the assiciated attributes; otherwise,

its status is set to FREE, indicating that PE(p) does not
(yet) have a key.

Each client uses a hash function h to determine the address

of PE(j) to which it will transmit its request for idc using

the send primitive. When a PE receives a packet, it first

checks the type of that packet, PacketType. If PacketType
is "attributes", then this PE should store the fetched at-

tributes in attr; otherwise, PacketType is "retrieve" and

this packet is a request for some key. When a PE receives

a request for key idp, then (a) if its status is FREE then

it sends the message "id does not exist" to the client; (b) if
its status is OCCUPIED and idp = id then it sends the

associated attributes, attributes, to the client; otherwise,

it forwards the request for idp to the adjacent PE which

has address ((p + 1) mod n). Each PE repeats this process

till its input queue is empty; this is indicated by a TRUE

value for EmptyQueue. It should be noted that the con-
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ditionsexpressedina while statement are used only for

determining the termination time of that while loop; they

are not used for selecting the set of active PE's to execute

the instructions within the loop.

Crystalline Collections

A crystalline collection may have one of two possible repre-

sentations, namely, index-based and normalized represen-

tations. In the index-based representation of a crystalline

collection, each data element has an index to indicate its rel-

ative position in the data structure, irrespective of where it

may actually be allocated. The normalized representation
of crystalline collections are based on vectors with indexed

access. In the normalized representation, the data elements

of an abstraction are sequentially allocated in contiguous lo-

cations so that the physical address of a data element can

be directly computed from its logical indices. Crystalline
collections have two distinguishing characteristics, namely,

(1) the alignment of data elements of two instances of an ab-

straction for efficient binary operations, and (2) the stream

processing of data.

The following primitives are useful for crystalline collec-
tions.

Shift(data/operation): This is applicable for crystalline

collections in a normalized form. It moves data or oper-

ation forward, backward, or along a ring. The notation

shift(operation) means that the processor adjacent to the

current one is activated. This primitive is a "single phase,

two PE's" operation.

Align: It will move a set of data elements from one set of

PE's to a new set of PE's. One example is to transpose a

matrix. This primitive is also a "single phase, two PE's"

operation.

Prefix/postfix{op): This primitive will compute in paral-

lel all prefixes or postfixes of vectors using the specified op.

It is a "multiple phases, deterministic pattern" operation.

Normalize: This primitive is used to transform a crystalline

collection from the index-based representation to the nor-

malized representation, and is a "single phase, two PE's"

operation.

Enumerate: A crystalline collection may be created in a

temporary representation which is neither an index-based

nor a normalized form. In this temporary representation,

the data elements are allocated sequentially, but discon-

tiguously. Enumerate is used to transform a crystalline
collection from this temporary representation to the index-

based representation. This primitive is a "multiple phases,

deterministic pattern" operation.

Compact: This primitive is used to transform a crystalline

collection from the temporary representation (see enumer-

ate) to the normalized representation in which all data el-

ements are allocated sequentially and contiguously. It is a

"multiple phases, identical pattern" operation.

As an example, consider the multiplication of two matri-

ces, C = A x B, where the dimensions of A, B, and

C are L × M, M x N, and L x N, respectively. Let

n =rlog: (ma=_(L,N)) 1 + [t,,l: MI, m = rl_., MI, and
M _ = 2m. Thus the total number of processors required

is 2 _, Initially, the elements of matrix A are stored in pro-

cessors in row-major order, and matrix B in column-major

order. That is, the element aij of A is stored in the proces-

sor which has address p = i x M I + j; and for the element

bik of B, p = k × Mt+j. After multiplication, element cik of

the resulting matrix will be stored in CIk](i}, the kth entry

of vector C in processor i which has address p = i x M t.

The idea for solving this problem is to shift bjk to appro-

priate processors so that the multiplication of aii and bik

can be performed in parallel. Then the element cik can

be obtained by using the reduce(+) primitive. The binary

representation of p is denoted by Pq-l:0, which can be split

into i = Pq-l:m, and j = Pro-l:0. The program segment
for the matrix multiplication is as follows

begin
L t := max(L,N);

L" := min(L,N);

k(p) am- Pq--l:m;

k'(p) :: _(p);
if0 _< k(p) < L t then

fort:=ltoL _do{

if0 < kt(p) < L" then
letup(p) := A(p) x B(p);

reduce(+) (0, m - 1, letup);

if P._-I:o = 0 then

C[k(p)](p) := temp(p); }

k(p) := (k(p) + 1) mod L';
shift (L', M t, B);
if L > N then

_'(p) := k(p); }
end;

The shift primitive is defined by

Procedure Shift (LI, M t :Natural;
vat A : MatrixType)

var newp : 0..n - 1;

begin
newp(p) := [p + (L' - I)M'] rood (L'M');

A(newp(p)) _-- A(p);

end;

and reduce(+) is defined by

Procedure Reduce(+) (s,e :Natural;
var A : MatrixType)

var i : Natural;

templ : MatrixType;

begin

fori:=stoedo{

templ(p (i)) _- A(p), (Pi = 1);

A(p) := A(p) + tempi(p), (pi = 0); }
end;
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The complexity of this algorithm is O(max(L,N) x

log(M)). If the number of processors is sufficiently large,

i.e., q >_ Ilog L] + Ilog M] + Ilog N], a much more efficient

algorithm (O(log max(L, M, N)) for matrix multiplication
can be devised.

Amorphous Collections

An amorphous collection may he in either a pointer-based

or a normalized representation. In the pointer-based repre-

sentation, each node of a graph associated with the pointers

to other nodes is allocated a PE. The normalized repre-
sentation for amorphous collections are based on indexed

vectors or hash tables depending upon how their nodes are

identified (unique ordinal numbers or unique names). Two

normalized forms for graphs are possible. The first one is

to allocate PE for each node in a graph in a way that the

physical address of the PE for each node can he computed

from the id or name of that node; it is still in a pointer-

based form. The second normalized form is generated from

the adjacency matrix of a graph; that is, we assign a dis-

tinct PE to each element of an adjacency matrix according

to the logical indices of elements. A graph in the second

normalized form can be regarded as a crystalline collection,

and no explicit pointers are required.

Amorphous collections are

characterized by their communication-oriented algorithms.

For graph components (including trees), communication is
usually restricted to those pairs of nodes having a pointer

between them. A node in a list component, however, may
communicate with different nodes in the same list; thus,

parallel primitives for list components are different from

those for other amorphous collections. Some useful primi-
tives for amorphous collections are described below.

ReversePtr: It is used to reverse the direction of pointers
in a graph, and is a "single phase, two PE's" operation.

AdvPtr: It is used to advance the temporary pointers in
a list to point from one node to another node in the same

list. It is a "single phase, two PE's" operation.

Send*: This primitive will move data from one node to
another via zero or more intermediate nodes for a set of

nodes in a graph. It is a "multiple phases, random pattern"

operation.

Convert: This primitive is used to transform a graph in

pointer-based representation to the normalized form using

adjacency matrix. It is a "single phase, two PE's" opera-
tion.

For list components in pointer-based representation, we

need some higher level primitives which use more than one

type of basic primitives discussed before. They are:

Reduce(op): This primitive reduces a list in a binary tree
fashion and returns a scalar value.

Prefix/postfix(op): This primitive computes in parallel

all initial prefixes/postfixes of a list using the specified op.

Normalize: This will convert a list in pointer-based repre-

sentation to a normalized representation. Naturally, a list
must be enumerated first before being normalized.

As an example, consider the problem of comparing two lists,

11 and 12, to determine whether ll < 12, ll = 12, or ll > I2.

(The comparison is done in alphanumeric order.) These two

lists are kept in pointer-based representation throughout
the computation. This example is used to demonstrate the

simultaneous processing of more than one list component.

Let list denote the variable storing the elements of lists,

and next denote the pointer used within lists. Suppose ll

and 12 are the id's of the PE's at the head of two lists,
respectively. Initially, all the elements of these two lists are

stored in distinct PE's. The first step here is to connect

the corresponding elements in these two lists by pointers

called rival. The alphanumeric comparison (denoted by

®) is then performed by each PE after obtaining the data

from its rival. The final comparison of the two lists is then

computed and the result is stored at the head PE of each

list. The program segment for this comparison is described
in the following."

begin

MatchLists (ll, 12, next, rival);
if rival(p) _ NIL then

tmplist(rival(p)) ,-- list(p);

ResultList(p) := list(p) ® tmplist(p);
RedueeList(®) (next, Re,ultList);

end;

Here, MatchLists matchs up the corresponding elements

of two lists, ResultList stores the result of the comparison
of the corresponding elements, and ReduceList computes

the final result of the comparison of these two lists. Before

defining MatehLists and ReduceList, we first introduce

three basic primitives, namely, ReversePtr, AdvPtr, and

send*. Let A denote the pointers in a list, and B be a

variable of the same type. Primitive ReversePtr is defined

as follows.

Procedure ReversePtr (A : PtrType; var B : PtrType);
begin

if A(p) ¢ NIL then

B(A(p)) *- p;
end;

Thus, ReversePtr is used to establish a set of pointers in

B, which are the reverse of those in A. For a list in pointer-
based representation, it is frequently useful to have a tem-

porary pointer in each node to point to another node (not

the next one) in the same list. Let A be this temporary
pointer. Initially, A in each node points to the next node.

Then, at each step, A is updated by the value of A in the

node to which the current node points using A. AdvPtr

primitive is used to advance A for this purpose, and is de-
fined by
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Procedure AdvPtr (var A : PtrType);

var trap : PtrType;
begin

trap(p) := NIL;

ReversePtr (A, trap);

if trap(p) # NIL then

A(tmp(p)) .- A(p);
end;

Using ReversePtr and AdvPtr primitives, primitive
ReduceList is defined below.

Procedure ReduceList(op) (nezt: PtrType;
var list : ListType);

var jump, r jump : PtrType;

begin

Jump(p) := next(p);

while jump(p) # NIL do {

ReversePtr(jump, r jump);

if r jump(p) # NIL then

list(rjump(p)) <o_v)list(p);

AdvPtr (jump); }

end;

Here, jump denotes the temporary pointers to be advanced,

and using jump, list is reduced to a scalar value in a binary

tree fashion. The final result after applying op to list is
stored at the head of list.

Here, primitive send* is used to copy the id of the current

node, via a mailstop, to the destination node. The address

of the destination node is stored in the mailstop, and the

address of mailstop is known to the source node. Through

the use of send*, we can establish the pointers in the desti:

nation nodes to point to the source nodes. The procedure

for send* is defined as follows.

Procedure send* (mailstop, destination : PtrType;

var A : PtrType);
var received : Boolean;

letter : PtrType;

begin

received(p) := FALSE;
if mailstop(p) # NIL then {

letter(mailstop(p)) _ p;

received(mailstop(p)) _ TRUE; }

if received(p) then
if destination(p) # NIL then

a(destination(p) ) _ letter(p);

end;

In terms of send" and AdvPtr, we can define the parallel

operation MatehLists. Let mailstop in each node of lists
be used to store the address of the PE which holds the ad-

dress of the rival PE of that node, and jump be temporary

pointers to be advanced. Initially, we let the rival at the

head of both lists point to each other. Then we set up the

rival in parallel for other nodes in the lists through the use

of jump. The procedure for MatchLists is defined in the

following.

Procedure MatchLists (11,12 : 0..n - 1; next : PtrType;

var rival : PtrType);

var mailstop, jump: PtrType;

begin

rival(p) := NIL;

mailstop(p) := NIL;

rival(p) := 12, (p= tl);
rival(p) := il, (p = 12):
jump(p) := next(p);

while jump(p) # NIL do {

if (jump(p) ¢ NIL) and (rival(p) # NIL) then

mailstop(jump(p) ) ,-- rival(p);

if mailstop(p) # NIL then
send* (mailstop, jump, rival);

AdvPtr (jump); }
end;

It should be noted that the jump of a node will be NIL if

it can not point to a node in the same list. Since next is

NIL for the last node in a list initially, AdvPtr will handle

2"ump properly.

MAPPING STRATEGIES

Since abstract data types are represented in a distributed

way on SIMD hypercube machines, the interactions among

data elements play an important role in determining their

performance, that is, the performance of an abstract data

type may vary considerably depending on the mapping of

data elements on to the physical processors. In this section

we discuss the mapping strategies to reduce communica-

tion cost for various abstract data types. The rich commu-

nication structure of a hypercube interconnection network

makes this mapping feasible.

The major factor in selecting a mapping for an abstraction

is the communication pattern embedded in that abstrac-

tion; it illustrates the characteristics of both its normalized

representation and the associated parallel primitives. The

possible communication patterns can be classified into four

categories, namely, neighbor communication, group com-

munication, dynamic communication, and random commu-

nication. By neighbor communication, we mean that com-

munication occurs only in the neighboring processors of a

logical structure such as a graph. That is, only the pairs of

processors which represent an edge may allow communica-
tion to occur between them. The communication pattern

for graphs in pointer-based representation usually belongs

to this type. For some abstract data types such as list

and matrix, communication may occur within a group of

data elements in a fixed binary tree pattern. Examples

are the broadcast and reduce(op) operations for a matrix

component. The above two categories of communication

patterns can be considered as fixed communication. By

dynamic communication, we mean the communication pat-

tern which is regular, but subject to change after each step.

One example is the communication pattern for the compar-

ison of two lists in pointer-based representation. Random

communication pattern means that no regular communlca-
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tionpatternisavailable.Unrelatedcollectionsusuallyhave
a random communication pattern.

If the communication pattern for an abstraction is regular

(i.e., a neighbor, group, or dynamic communication), its

data elements should be arranged in a way that the pair of

communicating processors are just one hop apart. This will

reduce the communication cost to a minimum. However,

the mapping of a general graph to a hypercube structure is

NP-complete (Refs. 5-6). Only a highly regular and sparse

graph may have a suitable mapping in a hypercube if this

graph is in a pointer-based form.

Another important factor in selecting a mapping is the lo-

cality of data elements within an abstraction. This factor

will dominate when there is no regular communication pat-

tern available, such as in a set, or when a suitable mapping

for a regular communication pattern is unavailable, such

as in an arbitrary graph. For this kind of abstract data

types, it is better to place data elements in a smaller cube

in a way that all the relevant (i.e., communicating) data el-

ements are close to one another. For example, the physical

processors corresponding to a mapping are constrained to

lie within a small hypercube when the number of elements

in a data abstraction is small. It is well known that in

an r-dimensional hypercube, the farthest distance between

any two nodes is r and the average distance is only r/2.

The mapping based on the locality also benefits the overall

memory utilization and conserves hardware resources.

For detailed mapping strategies of various abstract data

types on hypercube interconnection structure, readers

please refer to (Ref. 7).

SUMMARY AND CONCLUSIONS

It is difficult to write parallel programs in a modular way

on fine grained parallel systems. Conventional distributed

and coarse grained programming models exhibit the bottle-

neck of processing client requests sequentially. In this paper

we investigate the parallel implementation of abstract data

types on SIMD hypercube machines.

To achieve high performance in parallel programs, the re-

quests of various clients of an abstraction should be pro-

cessed in parallel. Three major factors are important in

implementing an abstract data type on SIMD machines,

namely, a suitably normalized representation, parallel prim-

itives, and mapping. The normalized representation of an

abstraction, which is the key to the parallel processing of

multiple client requests, is based on multiple entry data
structures such as indexed vectors and hash tables. Parallel

primitives, which are constructed to facilitate parallel op-

erations on an abstraction, are based on the characteristics

of underlying architectures. Parallel primitives associated

with the normalized representation usually make extensive

use of communication for exchanging information among

PE's, and thus a mapping strategy must be selected to re-

duce the communication overhead. Two major factors in

selecting a mapping are the communication pattern and lo-

cality of data elements. A suitable mapping of the normal-

ized representation onto the underlying network of PE's

can greatly improve the performance of an abstract data

type.

In summary, an abstract data type on SIMD machines must

be in a normalized representation so that its distributed

clients and servers can be merged to achieve high perfor-

mance parallel programs. Parallel primitives must also be

provided for facilitating the parallel processing of client re-

quests. To improve the performance, a suitable mapping

for the normalized representation of an abstraction should

be used to reduce the communication cost.
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ABSTRACT

Existing programming languages for SIMD (Single-Instruction Multiple-

Data) parallel computers make implicit architectural assumptions. These limit

each language to architectures satisfying its assumptions. This paper presents a
theoretical foundation for developing much more portable languages for SIMD

computers. It also describes work in progress on the design and implementa-

tion of such a language.

An optimally portable programming language for a set of architectures is

one which allows each program to specify the subset of those architectures on

which it must be able to run, and which then allows the program to exploit

exactly those architectural features available on all of the target architectures.
The features available on an architecture are defined to be those the archi-

tecture can implement with a constant-bounded number of operations. This
definition ensures reasonable execution efficiency, and identifies architectural

differences which are relevant to algorithm selection.

An optimally portable programming language for SIMD computers, called

Porta-SIMD (porta-simm'd), is being developed to demonstrate these ideas.

Based on C++, it currently runs on the Connection Machine and PixeI-Planes 4.

Keywords: Portable, SIMD Parallel, Programming Language, Porta-SIMD,

Taxonomy, Pixel-Planes, Connection Machine, C++.

INTRODUCTION

Portable high-level languages for yon Neumann computers are major accom-

plishments in computer science. These languages have radically improved the

quality, cost, reliability, and availability of soRware. However, the greater

architectural diversity of SIMD (Single-Instruction Multiple-Data) computers

has so far kept them from fully benefiting from such languages. Each existing

SIMD language contains architectural assumptions which make it suitable for

programming only a certain subset of SIMD machines.

Optimal portability is a new concept which can guide the development of

much more portable SIMD programming languages. It is based on the recog-

nition that some differences among SIMD architectures significantly influence

algorithm selection. These should not be completely hidden from the program-

mer.

The programmer makes an algorithm's architectural assumptions explicit

by expressing the algorithm as a program for a particular set of architec-
tures. These architectural assumptions precisely define the program's portabil-

ity. The programmer may then take full advantage of all architectural features
common to all members of that set, and no more. Selecting a small set of very

similar architectures limits a program's portability, but allows it to take full

advantage of specialized features the members share. Selecting a large diverse

set of architectures produces a program that is very portable, but may not take

full advantage of some of the architectures. This selectable la-adeoff between

breadth and power provides optimal portability.

*This work was supported by the Pixd-Plma_ Project, Henry Fuchsand John Poulton,P.Ls,
and its grants:National Science Foundation grant#MIP-8601552. Defense AdvancedResearch
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rrt@cs_duke.edu.
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This is entirely consistent with Chandy and Misra's (Re£ 8) ideas on algo-

rithm portability. They advocate developing algorithms that are progressively

more tightly bound to particular architectures, until an algorithm is specialized

sufficiently to provide the desired performance. They provide a language-

independent notation for expressing algorithms during development, which

must be translated into a language for a particular architecture before execu-

tion. With an optimally portable language, this would not have to be a different

language for each target architecture. Avoiding the necessity of learning and

remembering details of a different language for each architecture is a signifi-

cant time and cost savings.

In practice, an optimally portable language for a set of architectures needs
both a definition and a taxonomy of that set. These provide a precise way to

specify the architectures on which a program must run. They also conlribute

to improved understanding of the architectures, and their algorithms and lan-

guages. Both a definition and a taxonomy of SIMD architectures are given in

the section "A SIMD Taxonomy for Programmers."

Existing SIMD programming languages are not optimally portable. They

are built on a variety of inflexible architectural assumptions, including spe-
cific processor interconnection networks and the presence or absence of fea-

tures like local addressing of memory. The section titled"Existing SIMD Lan-

guages" surveys these languages.

1 am currendy working on the design and implementation of a new op-

timally portable language for SIMD computers: Porta-SIMD (pronounced

porta-simm'd). Its overall structure is modeled on the proposed SIMD tax-

onomy for programmers, allowing it to present to the programmer an appro-

priate programming model for any subset of SIMD architectures. It is intended
to demonstrate the feasibility of designing, implementing, and using optimally

portable languages. The ongoing design and implementation of Porta-SIMD
are discussed in the section "An Optimally Portable Language."

OPTIMAL PORTABILITY

Optimal portability is best defined in terms of a few supporting definitions.
An abstract architecture is the set of fundamental data types and operations

provided by a computer, without regard to how the data and operations arc

represented. It does not include implementation details such as the the amount

of memory present in a machine, or the number of processors in a parallel

machine. Except where explicitly stated otherwise, I will use architecture as

a synonym for abstract architecture.
The members of a set of architectures are equivalent if and only if their in-

tersection is identical to their union. The union of a set of architectures is an

architecture containing all data types and operations contained in any mem-
ber of the set. The intersection of a set S of architectures is an architecture

constructed as follows:

1. Let architecture u be the union of S. To each member A/of S add each

data type and operation in u which Ai can simulate with a constant num-

ber of its own data elements and operations.

2. Take the intersection of the sets of data types and operations of all mem-

bers of S, as augmented by the previous step, to create the intersection

architecture.

The intersection of a set of architectures will also be called the shared architec-

ture of the set. These definitions imply that any member of a set of equivalent

architectures can simulate the operation of any other member, and the number

of native operations they execute will be within a constant factor of each other.

617



A particular computer may be considered to implement only a single set of
equivalent architectures. This set must be the set of architectures equivalent to

the architecture defined by the computer's lowest-level publieally documented

programming interface. For most sequential computers, that interface is as-

sembly language. For some SIMD computers it is a library.

A program is portable across a set S of architectures if and only if it can

be compiled and correctly executed on the shared architecture of S. Such a

program can therefore be compiled and con'ex:tly executed on every member

of S. The architecture on which a program is intended to run is called the

program*s target architecture, A program is said to use a data type or operation

if and only if it contains a direct or indirect reference to a language feature that

provides a capability equivalent to that data type or operation.

A programming language L is optimally portable for a set S of architectures

if and only if all of the following are true:

• L requires each program p to specify some architecture Ap E S as its tar-

get architecture. (A default target architecture may be implicitly specified

in the absence of an explicit specification.)

• L does not allow p to use any data type or operation not in A v.

,, L allows p to use any data type or operation in A v.

This definition implies that p is portable across any set S_ c_ S such that Ap

is the shared architecture of St, including the maximal such set, Sr. Therefore,

p cannot be portable across a larger set of architectures without giving up the

use of one or more data types or operations. In addition, p cannot use additional

data types or operations without adding to A_,. This would potentially reduce

p's portability by removing architectures from S_,.

A few points in the definition of optimal portability deserve discussion. It

is difficult, perhaps impossible, to find a simple set of rules to accurately and

impartially determine the programmer-visible architecture of every computer.

Computer systems have many layers of architecture, and features are some-

times implemented in the "wrong" layer conceptually to improve performance.

However, identifying such features is a matter of judgement which is not easily

reduced to simple rules. Great care has been taken in constructing the defini-

tions above, but they are not perfect.

It is important to construct a good test for whether an abstract architecture

can usefully simulate some data type or operation. Any Turing-equivalent

machine may simulate any architecture, but not always with useful perfor-
mance. The constant-bounded criterion above for operations and data en-

sures reasonable performance and fits well with intuitive notions of equiva-

lent architectures. It also makes equivalence transitive. (Suppose architecture

A, can simulate architecture A v in op(A_, Ay) operations, and equivalence

is denoted by "=". Then Ai = Aj and Aj = Ai implies op(A,,A_) <_

op(Ai,Aj)op(Aj,Ak), which implies As = A_ because op(Ai,Aj) and

op(Aj, A_,) are constants.) Logarithmic and polynomial bounds do not have

this important property.
In some cases, a single machine may be reasonably described by two or

more quite different abstract architectures. As long as they are equivalent,

they are equally valid descriptions. For example, a bit-serial SIMD machine

may be described as having operations on bits, on multi-bit integers, or on

floating-point numbers. Operations on the multi-bit data types can be simu-

lated by a constant number of bit-serial operations. The constant (which may

be over 1000) depends on the nature and size (in bits) of the simulated data

type, but does not depend on the values stored in data elements of that type.
The architectures are equivalent. This is consistent with the common practice

of building implementations of a single architecture with varying execution

speeds.

Another example is a SIMD machine with a 2-dimensional grid interconnec-
tion network which allows communication in parallel between pairs of adja-

cent PEs (Processing Elements), using its lowest-level publically documented

programing interface.. With an additional layer of software to do automatic

routing, it might also be described as providing communication between ar-

bitrary pairs of PEs. The number of operations required to simulate arbitrary

communication with this network depends heavily on the dynamically chosen

communication pattern. A lower bound for the worst case is the diameter of

the network, which is at least the square root of the number of PEs. Since a

SIMD architecture does not specify a maximum number of PEs, this is not a
constant bound. Therefore, the two descriptions are not equivalent, and only

the first is part of a valid abstract architecture for this machine.

However, if the automatic routing software were hidden beneath the lowest-

level publically documented programming interface, the architecture would be

considered by the above definitions to provide communication between arbi-

trary pairs of PEs.

Thero are several reasons to define a machine's architecture by its lowest-

level publically documented programming interface, rather than by its hard-

ware. A programmer has no access to the hardware except through this in-

terface. Hardware documentation is not always publicly available; it is often

less complete and precise than the programming interface, largely because pro-

gramming interfaces must be well documented in order for important software

to be developed. Machine builders are free to implement a single architec-

ture with different hardware designs, transparently to the programmer. These

identically programmed machines should be considered to have the same ar-

chitecture (from a programmer's perspective).

It is difficult to define precisely which data types and operations a program

uses. The important feature of the definition of use above is that usage is de-

fined with respect to the source code, not the compiled object code. This pre-

vents the compiler from making features not available in the target architecture

available to the program by generating code to simulate them with arbitrary

numbers of data elements and operations. (Of course, a compiler generating

code for an architecture equivalent to Ap may generate a constant number of

data elements and operations to simulate data types and operations of A r .)

Prohibiting compilers from simulating data types and operations not present

in Alp ensures portability with useful performance, not just theoretical portabil-

ity. This does not restrict the function of programs, since p may simulate such

data types and operations itself. The implementers of L may even provide, as

a convenience to programmers, a package written in L to do this simulation.

A SIMD TAXONOMY FOR PROGRAMMERS

A programming language is optimally portable only for a specific set of archi-

tectures. Therefore, any optimally portable SIMD programming language will

require a definition of SIMD architectures.

Definition of SIMD Architectures

Art architecture A is a SIMD architecture if and only if all of the following are
title:

• A has a host computer which handles ordinary scalar computations and

flow control, and which broadcasts instructions, one at a time, to all PEs

(Processing Elements).

• A has n > 1 identical PEs which all execute, simultaneously, each in-

struction broadcast by the host.

• Each PE is able to evaluate basic arithmetic and logical expressions.

I believe every useful SIMD architecture also has the following properties:

I. Each PE is able, in response to broadcast instructions, to independently

choose whether to ignore instructions to modify its memory. (PEs exe-

cuting all instructions are enabled, while those ignoring instructions to

modify memory are disabled. PEs can be considered to have an enable-
bit which is 1 only in enabled PEs.)

2. Each PE is able to compute its unique PE number 0 < p < n - 1, given
sufficient time.

3. Each PE has its own private memory.

Property 1 can be simulated with a constant number of ordinary arithmetic

and logical operations. Architectures that do not have this property are there-

fore equivalent to those that do, and can be considered to have it. This property

takes many different but equivalent forms in various machines, with it being

possible to ignore different subsets of an instruction set.

Property 2 certainly holds for all architectures which have a connected com-

munication graph, and which allow any single PE to be distinguished in any

way. It also holds for all architectures with parallel input, since the data being

read can be the PE numbers. Property 2 holds if an architecture can load into

each PE a different element of a set of distinct values, by any means, since

this set can be the PE numbers. If there is a SIMD architecture which does not
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havethisproperty,IdonotthinkitisveryinterestingbecausethePEscannot
begivenuniquepredetermineddataonwhichtooperate.Thatisthewhole
purposeofa SIMD architecture.

The only claimed exception to property 3, that I am aware of, is an alter-

native set of architectures where PEs access a global memory space through a

network of some kind (e.g., (Ref. 20, pp. 326-327)). I believe that any such

architecture is equivalent to a local-memory architecture in which the PEs are

connected to each other by the same network that connects the PEs to the global

memory.
Specifically, the BSP (Burroughs Scientific Processor) (Ref. 20, pp. 326-

327, 410-422) is the only non-local memory architecture I know of. It is equiv-

alent to a large subset of the CM (Connection Machine) architecture (Refs. 18,

10, 1). (Both architectures are discussed briefly in a later section.) The BSP

can simulate the CM simply by assigning a distinct portion of global memory

to each PE for private use, and accessing memory assigned to other PEs only to

simulate communication. Similarly, the CM can simulate the BSP by using its

communication primitives to access memory, treating all the private memory

as a single global memory space. Both simulations take constant time, so the

BSP's global memory and arbitrary PE to memory interconnection network

is equivalent to the CM's local memory and a subset of its communication

primitives. The only difference between the architectures is that the CM has

somewhat more powerful mechanisms for resolving simultaneous accesses to

a single memory location.

If any of these properties is not true of all SIMD architectures, then the

taxonomy below is considered to have an additional dimension for each such

property. Because all architectures currently classified by this taxonomy have
the same coordinates along these dimensions, those coordinates will not be

mentioned further.

Taxonomy of SIMD Architectures

An optimally portable SIMD programming language must recognize and han-

dle the full diversity of SIMD architectures that exist within this definition. A

taxonomy of SIMD architectures will be crucial to this task. Although many

architectural differences can be almost completely hidden by a high-level lan-

guage, others fundamentally influence the programmer's algorithm selection.
To be most useful for portable language design, the taxonomy should exclude

the former and focus on the latter. The differences that do not influence al-

gorithm selection can be uniformly hidden from the programmer by language
abstraction. However, an optimally portable language must make the remain-

ing differences visible to the programmer, in the form of language features

which exploit the target architecture.
Previous SIMD taxonomies have been constructed with different goals, and

consider some architectural features which need not be visible to a program-

mer. Examples include work by Hwang and Briggs (Ref. 20, chapters 5-6),

and a tutorial by Seitz (Ref. 32). Fountain (Ref. 13) and Gerritsen (Ref. 16)

compare certain SIMD implementations at a level appropriate for system de-

signers and architects, rather than programmers. An extended abstract by
Jamieson (Ref. 21) considers matching algorithms with all kinds of parallel

architectures, not just SIMD. Karp (Ref. 22) presents a taxonomy restricted to

"those aspects that affect coding style," but considers only MIMD (Multiple-

Instruction Multiple-Data) architectures. These taxonomies not suited for de-

signing an optimally portable SIMD language.

Beginning with the most important, the architectural differences that can

significantly influence algorithm selection include:

Topology -- the labeling and adjacencies of the PEs;

Communication -- whether each PE can read/write data to/from (0) no other

PE, (1) a globally-selected adjacent PE, (2) a globally-selected location

in a locally-selected adjacent PIE, or (3) a locally-selected location in a

locally-selected adjacent PE;

Collision Resolution -- whether multiple writes to the same location under

communication types (2) and (3) are resolved by (0) serializing the ac-

cesses, or (1) combining them by applying an arithmetic or logical oper-

ation;

Local Addressing -- whether local PEs' memories can be addressed (0) only

by a single globally computed address, or (1) also by addresses computed

locally at each PE;

Global Logical-Or/Multiple-Response Resolver -- whether the host can de-

termine in a constant number of operations (0) neither of the following,

(1) if any PE has a non-zero value in a certain field of memory (global

logical-or), or (2) the identity of at least one PE having a non-zero value
in a certain field of memory, if such a PE exists (multiple-response re-

solver);

Parallel I/O (Input/Output) -- whether it is (0) impossible or (1) possible for
all PEs to transfer data to and from a mass storage subsystem in parallel;

PE to Host I/O -- whether the host can obtain data from (0) no PE, (1) only

a subset of PEs, or (2) any selected PE.

These architectural differences define a discrete -'/-dimensional space. A

SIMD architecture can be characterized by a 7' -,tuple giving its location in

this space. All the dimensions except the first, topology, have a fnite set of

values enumerated in their descriptions above. As new SIMD architectures

are developed, it may be necessary to add new dimensions to this taxonomy to

accomodate newly invented architectural features.

Topology and communication are very closely related. Without inter-PE

communication, all topologies are equivalent. However, a SIMD architecture
without inter-PE communication may still use a particular topology. The 2D

topology of Pixel-Planes (discussed below) is a good example. The (z, y)

labeling and adjacency of PEs are necessary to evaluate bilinear expressions,

and to map computed values from PEs to pixels.
In both communication and local addressing, local selection subsumes

global selection, since it is trivial to make the same local selection at all PEs.

Communication type (3) provides local addressing as a side effect. It would

be conceptually cleaner to eliminate this communication option and allow it

to be simulated by communication type (2) and local addressing. This was

not done because the simulation takes operations proportional to the maxi-

mum number of access to any one PE, and because communication type (3)

is a single operation of the CM and BSP. However, both these machines es-

sentially perform the same simulation in hardware or microcode. This is an

example of an operation moved down a layer in the architecture for perfor-

mance reasons. It exposes a limitation of the methods used here to delineate

programmer-visible architectures.
Global logical-or has several equivalent variants. These include the similar

"global logical-and", and the related special case "all enables off", which is

the inverse of global logical-or applied to the bit which determines whether

local memory is write-protected.

This taxonomy has not yet been extended to include two architectural fea-

tures. The first is cut-through routing of data between PEs. Cut-through rout-

ing allows some PEs to send data to non-adjacent PEs, provided the intervening

PEs do not send data. The Princeton Engine (Ref. 9) and the ASP (Associative

String Processor) (Ref. 23), both ID architectures, use this.
The second feature is performing parallel-prefix as a single operation. The

CM provides this capability, though the microcode must simulate it in a number
of operations logarithmic in the number of PEs involved. (This can be proven,

since each PE can only combine two values in a single operation.) This is

another example of an operation moved down a layer in the architecture for

performance reasons.
This taxonomy of SIMD architectures specifically excludes a variety of dif-

ferences which may be very important to computer architects, but which need

not influence algorithm selection. Among these are word length, memory

structure and size, special hardware for floating-point operations, and details

of scalar and parallel machine instructions. These are all routinely hidden by

the abstractions of ordinary high-level languages, and handled by compilers.

Of course, the hiding is sometimes imperfect, and it is possible to write non-

portable programs which depend on word length, byte order, or other machine-

specific details. However, a few simple coding rules are generally sufficient
to avoid these problems. Neither the problems nor the solutions differ fun-

damentally between sequential and SlMD-parallel architectures. S1MD lan-

guages should be able to hide these architectural differences as well as, but not

necessarily better than, sequential languages.

Figure 1 represents as a tree the space of SIMD architectures defined by the

proposed taxonomy. The labels on the left identify the dimension of space

represented by each level of branching. The label at each interior tree node
identifies the location of the subtree rooted at that node along one dimension

of architectural space. Leaf nodes represent selected published SIMD archi-

tectures. Subtrees containing no selected architectures are not shown. The
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space available is not sufficient for the entire set of SIMD architectures, so I

have included as representative a variety as possible. Additional references

are always welcome.

This taxonomy has the desirable characteristic that it is easy to determine

that cetlain architectures are subsets of others. This is useful because programs

for a particular architecture are portable to all supersets of that architecture.

The enumerated dimensions all obey a strict subset ordering. Therefore, one

architecture is a subset of another if they have the same topology and if each of

the remaining elements of the first 5-tuple is no greater than the corresponding

element of the second 5-tuple. For example, the MPP (2D, 2, 1,0, 1, 1, 2) is a
subset of BLITZEN (2D, 2, 1, 1, 1, 1, 2), but not of Pixel-Planes 4 (2D, 0, 0,

o,o,o,o).
In a few special cases, an architecture may fail this criterion and yet be a

subset of mother. Examples include the following:

• For topologies with a constant number of neighbors per PE, local and

global selection of neighbors for communication are equivalent. Col-

lision resolution by serialization or combination are also equivalent for

these topologies. Of the topologies discussed below, 1D, 2D, and CCC

have a constant number of neighbors per PE, but Hypercube, Arbitrary

Permutation, and Complete do not.

* Communication type (3) effectively provides local addressing type (1).

• Global logical-or effectively provides arbitrary PE to host l/O (2).

* An architecture which has parallel I/O to a random access storage device

which the host can also manipulate, but does not have PE to host I/O, can

simulate arbitrary PE to host I/O. A second architecture differing from

the first only in having PE to host I/O and lacking parallel 1/O is therefore
a subset of the first.

In each case, the result is that adjacent points in architectural space are related

by the equivalence rather than the subset relation.

Survey of SIMD Architectures

Most of the remainder of this section surveys the S IMD architectures appearing

in figure 1. It shows how they fit within the space of the proposed taxonomy,

giving evidence that the taxonomy is reasonably complete. For simplicity,

each architecture is described as if it were the equivalent canonical architecture

defined by its location in architectural space. The proofs of equivalence are

generally not difficult, but will not be presented here. The architectures will

be treated in order from left to right across the tree of figure 1. Each heading
includes the coordinates of the architecture it describes.

A tremendous variety of topologies is possible for SIMD machines. In prac-

tice, though, a few simple topologies are used by most SIMD architectures.

The simplest, ID (l-dimensional), is a property of SIMD architectures. Al-

though it will not be mentioned in their descriptions, all the other topologies

contain it in addition to their advertised features. A 1D topology simply labels

each of n PEs with a unique integer 0 < z <_ n. PE z has two neighbors,
x - 1 and z + 1. Boundary conditions can be defined so PEs 0 and n - I

are neighbors (forming a ring), or so their missing neighbors (PEs -1 and n)

always provide null values (forming a line segment). Since these architectures

are equivalent, they will not be distinguished.

The most common topology is 2D, which labels each PE with an ordered
pair (z,y) such that 0 < z < X, 0 < y < Y, and n = XY. Each PE has

four or eight neighbors, differing by plus or minus one in one or both dimen-
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sions. Boundary conditions can be defined to provide wrap-around (forming

a toms), or null boundary values (forming a rectangular sheet). The archi-

tectures using all the topologies allowed by these choices are equivalent, so

they will not be distinguished. The remaining topologies will be discussed as

necessary with the architectures using them. These include Cube-Connected

Cycles, Arbitrary, and Complete graphs.

Oldfieid/Williams/Wiseman/Brfil_ (1D, 0, 0, 0, 2, 0, 2)--J. V. Oldfield,

R. D. Williams, N. E. Wiseman, and M. R. Brfil6 propose a CAM (Content

Addressable Memory) with sufficient processing power at each row to qual-

ify as a SIMD architecture (Ref. 26). (Simulation of arithmetic operations and

the enable-bit is rather laborious, but possible with a constant number of opera-

tions.) There is no communication between PEs, but the 1D topology provides

row addresses. There is no local addressing or parallel I/O.

Pixel-Planes 4 (2D, 0, 0, 0, 0, 0, 0)--Pixel-Planes 4 (Refs. 15, 14, 12) is de-

signed for high-performance interactive graphics applications. It has a simple

2D topology. There is no communication between PEs, but the PE coordinates

(x, V) are used to compute bilinear expressions of the form az + by + c at each

PE (for scalar floating-point values a, b, and c). Although there is special hard-

ware to evaluate these expressions quickly, they can be computed in constant

time without it. These expressions can be used to display polygons and spheres

very quickly. There is no local addressing, global logical-or, parallel I/O, or

PE to host I/O. However, images can be displayed on a video monitor, with

each PE providing the data for one pixel of the image.

Video display of data in most architectures is done by parallel output to

a frame buffer. The fact that data can be seen, but not otherwise externally

accessed due to the absence of I/O, is a minor anomaly of Pixel-Planes 4. Be-

cause it cannot influence algorithm selection, there is no need to recognize it

in the taxonomy.

Pixel-Planes 5 (2D, 0, 0, 0, 1, 1, 0)--Pixel-Planes 5 (Refs. 17, 12) is designed

to provide greater speed and flexibility in order to interactively display more

complex and realistic images. With regard to the taxonomy, it differs archi-

tecturally from Pixel-Planes 4 only in providing global logical-or and parallel

I/0.

However, it has hardware support for biquadratic expressions in x and y, in

addition to bilinear expressions. It also has a MIMD host. Both of these dif-

ferences provide significant constant-bounded speedups. In addition, multiple

sets of PEs can be combined in a single system. A program may choose to treat

them as separate machines controlled by different processes in the host, or as

a single large machine controlled by a single logical process. This is similar
to the partitioning allowed by the Connection Machine.

Nickolls/Cole (2D, 2, 1, 0, 0, 1, 1)--P. M. Nickolls and T. W. Cole (Ref. 25)

present a fault-tolerant 2D processor array for image synthesis. It has a 2D

topology, with globally selected neighbor communication. It does not provide

local memory addressing or global logical-or. It also provides parallel I/O and

allows the host to obtain data from certain PEs at the edge of the PE array.

The distinguishing feature of this machine is not visible architectually. It is a

programmable interconnection network that allows defective PEs and network

connections to be configured out of the machine by deleting rows or columns
containing the defective hardware.

MPP (2D, 2, 1, 0, 1, 1, 2)--The MPP (Massively Parallel Processor) (Ref. 29)

has a 2D topology and allows each PE to communicate with a locally chosen

neighbor. There is only global memory addressing. Global logical-or and

parallel I/(3 are provided, and the host can obtain data from any PE.

DAP (2D, 2, I, 0, 1, 1, 2)--The Active Memory Technology DAP (Distributed

Array Processor) (Ref. 27) -- formerly the ICL DAP -- architecture appears

identical to that of the MPP, at the level under discussion. (However, I have

not been able to verify support for global logical-or.)

Illiac IV (2D, 2, 1, 1, 0, 1, 2)--The Illiac IV (Ref. 19) is an early SIMD ar-

chitecture. Its 2D topology provides communication between each PE and its

immediate neighbors, with local neighbor selection. The PEs have local ad-
dressing of their memories. Global logical-or is not provided. There is support

for parallel I/O, and PE to host I/O from any PE.

BLITZEN (2D, 2, 1, 1, 1, 1, 2)---BLITZEN (Refs. 6, 11, 7) builds on many

ideas from the MPP. Its architecture differs primarily in providing local ad-

dressing of PE memory. The architecture is almost identical, at this level, to

that of the llliac IV, differing only in supporting global logical-or.

BVM (CCC, 2, 1, 0, 0, 1, 1)--The BVM (Boolean Vector Machine) (Ref.

38) arranges PEs in a CCC (Cube-Connected Cycles) network (Ref. 30). Each

PE can communicate with its choice of its three neighbor PEs. Only global

memory addressing is provided. Global logical-or is not provided. Parallel

I/O is supported, and the host can read data directly from a single distinguished
PE.

GFll (Arbitrary Permutation, 1, 0, 1, 1, 1, 2)--The GFll (designed to

achieve 11 GFLOPS) (Refs. 5, 4) can provide multiple arbitrary permutations

for inter-PE communication. Each permutation is defined by a directed graph

which specifies the PE from which each PE receives data, with exactly one PE

receiving data from each PE. A particular permutation is globally selected for

each communication operation between PEs.

Local addressing, global logical-or, parallel I/O, and arbitrary PE to host I/O

are all supported.

BSP (Complete, 3, 0, 1, 0, 1, 2)--The BSP (Burroughs Scientific Processor)

(Ref. 20, pp. 326-327, 410-422) architecture provides a complete intercon-

nection graph, and allows each PE to determine locally with which neighbor

to communicate, and which memory location to use. Since the complete graph

makes neighbors of every pair of PEs, this provides completely arbitrary lo-

cally controlled inter-PE communication. Collision resolution is by serializa-
tion.

Local addressing, parallel I/O, and arbitrary PE to host I/O are all supported.

Global logical-or is not.

As discussed above, although the BSP's memory is physically global, its

architecture is fully equivalent to the description just given.

CM (Complete, 3, 1, 1, 1, 1, 2)--The Thinking Machines CM (Connection

Machine) (Refs. 18, 10, 1) architecture provides a complete interconnection

graph, and allows each PE to determine locally with which neighbor to com-

municate, and which memory location to use. Since the complete graph makes

neighbors of every pair of PEs, this provides completely arbitrary locally con-

trolled inter-PE communication. Collision resolution can be by serialization
or combination.

Local addressing, global logical-or, parallel I/O, and arbitrary PE to host I/O

are all supported.

There is a discrepancy between the CM's architecture, which provides a

complete graph connecting PEs, and its hardware, which provides a hyper-

cube (also known as a binary n-cube). This is a result of its system software

and the definitions given earlier in this paper. As previously discussed, those

definitions require a machine's architecture to be equivalent to the lowest-level

publically documented programming interface. For the CM, that interface is

currently Paris (Parallel Instruction Set) (Ref. 1). Paris's operations provide the

communication system described above, but they are currently implemented

by a physical hypercube with routing hardware. Paris operations can take time

proportional to the number of PEs, so the architecture and hardware are not

equivalent.

Evaluating The Taxonomy

It is probably not possible to prove that a taxonomy of SIMD architectures is

complete, in the sense of adequately classifying all possible architectures that

will ever be imagined. A more reasonable test of such a taxonomy is twofold:

• Does it adequately classify each SIMD architecture in the literature?

• Does it adequately classify every SIMD architecture which could be

formed by taking different combinations of features from SIMD archi-
tectures in the literature?
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The previous paragraphs have begun the work of showing that the proposed

taxonomy satisfies the first of these criteria.

The nature of the proposed taxonomy makes the second criterion trivial to

establish, once the first has been established. The taxonomy defines a multi-

dimensional orthogonal space without holes, with a one-to-one and onto re-

lation between dimensions and architectural features. This ensures that any

combination of features corresponds to a single defined point in the architec-

tural space.

EXISTING SIMD LANGUAGES

The research reported in this paper is primarily concerned with procedural

languages, with a level of abstraction similar to C, C++, Pascal, or Fortran.

Languages of this type both allow and require the programmer to express an

algorithm unambiguously. Except for eliminating obviously redundant opera-

tions arising from the way an operation is expressed, the compiler for such a
language is not involved in algorithm selection.

Some other families of languages allow the programmer to express the com-

putation in a less algorthmic form, leaving the language implementation more

latitude in choosing an exact algorithm. Some claim that the relative algo-

rithm independence of the program allows greater portability among diverse

parallel architectures. This is most often claimed with regard to modest paral-

lelism on MIMD (multiple-instruction multiple-data) architectures. However,

tim way the problem is stated by the programmer can have a perhaps subtle but

nevertheless profound effect on the algorithm ultimately used. In my opinion,

this effect often ties such programs to a particular architecture as effectively

as a procedural program expressing the same algorithm. I am not aware of

any work on the use of non-procedural languages to programm SIMD archi-

tectures. Non-prncedural languages will not be discussed further.

Survey of SIMD Languages

A careful search of the literature has found no SIMD programming languages

satisfying the definition of optimal portability. Most existing languages for

SIMD computers include implicit architectural assumptions. These limit them

to some subset of the architectural space defined in the previous section. Some

languages are not portable at all. To my knowledge, only one language, Fortran
8x, has been implemented on more than one S1MD machine. However, none

is a complete implementation, and it is not clear how similar the subsets are. In

the brief survey of SIMD languages below, languages other than Fortran 8x are

grouped by machines. Very low-level languages are not considered, leaving

no languages to discuss for some machines.

llliac IV Languages---Three main languages were developed for the Illiac IV:

GLYPNIR (Algol-like), CFD (Fortran-based), and IVTRAN (Fortran-based).

CRef. 19) All require the programmer to use and understand low-level hard-
ware features and limitations. They are not true high-level languages. A more

portable Pascal-based language called Actus (Ref. 28) was also developed.

Actus is limited by its assumption of 2D grid communication.

MPP Language--The MPP's implementation of Parallel Pascal also fails to

insulate programmers from hardware details, contrary to the language defini-

tion. Even as defined, Parallel Pascal is suitable only for architectures with a

2-dimensional rectangular inter-PE communication network. (Ref. 29)

CM Languages--Likewise, C* and Connection Machine Lisp, two admirably

well-designed high-level languages for the CM, assume the presence of the

CM's powerful, expensive, and almost unique support of arbitrary inter-PE

communication. (Refs. 10, 31, 33)

BVM Language---BVL-0 (Boolean Vector Language 0) (Refs. 36, 37) is a

C-like language for the BVM. It was designed to be the only language for the

BVM, so it includes some very low-level machine-specific features. It assumes

the presence of a CCC network, and does not provide for features not present

in the BVM, like local addressing. Although it could be adapted for use on

other architectures with a constant number of adjacent PEs, programs written

to use the BVM's CCC network would have to be rewritten.

BSP Language---The BSP Fortran Vectorizer (Ref. 20, pp. 417-422) com-

bines some automatic vectorization of ordinary Fortran with some vector-

oriented language extensions. Some of these extensions assume the presence

of the BSP's arbitrary communication.

Fortran 8x--A language consisting of Fortran 77 with some VAX extensions

and some proposed Fortran 8x array extensions and a few machine-specific

features was proposed in 1984 (Ref. 24), but not implemented (Ref. 3). More

recently, a subset of Fortran 77, with proposed Fortran 8x array extensions

(including some "removed extensions"), has been implemented for the CM

(Ref. 3). FORTRAN-PLUS for the DAP 500 is an implementation of Fortran

77, minus I/O facilities, plus some proposed Fortran 8x array extensions (Refs.

27, 2). It is not yet clear how compatible these implementations are.

The proposed Fortran 8x standard (Ref. 35) is the most portable language

yet implemented for SIMD architectures. Although it is not optimally portable,

its "removed extensions" are a step in that direction because they can be im-

plemented on those architectures that support them efficiently. They include

vector-valued array subscript.s, which require arbitrary communication. Still,

Fortran 8x requires communication and uses 2D grid communication heavily,

so it cannot be implemented on all SIMD architectures.

Existing Languages Fail

Each of these languages contains embedded assumptions about the architec-

ture or architectures on which programs will run, violating the first part of the

definition of optimal portability. The discussion of each language commented

on these assumptions. Every language discussed allowed the use of one or

more features not preserit in all architectures, and most failed to allow the use

of some feature present in some architecture. Therefore, they all failed to sat-

isfy the second or third part of the definition of optimal portability.

AN OPTIMALLY PORTABLE LANGUAGE

A programming model is a complete description of the visible features and be-

havior c,i"a computer system, as seen by a program. One reason existing SIMD

languages are not optimally portable is each one provides only a single pro-

gramming model, reflecting a fixed set of architectural features and assump-

tions. The second programming model provided by Fortran 8x's "removed

extensions" is a small step away from this problem, but Fortran 8x still em-

bodies many architectural assumptions.

An optimally portable SIMD language must support a family of program-

ming models corresponding to the architectures defined by a taxonomy like the

one proposed above. Each model is specified by the coordinates of its point in

architectural space. Thus, each model embodies the architectural requirements

of the algorithms expressed in that model.

Porta-SIMD is a new language which will provide these programming mod-

els. Its design and prototype implementation are being carried out to demon-

strate the feasibility and power of optimally portable SIMD languages. It is

not intended to be the only or ultimate such language, but to stimulate the

development and use of optimally portable languages. For this reason, some

compromises have been made in aesthetic details of the language, and in per-

formance, in order to proceed in a timely manner with limited resources.

These considerations contributed to the choice of C++ (Ref. 34) as the base

language for Porta-SIMD. There was no need nor time to invent new syntax

and semantics for the scalar and sequential sections of SIMD programs, and

much to be gained by using a language with which programmers were already

familiar. SIMD parallel datatypes and operations can be expressed as classes

and overloaded operators in C++, extending the language cleanly without mod-

ifying the compiler. This would not have been true with Fortran, C, or Pascal.

Porta-SIMD defines a set of classes, one per data type, for each program-

ming model, and a model for each point in the architectural space defined by

the taxonomy proposed above. The models are derived (using C++ inheri-

tance) from the base model, which implements the "least common denomina-

tor" SIMD architecture (1D, 0, 0, 0, 0, 0, 0). C++'s coming multiple inher-

itance will be used to derive an arbitrary model from the base model and an

additional model for each architectural dimension along which the arbitrary

model has features above the base model. This will prevent the implementa-

tion effort from exploding combinatorially with the size of architectural space.
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/* Define programming model: (2D,0,0,0,0,0,0) */

#include <simd int 2d.h>

simd mach 2d mach;

/* square accepts the upper left and lower right

* corners of a square. Returns 1 in each PE

* inside the square, 0 in each PE outside.

*/

simd int 2d square(int xl, int yl, int x2, int y2)

{

simd int 2d inside(mach, i);

simd int 2d x(mach, 16), y(mach, 16);

inside = I;

x. coord x () ;

y.coordy();

inside &= (x > xl);

inside &= (y > yl);

inside &= (x < x2);

inside &= (y < y2) ;

return(inside);

}

ma in ()

{

display(-square(2,6,24,57));

Figure 2. Example Porta-SIMD program.

Parallel expressions are evaluated at each active PE according to the normal
C++ rules.

A parallel language needs parallel control structures, as well as parallel data

types. It is sufficient to extend the semantics of the if statement to allow a

parallel value in the test expression. An element of this value is used by each

PE to to determine whether to execute the body of the if or the else clause

following the test. Unfortunately, C++ does not provide a means to extend

the semantics of control structures, like it does for data types. This semantic

extension could be accomplished by a conceptually simple Porta-SIMD to C++

pre-processor which replaced parallel if statements with small blocks of code

to enable and disable PEs appropriately. Unfortunately, writing such a pre-

processor (or deriving one by modifying a C++ compiler) is a difficult and

time-consuming task in practice. For now, a few macros are used to express
parallel if statements, instead. For example, ifp is a parallel variable,

if (p)

else

is instead written as

IF (p)

ELSE

ENDIF

a;

b;

a;

b;

A more detailed language description is beyond the scope of this paper. A

sample program is shown in figure 2.

Choosing to implement Porta-SIMD primarily as C++ classes has both wel-

come and unwelcome consequences. The primary benefit is avoiding the need

to write a compilcr. The amount of work this saves cannot be overempha-

sized. Another benefit is that the Porta-SIMD prototype is itself very easy to

port: C++ is widely available, and the prototype has been written in a coding

style which carefully separates machine-independent from machine-dependent

code. The primary disadvantage is that the evaluation of parallel expressions

proceeds operator by operator, without any overview of the expression. This is

because the code implementing each parallel operator has no way to know any-

thing about its place in the expression. The result is that extraneous temporary

values and redundant copies are sometimes necessary, reducing execution effi-
ciency. Although this would probably be unacceptable in a production-quality

language implementation, it is acceptably small for the current purposes. It is

certainly possible to write an optimizing compiler for Porta-SIMD, but this is

well beyond the scope of the current research.

Initial development was done on Pixel-Planes 4, a 256K PE machine in reg-

ular use at UNC. The base model (ID, 0, 0, 0, 0, 0, 0) was ported to a 16K

PE CM-2 in five days, including the time required to learn Paris. This was

done in the ACRF (Advanced Computing Research Facility) at Argonne Na-

tional Labs. The Pixel-Planes 4 model (2D, 0, 0, 0, 0, 0, 0) is now running on

both Pixel-Planes 4 and the CM. Integers of all sizes are supported. However,

floating point types have been deferred while effort focuses on the central ar-
chitectural and language design issues. Other models are in various stages of

development. A port to the Pixel-Planes 5 simulator is planned for the near fu-

ture. No performance tuning or detailed measurements have been attempted,

but this early prototype obviously provides lots of room for improvement. A

few brave early users are already providing valuable and encouraging feed-
back.

CONCLUSIONS

The extraordinary architectural diversity of SIMD computers is too important

to algorithm selection to completely hide from programmers. Optimal porta-

bility is a new concept for managing this architectural diversity. It provides

specific criteria for identifying the architectural features a programmer needs

to see. It allows the programmer to precisely specify the portability of each

program. This lets the programmer judge the proper tradeoff between acheiv-

ing broad portability and taking full advantage of a particular architecture. Ex-

isting languages usurp this decision with predetermined architectural assump-
tions.

Porta-SIMD is being implemented to demonstrate the power and feasibility

of optimally portable languages. It takes advantage of C++ classes and op-

erator overloading to reduce the implementation effort. Although only a few

programming models have been implemented so far, Porta-SIMD is already

running on Pixel-Planes 4 and a CM-2. This is probably the first language to

be implemented identically on more than one SIMD computer.

Although optimal portability has been applied here to SIMD architectures,

it is potentially valuable for any diverse but related class of architectures.
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ABSTRACT

With the present availability of parallel processors of vastly

different architectures, there is a need for a common language

interface to multiple types of machines. Our parallel C compiler,

currently under development, is intended to be such a language.

This language is based on the belief that an algorithm designed

around fine-grained parallelism can be mapped relatively easily

to different parallel architectures, since a large percentage of the

parallelism has been identiffed. The compiler generates a FORTH-

like machine-independent intermediate code. A machine-de-

pendent translator will reside on each machine to generate the

appropriate executable code, taking advantage of the particular

architectures. The goal for this project is to allow a user to run

the same program on such machines as the Massively Parallel

Processor, the CRAY, the Connection Machine, and the CYBER

205, as well as serial machines such as VAXes, Macintoshes and

Sun workstations.

Keywords: Fine-Grained Parallelism, Portability, Operator

Overloading, Massively Parallel, SIMD, MPP, C, Data Parallel.

INTRODUCTION

As the variety and availability of parallel machines increases, the

need for a portable parallel compiler becomes critical. To be

effective, however, this compiler must be able to take full

advantage of each machine's unique architecture. Two concepts

are necessary to achieve these goals: modularity or layering and

fine-grained parallelism.

A modular compiler design allows machine-dependent charac-

teristics to be separated from the machine-independent (generic)

characteristics. The object code generator (orP-code translator)

is the lone machine-dependent piece of the compiler, conse-

quently, parsing may be done once, with the output submitted to

various versions of the machine-dependent layer, one version for

each unique machine.

Fine-grained parallelism assigns the task of extracting parallel-

ism within code to the programmer. The user-defined parallel-

ism may be mapped to any architecture, since it may be easily

assembled into a serial implementation or a parallel implemen-

tation of any desired degree. A parallel description of a program

is much easier and straightforward to assemble into a serial

description than a serial description into a parallel one.

It may seem as though it is an unreasonable task to expect a

skilled programmer, let alone an unskilled one, to extract paral-

lelism from an algorithm when it is recognized that this is such

a difficult task for a compiler. The members of the MPP Working

Group have shown that both skilled and unskilled programmers

alike may easily extract fine-grained parallelism. In reality,

extracting fine-grained parallelism is no more difficult than

recognizing what code must be repeated within a loop in serial

code.

PROGRAMMING MODEL

The C language implementation supported here is based on a

model of computation where there is one serial processor (the

control unit) and many independent SIMD parallel processors

(ALUs controlled by the control unit). Serial data is stored in the

control unit memory (S) and parallel data elements are stored in

the memory (P) of the parallel SIMD processors. The same

operation is performed simultaneously on parallel data elements.

The only exception to this occurs if a processor is masked out of

the operation. Parallel control structures using this mask capa-

bility provide a means of restricting operations performed within

a parallel processor to only those operations that apply to the data

in that processor.

Figure 1. Logical View of SIMD Processing Model

Programming such a model (Figure 1) can be viewed as program-

ming a single controller that has two memories, P and S. If data

U.S. Government Work. Not protected by
U.S. copyright.
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fromSisusedwithdatafromS,theresultremainsinS.Ifdata
fromPisusedwithdatainP,theresultremainsinP.However,
if datafromSisusedwithdatainP,theresultmustremaininP.
Totallyindependentoperationsneednotbeconcernedwiththe
factthattherearemanyPmemories.Thismodelisanoversim-
plification,sinceitdoesnotaccountforinter-processorinterac-
tions.

MostoperationsperformedbyaSIMDprocessordonotinvolve
datafromdifferentprocessors,butthe need for inter-processor

interaction does arise. Inter-processor communication and data

reduction operations facilitate the ability for parallel data ele-

ments to interact. Data reduction operations produce a single

result from data in many parallel processor memories (P) and

store the result in S.

Consider more closely Figure 1, containing two views of SIMD

processing: a simplified model and a complete model. The

simplified model consists of a control unit and two memories, S

and P. The data in S is considered serial data and data in P is

considered parallel data. The complete model differs in that it has

multiple P memories. If the complete model is run with all but

one processor masked out, it will give the same result as the

simplified model (with the exception of inter-processor commu-

nications). The results from the simplified model should be the

same as a serial processor, where S and P make up the memory

of the serial processor.

In the simplified model, the control structure should act the same

whether the condition is based on results in P or results in S. The

complete model has multiple P memories; the data in each should

be manipulated only by those instructions that are pertinent to it.

This means that some processors must be turned off based on

conditions computed in them. These conditions result in a

determination that the corresponding conditionally executable

code is not pertinent. Actually, only code that effects the user

detectable state is masked. This includes assignment statements

and conditional expressions (?:).

The preceding has several subtle implications. 1) Code within

control structures, where the conditional result is in P, must be

executed as long as the condition is true for at least one processor.

2) More subtly, however, if the condition is not true for any

processor, then the code must not be executed. The subtlety is

that although no processors' memory (P) will be modified by the

code within the parallel control structure, data in S might be

modified by executing this code. However, this violates the

above constraints of the simplified model, and consequently

must be prevented from occurring.

LANGUAGE DESCRIPTION

The popularity and flexibility of C made it the natural choice as

the language to be implemented in such a manner. Parallelism is

achieved through operator and control structure overloading (to

be further explained). This preserves the Kernighan and Ritchie _

look of C, yet allows a wide range of levels of parallelism to be

implemented, depending on the targeted machine. The paralleli-

zation of C is based on experience learned in the development of

MPP Parallel Forth 2. The only syntactical addition to the

language is the storage class PARALLEL.

The language has been altered slightly to accommodate the

parallelism. Due to the different architectures of the machines

using this compiler, the storage class REGISTER has been

eliminated. On the other hand, for the sake of bit serial proces-

sors, the ability to specify number of bits in a declaration has been

expanded to all variables, not only to fields within a structure or

union. Depending on the machine architecture, however, the

programmer may get more precision than requested, but never

less. All cases of precision increases will be consistent and

documented for each version of the compiler.

COMPILER DESIGN

The C compiler is divided into four components: the scanner/

parser, intermediate code generator, intermediate code transla-

tor, and virtual machine. The scanner/parser and intermediate

code generator are machine-independent; the translator and

virtual machine must be rewritten for each machine type.

The scanner/parser is an SLR(1) parser, written without the use

of the UNIX TM utilities yacc TM and lex TM, due to Macintosh

memory partitioning limitations. (The Macintosh II is the first

machine for which a version of the compiler is being written.)

The intermediate code generator generates postfix P-code. This

style was chosen because of its speed and minimal size. Further-

more, because it is English-based, it is not difficult to read. Since

the intermediate code generator is really only a postfix converter,

this module remains machine-independent.

The translator converts the P-code to a FORTH-like"assembly".

FORTH, a stack-oriented language, was chosen because of its

speed and register simplification. Furthermore, based on prior

experience with the Massively Parallel Processor, FORTH has

been demonstrated to be a logical and efficient language to run

as a virtual machine for SIMD architectures; each processing

element memory is treated as a stack.

The virtual machine is a simple FORTH engine, actually coded

in C, which executes the "object module" output from the
translator.

Although we have implemented both the translator and virtual

machine as machine-dependent modules, the translator could be

generalized so that it would be machine-independent, requiring

only re cpmpilation with a modified include file. However, we

opted against this, avoiding as much unnecessary overhead

(speed loss) as possible.

OVERLOADED OPERATORS

There are no operators added to the parallel C; all existing

operators are overloaded. The version of each operator routine

called by the translator is determined by the types of the oper-
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ands.Unaryoperators are trivial; there is a version for each

parallel and serial type. For binary operations, if both operands

are serial or both parallel, the result corresponds. Standard C

conversion rules still apply to both serial and parallel (always to

the greater precision, signed to unsigned, and integer to floating

point.) Added to these rules, however, is serial to parallel

conversion when these two types of operands are operated on

together. A serial to parallel conversion is equivalent to a

broadcast of the serial value.

The bit shift operators (<< and >>) take on interesting results

when done in parallel. For these operators, where the left

operand is the value and the right operand is the number of bits

by which to shift, the unusual case occurs when the number of

bits by which to shift is parallel. If the operand is a variable,

different processors may contain different values. The operation

is implemented with a parallel mask, where, after each bit shift,

the processors which have completed the required number of

shifts are masked out, until all have completed.

Parallel logical operators (&& and II) are implemented with

parallel versions of the if-else structure (See Overloaded Control

Structures). Parallel addressing operators (* and &) are unde-

fined, as parallel pointers are not implemented in the current

implementation of the compiler.

Parallel Pointers

Although parallel pointers are not implemented in this version of

the compiler, serial pointers to parallel variables are legal. They

must be declared in two parts. The parallel data object must be

declared as a type, then the pointer variable is declared as a

pointer to that type, in a separate declaration. To illustrate,

typedef parallel int A;

A *ptr;

is legal, whereas the declaration

parallel int *ptr;

would be recognized as a parallel pointer declaration, and flagged

as an error.

Parallel Assignment Operators

Assignment operators (=, +=, _=, &=, etc.) do not observe the

standard conversion rules, because the resultant type must be the

type of the left operand -- the one receiving the final value.

Serial--serial and parallel--parallel left-right operand p ,airs are

trivial; no serial--parallel conversion is necessary. Parallel--

serial requires a standard serial to parallel conversion. Serial---

parallel, however, yields interesting results.

Up to this point, no operations involve the data in different

parallel processors. When parallel data is assigned to a serial

variable, a data reduction operation must be performed. This

involves data in all the parallel processors. A simple assignment

(=) of a parallel to a serial is implemented as a bitwise cumulative

OR over all values of the parallel operand, with the serial operand

being set to the resulting value.

Each complex assignment operator is treated uniquely. The

addition-assignment (+=) is implemented with a cumulative sum

added to the serial operand; the subtraction-assignment (-=)

subtracts the cumulative sum from the serial operand. Multipli-

cation-assignment (*=) and division-assignment (/=) are treated

comparably, with a cumulative product.

Bitwise AND-,OR-,and XOR-assignments (&=, I=, and ^=) are

implemented as expected: a cumulative AND/OR/XOR is done

over all values of the parallel operand, with the serial operand

being set to the resulting value.

Modulus-assignment (%=) and shift-assignment (>>=, <<=) are

undefined for the serial--parallel case.

OVERLOADED CONTROL STRUCTURES

All control structures in the compiler apply to both serial and

parallel conditions. Each structure is executed in parallel if the

test expression evaluates to parallel.

For SIMD machines, all structures must use a parallel mask, to

mask out processors which have failed the test condition. A bit

in the mask is set or cleared based on the value of the test

expression in the corresponding processor.

Parallel control structures consist of the same structures as serial

control structures: if-else,while, for, and switch. For code to be

executed in a parallel control structure, at least one parallel

processor must require it.

In a parallel 'for' loop, either the initialization or incrementation

expressions (or both) may be serial, as long as the test expression

is parallel.

An example of a parallel 'while' loop is the C code:

parallel int a,b;

long c = 0;

while (a >5) {

b *= a;

a--;

c++;
}

resulting in the statements inside the loop being executed for

each processor where that element of the array a is greater than

five. Since c is a serial variable, it will be incremented each time

the loop is executed, thus counting the maximum times the loop

is executed for any processor.

INTER-PROCESSOR COMMUNICATION
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Inter-processor communication allows data from different proc-
essors to interact. This is performed by adding an integer value

(n) to a pointer to a parallel value (i.e. *(para+n) ). The data
(*para) in processor m+n modulo the number of processors will
be moved to processor m. However, this does not in any way

imply the time it takes to perform the move. It is totally
architecture dependent.

COMPILER CONSTRUCTION

Whereas the scanner/parser is standard SLR(1) and the code

generator is a straightforward postfix converter, the interesting
design issues pertain to the translator. The most notable points
are the symbol table setup and serial and parallel memory
allocation.

The symbol table is "a linked list of linked lists". All variables
are chained in a list in the order encountered in the code. Each

variable is, in turn, the beginning of a definition chain. Since C

allows loosely formatted type definitions, the only consistent
method to create a definition, for type checking purposes, is to
chain the "pieces" of the type definition. A piece can be a base
type (e.g., int, char, float) or a modifier (e.g., pointer, array
dimension, parallel). Type checking is done by walking the
chain.

Memory allocation is handed with four constants, defined by the
virtual machine. These are LP, GP, PLP, and PGP- local

pointer, global pointer, parallel local pointer, and parallel global
pointer, containing the starting address of serial local variables,
serial global variables, parallel local variables, and parallel
global variables, respectively. The translator keeps track of the
last space allocated in terms of offsets for each of those constants.

Variables are thereafter referred to by address in the object code
generated by the translator. Because the translator is FORTH-
like, the virtual machine is composed of FORTH "words",
functions executed when named. The virtual machine defines

LP+, GP+, PLP+, and PGP+, to add these constants. Conse-

quently, addresses appear as an offset, followed by one of those
words. (Remember that FORTH uses postfix format.) The lone

requirement of the virtual machine is that a block of memory be
explicitly allocated before manipulated. Therefore, allocation

statements may appear throughout the generated object code.
Two more FORTH words are defined by the virtual machine --
ALLOC and PALLOC, for serial and parallel memory alloca-
tion.

Parallel variables are actually allocated both parallel and serial
memory. A serial longword (four bytes) is allocated to contain
two word-length values: parallel starting address and size. Hence,

parallel variables are referenced just as serial variables. The
information in the serial longword is used at execution time to
locate the parallel variable.

POSSIBLE USES

This compiler will have versions on both serial and parallel

machines. (On serial machines, parallel structures and opera-

tions _ implemented serially.) Furthermore, a program need
only be retranslated, as opposed to completely recompiled, to be

run on a new machine. Consequently, a natural use of this type
of compiler is to use a serial machine as a simulator for a parallel
machine. This would offload much of the traffic on more costly
parallel machines during parallel code debugging.

Another possible use for this type of compiler is in conjunction
with the newest computational strategy: network computing.
Each node of the network would have its own version of the

machine-dependent portion of the compiler. An entire program
would be run through the machine-independent section of the

compiler, then each piece of the program would be translated by
the machine-dependent portion corresponding to the machine on
which that section is to be run.

IMPLEMENTATIONS AND FUTURE PLANS

The f'trst complete version of this compiler is currently being
implemented in Macintosh Programmer's Workshop (MPW) C
on an Apple Macintosh II workstation, to execute serially. Since

the code itself is written in C, using only the simplest library
routines (to ensure portability), it will be trivial to port the same
code to other serial workstations. The next target is the Sun.

For parallel machines, a new version of the translator and virtual
machine must be written. The In'st type of parallel architecture

for which a version will be written is an array processor, such as

the Massively Parallel Processor or other commercially avail-
able SIMD processor. After this implementation there are plans
for a vector processor version, such as for a CRAY.

SUMMARY

By isolating the machine-dependent and machine-independent
pieces of a compiler, we have created a compiler which reflects

a high degree of portability: the same code may be run on very
different machines (architecturally) with only partial recompila-
tion. Because the programmer extracts the parallelism, the

degree to which this parallelism is utilized becomes a completely
machine-dependent issue. Consequently, each architecture is

utilized to its fullest, without any code modification.
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ABSTRACT

Declarative programming languages require complex data

structure operations that are often inefficient on sequen-

tim machines and MIMD multiprocessors. It is some-

times possible to implement declarative data structures ef-

ficiently on a data parallel architecture. This method is

illustrated by the implementation of a new data parallel al-

gorithm for functional arrays on the Massively Parallel Pro-

cessor (MPP). Functional arrays cannot be implemented

efficiently on conventional architectures without severely

restricting the way a program may access the array. Con-

ventional unrestricted algorithms typically require O(log n)

time to update an array and also to access an element. The

MPP algorithm performs these operations in a constant
time of about 100 microseconds.

Keywords: declarative language, functional language, data

parallel architecture, functional array, massively parallel

processor.

INTRODUCTION

Declarative programming languages (including pure func-

tional and pure logic languages) have several semantic prop-

erties that seem to make them well suited for parallel eval-

uation. Considerable progress has been made in detecting

potential parallelism in declarative programs and exploiting

that parallelism on multiprocessors. This work is surveyed
in Ref. 6.

Declarative languages have another form of potential par-

allelism that is not well suited for MIMD multiprocessors.

This is the parallel execution of the numerous primitive op-

erations that are needed in order to perform complex data

structure operations.

One reason that declarative languages are usually slower

than conventional imperative languages is their heavy use

* Present address: Computer Science Department, Indiana

University, Bloomington IN 47401 USA.

of complex data structure operations. Examples include

operations on abstract data types, combinator graphs and

functional arrays. In sequential yon Neumann machines, a

large amount of execution time is spent exchanging data

between the central processor and the memory in order to

execute some of these operations.

It is often possible to avoid the penalty associated with

declarative data structure operations by exploiting their

inherent parallelism. A natural way to do this is to de-

fine an abstract data parallel architecture which supports

the necessary data structure operations. It is then possible

to implement the abstract architecture directly in hardware

or to emulate it using an existing SIMD machine.

This paper illustrates the approach by presenting a fast im-

plementation of functional arrays, a typical and very impor-

tant declarative data structure. Functional arrays are dif-

ficult to implement efficiently on sequential and MIMD ar-

chitectures without restricting the way they are used. The

next two sections define functional arrays and show why the

basic operations on them are slow when implemented on a

sequential machine. The following section then describes

an abstract data parallel architecture that implements the

functional array operations efficiently. This abstract archi-

tecture has been emulated on the NASA Massively Parallel

Processor (MPP), and the remaining sections discuss the

emulation and assess the performance results.

There are several interesting relationships among functional

arrays, parallelism and nondeterminism. Hudak discusses

these in Ref. 3. For more discussion of architectures for

functional programming, see Refs. 9 and 10. Steele and

Hillis describe a complete programming language that ex-

ploits data structure parallelism in Ref. 8.

FUNCTIONAL ARRAYS

Declarative programming languages do not allow side ef-

fects. Therefore it is impossible to modify existing data

structures; instead of changing an old object the program-

mer must construct a new one which is similar to the old

object except for some specified differences. This paradigm

CH2649-2/8910000/0629501.00 © 1988 IEEE
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isusedthroughoutdeclarativeprogramming,andarraysfor
functionallanguagesprovideatypicalexample.

Imperativelanguagesprovidetwoprimitivesforoperating
onarrays:indexingandassignment.Theindexingopera-
tiontakesanarrayandindexvalueandreturnsthearray
elementwiththatindex.Theassignmentoperationtakes
anarray,indexandnewvalue,andreplacestheoldvalueof
theindexedelementwiththenewvalue.Theassignment
isdisallowedinafunctionallanguagebecausetheoldag-
gregatevalueofthearray(thesetofall index-valuepairs)
nolongerexists.

l_mctionalarraysreplacetheassignmentoperationwith
anupdate operation which constructs a new array without

changing the old one. The indexing operation remains the

same. Any algorithm using arrays can be expressed with

indexing and update just as easily as with indexing and as-

signment. However, functional arrays are more general and

some algorithms are easier to implement using them. For

cxanlple, the lexical environment for a programming lan-

guage interpreter can be represented as a functional array

using variable names as indices.

The incremental update takes n operations to replace all

the values of an array containing n elements. In contrast, a

similar operation called the monolithic update can change

all the array elements simultaneously (Ref. 11). In this

paper we consider only the incremental update operation.

We define an array A to be a function which takes an integer

index and returns the value of the indexed element. The

element may have an arbitrary type a, although all the

elements of tile array must have the same type. The type

of A is thus

A : int---*a

We may fetch the ith element of A by applying A to i. This

paper uses the standard notation for function application.

For example, f x is the result of applying f to x, while f x

y z is the result of applying f to three (curried) arguments

x, y and z. Therefore A i applies the array A to the index

i, looking up the ith element. This is equivalent to the

expression A[i] in conventional programming languages.

In general an array A will not contain a value for every

index. If A is undefined at index i then A i is _l_ (the bot-

tom element in the value domain, representing an undefined

value). There is a constant empty array called nil which is

unbound for all indices. Thus for any index i, nil i = _L.

The nil array serves as the basis from which all other arrays

must be constructed.

The update fimction takes three arguments: an old array A

whose elements axe of type a, an index i and a value x of

type (_. It returns a new array A _ whose elements are also

of type c_. The type of update is

update : (i,_t--.a) --+ int --* ,_ --+ (int_a)

The new array is identical to the old one except that the

element with index i has the value x. The update fimction

is defined by two equations. For an arbitratT array A,

(update A i x ) i = x

(update A i x ) j = A j, for j ¢ i

In other words, since an application of update produces a

new array, we define update by specifying what happens

when that new array is applied to an index. If the new

array is applied to i then the result must be x; otherwise

the result is the same value that the original array would

give.

The lookup function takes an array A whose elements have

type c_ and an index i, and it returns the value of the ith

element. The type of lookup is

lookup : (int---_a) --+ int _ er

Since lookup simply applies the array (which is itself a fimc-

tion) to the index, there is no need for an explicit lookup

function in the programming language, However, we will be

considering the imPlementation of the language rather than

programs written in it, so it is useful to have an explicitly

named lookup subroutine. Its value is defined by

lookup A i = A i

SEQUENTIAL IMPLEMENTATION

It is useful to consider the difference between flmctional

arrays and conventional arrays, and then examine why it

is difficult to implement functional arrays efficiently on se-

quential machines.

An imperative language treats an array as a block of mem-

ory, and the values stored in the memory words may change

over time. Consider the following program which prints -25.

By the time the print statement is executed the original

value of 1002 that was stored in A[2] is gone forever.

A[0] := 1000

A[1] := 1001

A[2] := 1002

A[IO0] := 1100

A[2] :=-25

print A[2]

When this algorithm is written in a functional style, the

program constructs a sequence of distinct arrays Ai for

i < 0 < 100, and each of these values is immutabh'. (Both

the imperative and functional programs would normally be

written using loops rather than a long sequence of state-

ments; the functional equivalent of a for loop is tail recur-

sion.)
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Ao = update nil 0 1000

A1 = update A0 1 1001

A2 = update A1 2 1002

A10o = update A99 100 1100

Alol = update A10o 2-25

At this point, lookup A101 2 evaluates to -25, but Alo0 still

exists (as do all the other arrays) and lookup A100 2 still
evaluates to 1002.

It is possible to use imperative arrays in an almost-

functional language using I-structures (Ref. 1). Several

dataflow languages do that. However, we will be consider-

ing pure functional arrays.

The most obvious way to implement lookup A i x is to make

a new copy of A, storing x into the ith element instead of

the value of A i. This allows lookup always to execute as fast

as fetching a value from an imperative array. The problem

is that update would take both time and space proportional

to the size of the array. Since an array must be constructed

one element at a time by a sequence of updates, the cost

would certainly be prohibitive.

Anotber approach, which is equally obvious and almost as

bad, is to build a linked list of "exceptions" to an array.

Thus update A i x would allocate a new word that contains

i and x and points to the representation of A. This makes

update take a small constant amount of time and space, as

it should, but the average lookup time is now proportional

to the array size.

Various representations are possible which build balanced

tree structures to represent a functional array. These rep-

resentations typically cost O(logn) time for lookup and

update. The space complexity of update is also O(logn).

Although far better than either of the first two algorithms,

this still means that functional array operations are very

expensive.

A better alternative is to analyze the functional program.

If it is possible to prove that after evaluating update A i

x the original array A will never be needed again, then

the compiler can implement the update with a destructive

assignment. Sophisticated automatic compile time analysis

algorithms have been developed to do that (Ref. 4). This

approach works very well in many cases. In particular,

when an imperative program is rewritten in a functional

language without a complete reworking of the algorithm,

the functional arrays will be used as if they were imperative

arrays, and only one version of each array (the result of the

most recent update to it) needs to be retained. Analysis

algorithms can usually tell the compiler to use imperative

arrays in such eases.

Although compile time analysis is extremely useful, it does

have two drawbacks. First, the analyzer may not under-

stand the program well enough to determine that impera-

tive array operations would be safe. The second problem

is more fundamental: some programs use functional arrays

in a truly functional style where imperative array opera-

tions would be incorrect. No compile time analysis tool

will be able to help in that situation. One way out would

be to teach functional programmers not to exploit the full

power of functional arrays unless they are willing to toler-

ate extremely slow execution. But this is surely inferior to

the best approach: using data structure parallelism to im-

plement all functional array operations in a small constant

amount of time, with no restriction whatever on the way

the arrays are used. The next section shows how to do that.

ABSTRACT ARCHITECTURE

This section describes an abstract data parallel architec-

ture for functional arrays. This architecture implements

both lookup and update in a small constant amount of time,

independent of the size of the array. An update always re-

quires a constant amount of space.

It is essential for an efficient implementation of functional

arrays to share as many array elements as possible. There-

fore if the array A contains n elements, including A i, then

A' = update A i x must allocate only one new word of data

in order to hold the value of A' i. The other n - 1 elements

of A and A' are shared. Without sharing, too much time

and memory would be spent copying data needlessly. How-

ever, the sharing must be done in a manner that does not

slow down the lookup operation. In particular, the lookup

algorithm should not traverse a list of updated array ele-

ments.

The abstract architecture shares common array elements

without slowing down access to any individual element.

The basic idea is that every array element is stored with

some additional infornmtion that tells it exactly which ar-

rays contain it. The lookup operation then associatively

asks every array element to decide on its own whether it

belongs to the particular array being searched. These de-

cisions are all made in parallel. Then lookup can quickly

find the indexed element using another associative search.

During an update many words in the array must change

their representation, but all of those changes can be made

in parallel.

It is important to distinguish between the value of an array

element x = A i and the memory word w that represents it.

We will call x an array clement and w will be called an array

word with index i. The algorithms must share array words

when possible, but it is meaningless to talk about sharing

array elements. The containment set of an array element x

is the set of arrays that contain the word representing that

element, and it is written es x. For example, cs (A i) is the

set of arrays whose representation contains the word that

stores the value of A i.

Suppose there is an array A and the program then modifies

the array data structures by creating a new array A' =
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updateA i x. It is useful to consider the data structure

representation both before and after the update is executed.

A new word is needed to store the value of A' i. (We

ignore an optimization which avoids creating a new word if

it happens to be the case that A ti = Ai.) The new word

represents a completely new array element, and it cannot

be shared with any other array, so

es (A' i) = {A'}.

However, every other word of A' is shared with the corre-

sponding word of A. For any j in the domain of the arrays,

where j # i, let Cj be the value of cs (A j) before the update

is executed. Then after the update is executed,

cs(,4'j)= cs(Aj)={A'}UC i.

Thus the word that represents A j also represents A r j, and

its containment set includes A, A', and all other arrays that

had already been in the containment set of A.

The key problem in the data parallel algorithm is finding a

good way to represent the containment set of every word.

This representation must be able to specify any set of arrays

that might contain the word using a constant amount of

space. Furthermore, an update operation may change the

containment sets of many words, and all those words must

be able to recalculate their containment set in parallel using

a constant amount of time.

An array reference is an integer value that represents a

pointer to an array. In effect, the arrays are all numbered,

and references to arrays always use those numbers. The

array reference of nil is -1, and update generates an array

reference for the new array that it creates. If a is the array

reference of an array A, then we define a function arefby

A = aref_2.

The algorithm represents each containment set with a con-

tainment interval. A containment interval is a pair of inte-

gers L and U, where L gives the lower bound of the interval

and U gives the upper bound of the interval. A contain-

ment interval represents the set of all arrays whose array

reference number lies between L and U. If w is a word with

bounds L and U then

csw= {arefL, arefL+ l, ..., arefU}

An update operation generally must recalculate the array

reference numbers of some of the arrays, and many of the

containment intervals must also be changed. An array does

not have a constant array reference number. A pointer to

an array must be represented by an integer variable which

holds the current value of the array reference number, but

that value may change over time as various update oper-

ations are performed. The update algorithm below shows

how these values are recomputed, and the lookup algorithm

shows how they are used. The following section gives a de-

tailed example illustrating containment sets, containment

intervals and array reference numbers.

A processing element is a hardware unit containing the

memory, arithmetic and logic needed for a word. The archi-

tecture provides several basic operations (these are typical

of SIMD architectures).

• for each cell

This executes a sequence of statements in paral-

lel in all the processing elements. The notation

"cell.field' refers to a local field within a process-

ing element.

• select-available

This operation finds one processing element that

is not currently in use and sets its select flag.

• select-minimum (field)

This considers the value of field in every pro-

cessing element whose select flag is currently set.

It determines which of those processing elements

has the smallest value of field and leaves it un-

changed. All other processing elements clear their

select flag.

• fetch()

This returns the contents of the selected process-

ing element. (If several are selected, the logical or

of their contents is returned.)

• store (field = value,...)

The values are stored into the corresponding fields

in every processing element whose select flag is set.

The data parallel update and lookup algorithms are de-

scribed below. Each processing element contains the fol-

lowing fields:

• type specifies whether the word is empty or contains

an array element.

• T gives the element type if the word contains an array
element.

• K holds the index of the array element.

• V holds the value of the array element.

• L gives the lower bound of the containment interval.

• U gives the upper bound of the containment interval.

• select is a flag used during associative searches to mark
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theprocessingelementsthatcontainanarrayelement
whosecontainmentintervalincludestheindexargu-
menttothelookup function.

• ternp is a temporary integer used by lookup to resolve

which word to use if several words have the right index
and containment interval.

The data parallel algorithm for update first recalculates the

containment interval in every processing element that holds

an array word. Then it allocates an available word of mem-

ory, and stores the new array element in it. Finally it re-

turns a reference to the array that has just been created.

The argument a is the array reference number of the array

that is being updated.

update a i x
for each cell

if cell.L > a then cell.L := cell.L + 1

if cell.U > a then cell.U := cell.U + 1

if cell.T = aref and cell.V > a

then cell.V := cell.V + 1

select-available()

store(L=a+l, U=a+l, K=i, V=x)

return ( aref a + 1)

It is important to note that every array reference number

that is greater than a must be incremented, regardless of

where it is stored. If there are any of these in the control

processor's memory it must update them one by one. Nor-

mally there will be only a few registers to check, because

most of the array references will be in the heap which is

checked in parallel.

The lookup algorithm begins by finding all the words with

the specified index value that are contained in tile array

being accessed. Since it is possible for several words with

the same index to be in the containment interval, lookup

then finds the most recent one by selecting the nmtching

word with the smallest value of U - L. Finally it fetches

the array element from that word and returns the result.

lookup a i
for each cell

cell.select := (cell.type = element)
and cell.L < a < celI.U

and cell.K = i

cell.temp := (cell.U - cell.L)

select-minimum ( temp)
if select-ezists

then return (fetch())

else return undefined

EXAMPLE OF EXECUTION

It is useful to work through how the algorithm builds a set

of functional arrays. Initially there is only one empty array

called nil, whose array reference number is -1. The only

way to construct any other array is to update nil. After

executing

A = update nil 3 a

there is one array word with index 3 and value a. The

containment set of this word is {A}. A reference to A is

represented by 0, and we write this as A _ 0. Both L and

U are 0, and the containment interval is written as 0 x 0.

[3]=a

(A}
0×0

A_0

Now the program executes

B = update A 4 b

which creates a new word and adjusts the containment in-

terval of the previous word. Since A ,-_ 0 the upper bound

of the word with interval 0 × 0 is incremented, but the lower

bound is not. This produces the following representation.

[al=a [41=b
{A,B} {B}

0xl lxl

A_0 B_l

Another array can be constructed similarly by

C = update B 5 c

[31=a [4l=b [5]=c

{A,B,C} {B,C} {C}

0x2 lx2 2x2

A,,_0 B,_l C,_2

So far each array has been created by updating the previous

array, leading to a simple pattern of containment intervals.

The situation becomes more complex when a new array is

created by updating some earlier array, rather than the last

one. For example,

D = update B4 d

produces the following data structure representation:

[31=a [4l=b [51=c [41=d

{A,B,C,D} {B,C,D} {C} {D}

0x3 lx3 3x3 2x2

A_0 B_l C_3 D_2

The array reference number of C has been changed from

2 to 3, and the new array D now has 2 as its reference
number.

Suppose that we now evaluate lookup D 4. Since D _ 2,

the word that holds [5]=c is not selected (its containment

interval is 3 x 3, which does not include 2). The word that

holds [3] =a is not selected because its index doesn't match.
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Nowtherearetwoselectedwords,holding[4]=band[4]=d.
Themostrecentlycreatedofthesewordsis theonehold-
ingthecorrectvalue,andlookup finds it by choosing the
selected element with the narrowest containment interval.

The word holding [4]=b has interval 1 x 3, so the word hold-

ing [4]=d with interval 2 x 2 is chosen instead. Thercfl,re

lookup D 4 evaluates to "d" as it should. However, if we

evaluate lookup B 4 the result is "b".

MPP IMPLEMENTATION

The Massively Parallel Processor (MPP) is a large scale

SIMD machine (Ref. 7). This section describes how tlle

data parallel functional array algorithnrs were implemented

on the MPP, and the next section discusses their perfor-

mance.

The MPP system consists of several major components. A

host processor provides a file system and network comnm-

nications. The main control unit is a sequential computer

that can perform computations oll its own as well as con-

trolling the operation of the array unit. The array unit

contains 16,384 processing elements. Each one has 1024

bits of memory as well as a small bit-serial arithmetic and

logical unit. (The MPP also has a staging memory which

was not used for this work.)

Most of the functional array system runs in the main control

unit and the array unit; the host processor only performs

I/O support. The functional prograan object code executes

in the main control unit. (Currently there is not a complete

functional language implementation for the main control

unit; those algorithms were written by hand in assembly

language.) When the user program needs to access a flmc-

tional array it calls a lookup or update subroutine in the
main control unit. These subroutines then communicate

with the array unit, passing it the input parameters and

receiving the result. The array unit executes the parallel

parts of the algorithm. The portions of lookup and update

marked for each cell are executed in the array unit, and

the rest is executed in the main control refit. The main

control unit and array unit work together to implement the

select-nfinimum' operation.

The array unit has subroutines for bit serial arithntetic.

The lookup and update subroutines in the array control

unit call these lowest level subroutines in sequence. Con-

ditional operations work by disabling those processiug ele-

ments where the condition is false. For example, when the

array unit executes

if cell.L > a then cell.L := cell.L + 1

it first calls an arithmetic comparison subroutine that

masks off all processing elements where cell.L < a. Then

it calls an increment subroutine which performs cell.L

:= cell.L + 1 only in the appropriate processing elements.

MPP PERFORMANCE RESULTS

The MPP implementation of functional arrays is written in

the main controller assembly language MCL and the pro-

cessing element assembly language PRL. All integer repre-

sentations were 16 bits. The MPP performance monitor (a

highly accurate clock which produces very repeatable re-

sults) gave the following timings for the lookup and update

operations:

• lookup A i takes 105.5 microseconds for all values of A

and i.

* update A i x takes 114.9 microseconds for all values of

A, i and x.

The corresponding times for imperative array lookup and

assignment operations are typically on the order of one mi-

crosecond, so the functional array operations are still much

slower. A number of points must be considered in order

to evaluate these results. First we will compare the MPP

fimctional array system with other pure functional array

implementations; then we will compare it with imperative

arrays.

As discussed in an earlier section, the other algorithms that

support functional arrays either execute slowly or work only

for some programs. The algorithm given in this paper is the

fastest general implementation of pure functional arrays.

The most important attribute of the data parallel algorithm

is that lookup and update always take constant time and

space. This doesn't just give a constant factor speedup; it

reduces the time complexity and space complexity of the

algorithm, compared with other general implementations

of functional arrays.

There are three main reasons why the MPP implementa-

tion of functional arrays is slower than standard imperative

arrays.

Most of the slowdown is caused by the fact that all the

arithmetic and data movement operations on the MPP

use bit-serial algorithms, while conventional machines

perform arithmetic on a word of data in one clock cycle.

Since the MPP algorithms were using 16-bit wide data,

this accounts for a factor of 16 loss in performance.

2. The second most important cause of the slowdown is

that each update and lookup operation require several

arithmetic operations. In particular, it is necessary to

compare the L and U fields with a broadcast value

on both lookup and update; update must also spend

time incrementing L and U fields in some of the cells;

update must also increment some of the array reference

numbers; lookup needs to find the minimum value of a

set of cell fields in order to find the most recent element

with the specified index. Conventional array accessing
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alsorequiressomearithmeticoperations,butnotas
many.

3. Thethirdandleastsignificantcauseoftheslowdownis
thattheMPPalgorithmsrequiredanumberofinstruc-
tionsthat constitutepureoverhead.Theseinclude
theinstructionsneededto communicatebetweenthe
MainControlUnitandtheProcessingElementCon-
trolUnit,alongwiththesubroutinecallsandregister
initializationsthattakeplacein bothcontrolunits.
Sequentialmachinesimplementarrayaccesseswithout
anycorrespondingoverhead.

Clearlyit wouldbepossibletoremoveeachofthesesources
ofoverheadthroughspecial-purposehardware.In partic-
ular,a dedicated functional array machine could be built

that contained several word arithmetic units in each pro-

cessing element. However, it would probably be better to

build a general-purpose programmable data parallel archi-

tecture with sufficient arithmetic and logical units in each

processing element. This would give almost as good per-

formance for functional array operations, and it would also

be able to execute a wide range of other data structure

algorithms.

The general functional array algorithm given here could be

used in a system that also tries to use destructive array

updates whenever program analysis proves that to be safe.

This might be the ideal solution, because it would reduce

the overhead due to array operations, and yet it would still

allow programmers to use arrays in a completely general

manner without worrying too much about efficiency.

COMMUNICATION

The algorithms for lookup and update given above do not re-

quire any communication among the processing elements.

They rely almost entirely on arithmetic and logic opera-

tions that are executed independently, in parallel, in all

the processing elements. The only communication takes

place between the control processor and the array unit, and

the MPP hardware supports all the necessary capabilities.

The lookup algorithm uses the MPP's ability to calculate

the logical or of a bit in every processing element using a

purely combinational logic network, requiring only a few

microseconds per bit.

Many declarative data structure operations are not so sim-

ple; they require communications among processing ele-
ments in addition to communications between the control

processor and the array unit. A good example of this is

the addition of storage management to the functional ar-

ray system.

The algorithms given above allocate a word of memory for

each update operation, but they never deallocate a word.

Whenever an array becomes inaccessible, some of the in-

dividual array words may also become inaccessible. When

this happens the system should (eventually) reclaim that

storage so it can be reused. The easiest way to reclaim

storage for the data parallel functional array algorithm is

through garbage collection. Another strategy similar to ref-

erence counting is also possible, and has several advantages,

but its implementation is considerably more complex.

The garbage collection algorithm for functional arrays is

similar in style to the lookup and update algorithms. It

spends most of its time performing parallel arithmetic

within the processing element array. However, the garbage

collection algorithm can require a lot of execution time be-

cause it has to traverse references from all accessible data

words. It would be better to reclaim storage automatically,

in constant time, as soon as it becomes inaccessible. Such

algorithms require a large amount of communication among

the processing elements.

A central issue in designing data parallel algorithms is

matching the hardware's interconnection network to the re-

quirements of the algorithm. Machines have been built or

proposed with nearest-neighbor connections (the MPP), a

combinational tree network (Apsa), and a hypercube (Con-

nection Machine).

Many declarative data parallel algorithms, including ref-

erence counting for functional arrays, can be implemented
with a combinational tree-structured interconnection net-

work. When this kind of network is able to support an

algorithm without communication bottlenecks, it has very

significant advantages:

• The tree network can easily be scaled up to very large

numbers of processing elements.

• Since the network is combinational, and does not re-

quire messages to pass through a number of latched

nodes, its latency is extremely low. This leads to fast
communication.

The Apsa system (Ref. 5) uses a combinational tree net-

work for declarative data parallel algorithms, including

functional arrays.

Many algorithms, of course, require too much communica-

tion to work well in a tree network. Sorting and Fast Fourier

Transform are typical examples. More powerful intercon-

nection networks, such as the hypercube or cube connected

cycles, are necessary for these applications. The Connec-

tion Machine (Ref. 2) supports these algorithms well.

There is a tradeof[ between the power of an intercormection

network and its latency and scalability. For example, a

hypercube does not scale up to large numbers of processing

elements as well as a tree does. Fktrthermore, a multistage

network with latches in each stage is considerably slower

than a purely combinational network.

Because of these tradeoffs, we should not simply use the

most flexible data parallel architecture for all algorithms.

In some important cases (such as functional arrays) the
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performancecanbeimprovedbyusinga much cheaper ar-
ctfiteeture. Therefore it is very desirable to determine the

kinds of network needed for a wide variety of algorithms,

giving better insight into these tradeoffs for specific prob-

lelns.

It would be helpful for costly machines with rich intercon-

section networks to support simple communication algo-

rithms efficiently. For example, a multistage hypercube

machine executes some algorithms more slowly than a com-

binational tree machine. Yet with a very small increase

in cost, the hypercube machine could also support com-

binational tree operations. We need to know more about

data parallel algorithms in order to make such decisions

correctly.

CONCLUSION

Declarative programming languages rely on several com-

plex data structure operations that execute slowly on von

Neumann architectures. One way to improve the perfor-

mance of declarative languages is to use fine grain paral-

lelism to implement the data structure operations directly

in the memory. Altilough this technique does not exploit

large grain parallelism in the user's program, it can im-

prove the speed of all programs that use the declarative

data structures. Furthermore, it should be possible to com-

bine some coarser grain parallelism with the data structure

parallelisnl.

This paper has shown how data structure parallelism can

improve the performance of functional array operations.

Since declarative (including functional) languages do not

allow side effects, array assignment operations usually re-

quire a large amount of copying. By incorporating simple

arithmetic and logic capabilities in each word of memory,

all the functional array operations can be executed in a

constant amount of time and space. These operations are

still slower than array accesses in imperative languages run-

ning on conventional hardware, but most of this slowdown

is caused by the bit-serial architecture of the data parallel

machine. The performance could be improved considerably

with the use of special purpose hardware. However, a gen-

eral purpose data parallel architecture (such as the MPP

or the Connection Machine) is very useful for prototyping

the declarative data structure algorithms, and the flexibil-

ity of a general purpose machine makes it possible to exploit

several other forms of parallelism in the same program.
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ABSTRACT

This paper presents a performance analysis model and

describes a network analysis program that can be used to

estimate end-to-end delay and maximum system through-

put for massively parallel multicomputer networks. The

model explicitly accounts for both message processing and

transmission delays. The model is general enough to al-

low analysis of message and virtual cut-through switching,

point-to-point and multiple bus topologies, unidirectional
and bidirectional links, and varying traffic locality assump-

tions. The model and program allow the analytical evalu-
ation of network and node design alternatives, as

illustrated by an application example.

Keywords: Interconnection Networks, Multicomputer De-

sign, Performance Analysis, Queueing Models.

INTRODUCTION

Advances in VLSI technology have made multicomputer

networks a promising approach to parallel processing.

Multicomputers contain multiple processing nodes that

operate concurrently and share information by passing

messages over links that connect the nodes. Each node

contains a functional processor (FP) that executes compu-
tational tasks and a communications processor (CP) that

handles message transfers. Since the network is rarely

completely connected, messages may pass through one
or more intermediate nodes from source to destination. In

a massively parallel multicomputer, this may lead to sig-

nificant communications delay since messages may need

to pass through many intermediate nodes and traffic on in-

dividual links may become quite high. Therefore, the

communication delay must be carefully considered in tile

design of large multicomputer networks.

The space of interconnection networks can be represented

by the cartesian product of four sets of design features:

operation mode, control strategy, switching methodology,
and network topology (Ref. 1). The operation mode of

multicomputer networks, at least at the macro level, is

asynchronous and does not directly affect the performance

analysis. Multicomputers exhibit a distributed, rather than
centralized, control strategy. Traditionally multicomputers

have employed message switching, although virtual cut-

through switchiTig (Ref. 2) also holds promise. A variety

of topologies have been implemented or proposed includ-

ing point-to-point topologies such as the mesh and

hypercube, and multiple bus topologies such as the span-

ning bus hypercube.
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This paper describes a performance analysis model and a

PC-based network analysis program that allow an accurate

and efficient analysis of large multicomputer network de-

signs. The analytic model can be used to determine end-

to-end message transfer delays and the maximum system

throughput.

Traditional performance analysis models for computer net-
works have focused on local and wide-area networks. Be-

cause these networks exhibit long transmission times due

to long messages and relatively low transfer rates, the

performance models ignore communication processing

delay in favor of transmission delays. Recent research has

focused on performance modeling and analysis of point-

to-point multicomputer networks (Ref. 3). Multicomputer
networks are characterized by high link transfer rates and

relatively short messages. Therefore, message processing

time is a significant and often dominating component of

delay and cannot be ignored. The performance model

proposed inRef. 3 is limited to point-to-point networks with

bidirectional physical links and message switching. The

performance model described in this paper generalizes the
model of Ref. 3 and can model both point-to-point and

multiple bus topologies and both packet and virtual cut-

through switching. The model may also be used to analyze

networks with bidirectional or unidirectional links.

PERFORMANCE ANALYSIS MODEL

Assumptions

The performance analysis model makes the following as-

sumptions.

1. Composite traffic arrival at each node is Poisson dis-
tributed.

2. Message lengths, and hence transmission times, are

exponentially distributed.

3. Network topologies are symmetric.

4. Nodes are identical, at least up to the links and CP,

5, The message generation and destination distributions

are identical at all nodes.

6. Node message queues have infinite storage capacity.
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Figure 1. Queueing model for a single node

Given assumptions 3, 4, and 5, traffic conditions are the

same at all links and nodes. Assumptions 1, 2, 5, and 6
allow the analysis to be tractable and are reasonable for

large, well-designed multicomputer networks with varying

message sizes. Assumptions 3 and 4 are true for many,
but certainly not all, popular topologies.

Node Model

Nodes consist of an FP, a CP, and a communication con-

troller (CC) or port for each link. Arriving messages are

received at a CC and placed in memory for processing by
the CP. Messages from links and the local FP form a

queue at the CP. The CP processes each message and
passes it on to the local FP or to a CC. The CC transfers

outgoing messages to the next node when the link is free.

Figure 1 shows a queueing model for a single node
adapted from Ref. 3. Message processing time at the CP

is fixed and arrivals are Poisson, so the CP stage is mod-

eled as an M/D/1 queue with arrival rate 2cp given by

)-cp = ,_P + D).L. ,_._p is the mean message generation rate

by the FP, ,_ is the mean message arrival rate oil one link,
and D is the number of links.

Let 1//_cp be the CP processing time. Then Tc_,, the wait and

service time at the first stage, is

T -_+ 2cP
CP -- i.Lcp 2lZCP(#CP -- _CP) [1)

The departure distribution from the M/D/1 queue, and

hence the arrival distribution at each link queue, is very

close to Poisson (Ref. 3). With this approximation and ex-

ponential message transfer times, the link stage is mod-

eled as an M/M/1 queue with service rate /_L determined

by the mean message length and link bandwidth. For a
. t ' -

balanced network, the arrival rate at each of the M/M/1

queues is the same and the total delay through the second
stage, TL, is

T, 1
_L -- "_L (2)

The total delay at a single node is TN =Tcp + TL.

End-to-End Message Delay

The end-to-end delay experienced by a message from its

source to its destination is determined by delays at each

node, Tcp and T_ , and the distance or number of hops

travelled. The expected number of hops, Nh, depends on

topology and the distribution of source-destination pairs.

Common destination assumptions are uniform, where all

nodes in the network are equally likely to be the destina-
tion, and sphere of locality, where the destination is within

fixed distance d from the source with probability _ and is

at a distance greater than d with probability 1 - _ (Ref. 4).

For example, consider a W° torus topology with uniform
traffic distribution. The W° torus is a D dimensional nearest

neighbor mesh of width W with end-around connections

(Ref. 5). Each node is connected to its neighbors by
point-to-point links. The mean internode distance for the

torus with W even is (Ref. 4)

Nh=DX('_)x -- "_

The factor N/(N- 1) occurs since nodes do not send mes-

sages to themselves. Similar results exist for Wodd.

In message switching, a message must be completely re-
ceived at each intermediate node before it can be for-
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warded. If a message takes N_ hops from source to

destination, it encounters N. + 1 message processing de-
lays and N. link delays. Using Equations 1 and 2, the ex-

pected end-to-end delay for a message switched network
is

1 + _cP Nh
TMS = (N. + 1)[ #cp 2#cp(l_cp -- tcp ) ] 4 (4)I_L -- 2_L

Cut-through switching (Ref. 2) is similar to message

switching except that messages do not have to be received
completely before being transmitted out of the node. After

the header is received, the outgoing link can be selected,

and if the link is free, message transmission may start im-

mediately. If the selected link is busy, the operation fol-

lows that of message switching. The probability of finding

a free link is the probability of an idle M/M/1 queue, 1 - p,

where p = 2_L/#L is the link utilization factor. Out of Nh -- 1

intermediate nodes, the expected number of cuts, Nc, is

N c = (N.- 1)(1 - p).

When a cut is made, the node service time, conditioned on

the wait time at the link being zero, less the header transfer

time is saved. Let _ be the ratio of header length to total

average message length, including the header. Using Nc

from above, the end-to-end delay for cut-through switching
is

(1 - _) .
Tcr = Tus-(Nn-1)(1 -p)[Tcp+_l (5)

Values for 2L and ._¢p needed to compute T_s and Tc_ are

determined for a given network from Nh and )-r.. 2Fp is a

function of the application executing on the multicomputer.
If N is the number of nodes and NL is the number of links

in the network, then the traffic on each link, i-L, is

NhN).F P

_L NL Y)'FP (6)

The CP traffic, _tc_, is

).cp = (1 + Nh)2Fp = fl'_FP (7)

For a W ° torus with uniform traffic, ._L=(W,_p)/4 and

•_cp = (1 + DW/4)2Fp.

Network Analysis Tool

To assess design alternatives, the "Network Analyzer"

program, based on the performance model, was developed

to serve as a computer-aided design and analysis tool,

The program accepts a specification of a network and

message distribution and computes end-to-end delay times

that call be plotted as a function of )-F.. Parameters can be

changed easily to performa what-if analysis. The program
is written in PASCAL for the IBM PC.

The program allows seven parameters to be specified:

1. network topology,

2. CP processing time,

3. link bandwidth,

4. mean message length,

5. header length,

6. switching technique, and

7. traffic pattern.

Analysis parameters are automatically calculated for the

general W ° torus and W° spanning bus hypercube

topologies. Note that many common networks, e.g. the
two-dimensional mesh with wrap-around and the binary

hypercube, are forms of these two topologies. Other

topologies can be analyzed by specifying N_,, y , and /_.

APPLICATION EXAMPLE

To illustrate the effectiveness of the model and the Network

Analyzer as a design and analysis tool, we consider a hy-

pothetical multicomputer network design problem. As-

sume a multicomputer system with the following

characteristics:

• network size of N = 1024 or 4096 nodes,

• average message length of 512 bytes,

• uniform traffic distribution,

• message switching,

• 1/#cp = 0,1 milliseconds, and

• )w, not to exceed 1000 messages/second.

We consider using a W ° torus versus a W ° spanning bus

hypercube(Ref. 5), The delay in each network is given by

Equation 4. The average number of hops, N^, is given by

Equation 3 for the torus and by Equation 8 for the spanning

bus hypercube.

N_ = D( _ ) (6)

The design objective is to select the most economical net-

work design, without compromising network performance,

for cost function C=BWxN_.xNL, BW is the link band-

width, N:. is the number of connections per node, and NL is
the total number of links in the network.

The cost of a N= W° node spanning bus hypercube is

Css = BW x D x DW °-_ (9)

and the cost of a N = W° node torus network is

C r = BW x 2D x DW D = 2WCss (10)

As indicated in Equation 10, for a given bandwidth BW,

network width W, and dimension D, the spanning bus

hypercube offers a 2W cost advantage over the torus. For

W=4, a spanning bus hypercube with BW=40

megabits/second has half the cost of a torus with BW = 10

megabits/second for the torus. Using W=4, D=5

produces a network with N= 1024 nodes and D--6

produces a network with N= 4096 nodes.

Figure 2 shows message delays for the spanning bus

hypercube and torus for N= 1024 nodes and N=4096

nodes. The performance of the spanning bus network is

clearly superior. Even in the 4096 node spanning bus

hypercube, low delays can be expected in the spanning

bus network with ),rp as high as almost 1600

messages/seconds, This can be compared to the 4096

node torus which begins to saturate at around 1300

messages/second. For W=2, costs are equal and the

spanning bus hypercube is still superior, although its per-
formance is less than for W = 4 due to increased internode

distances.
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Figure 2. Performance of torus and spanning bus networks

CONCLUSIONS

Communication delay must be carefully considered in the
design of multicomputer networks since it may contribute
significantly to the overall system performance. General
performance analysis models are needed to evaluate dif-
ferent network design alternatives. This paper presented
a general network model for a wide class of multicomputer
networks that explicitly considers both message process-
ing and transmission delays. The model can be used to
analyze networks using either message or virtual cut-
through switching, bidirectional or unidirectional links, and
point-to-point or multiple bus topologies. The Network An-
alyzer program uses the model to analyze alternative de-
signs under different work load assumptions.
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ABSTRACT

This paper discusses retrieval of a number of keys in
parallel from a single hash table. The algorithm is a
data parallel (Ref. 1) adaptation of a familiar
sequential method. Changes were made to suit the

.single instruction stream, multiple data stream
Connection Machine (Ref. 2). Running time is
proportional to the maximum run of collisions rather
than the average number. The algorithm was
developed as a portion of a large X-ray
crystallography application for the Connection

Machine (Ref. 3). The generality of the scheme may
make it useful for other massively parallel
applications.

Keywords: Hashing, Searching, Parallel Algorithms,
Connection Machine, SIMD, MIMD.

INTRODUCTION

The algorithm is based on three assumptions:

1. The algorithm must be suitable for efficient
implementation on the Connection Ma-
chine.

2. The hash table contains no duplicate keys,
3. The algorithm is to make use of the

maximum number of processors otherwise
needed for the application, but no more.

These assumptions appear to be reasonable for other
uses of the algorithm.

THE PARALLEL ALGORITHM

The basic concept behind the implementation is the
sequential hash table algorithm as described in Ref. 4

using a fixed size table and linear probing. Insertion
in the parallel version follows the algorithm given
below. The keys are denoted by K and the parallel
hash function by h. One key is stored in each active
processor and the table has one entry in each
processor, active or not.

I1. [Hash] Evaluate hash function on all keys
K and save indices in parallel variable i.

12. [Store key] Store keys K in hash table at

indices i. Note that for collisions, only one
of the colliding keys stored in a given table
entry (processor) will survive.

I3. [Check storage] Retrieve stored keys from
table indices i and compare in parallel
with keys K. Disable all processors with

keys that match the retrieved keys. These
keys have been successfully stored in the
table.

14. [Termination?] If no active processors
remain, the algorithm terminates. Other-
wise continue on to step I5.

I5. [Next pi'obe point] Increment indices i. For

those processors with i values beyond the
table size, set i to 0. Repeat from step 12.

The running time of this algorithm is clearly
dependent on the maximum number of times steps I2
through I5 are executed. That is, the running time is
proportional to the maximum run of collisions. This is
in contrast to the normal sequential hash algorithm
where overall performance depends on the average
collision run length.

Retrieval from the parallel hash table follows a
similar algorithm.

IMPROVEMENTS

The basic scheme of parallel hashing can be
improved in several ways. Some of these ways have
been investigated in Connection Machine
implementations. The methods are:

• rehashing collisions,
• use of a larger table,
• primary and secondary tables, and
• chaining.

The first variation is a parallel analog to the rehash
method described in (Ref. 4, page 521). In this

method, collisions are resolved using a secondary
hash function which determines, for each key, a
sequence of secondary hash locations. These
locations are examined for an insertion point or,
during retrieval, for a search key. The method does
improve performance of the algorithm but has a basic

limitation in the sense that it is dependent on the
quality of the hash key and on the actual data. As in
the non-parallel case, the method comes close to

approximating a perfectly uniform hash distribution.
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A larger hash table can greatly improve performance
by lowering the load factor. However, this is
frequently not possible in the non-parallel case
because the table is sized to fit the maximum allowable

space. On the Connection Machine, the clear choice
for the table size is one element per processor. Since

it is difficult to change the number of processors
available with current (Spring 1988) software, this
technique is not generally feasible.

A variation on increasing the table size called twin
hash tables has been implemented. In the

implementation, two parallel variables are allocated
per processor, one as the primary hash table and the
other as a secondary hash table. Initial hashing uses
the primary table. Collisions in the primary table are
stored in the secondary table. Tertiary and higher
collisions are also stored in the secondary table. This
results in good performance with little increase in

the size and complexity of the basic algorithm. Keys
are spread out among the two tables resulting in a
lower overall load factor. Experience with the
algorithm suggests that much of the benefit expected
from using a table twice as large is obtained in this

implementation.

The final variation involves chaining (Ref. 4, page
513). Chaining is a popular method of organizing
hash tables. In typical implementations a short, fixed
length table is used as a vector of list heads. Keys are
hashed to the list heads and collisions are chained

together. This results in effectively dividing the
linear search time by the size of the vector of list

heads. There are problems implementing chaining
using the current Connection Machine *Lisp software
(Ref. 5) due to the need to allocate memory uniformly
across all processors. The primary and secondary
table method can be seen as a hybrid between fixed
table hashing techniques and chaining techniques.
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Figure 1. Average Collisions Versus Load Factor.
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Figure 2. Maximum Collision Run Versus Load Factor.

PERFORMANCE

The algorithm has been analysed using a simulation
technique which permits comparison of algorithm
performance with uniform hashing under multiple
conditions. The results of these simulations are

shown in Figures 1 and 2. In these figures, the twin
table method is labeled as Pri-Sec and appears both in
raw form and with normalization. Normalization is

needed to compensate for the fact that the twin table
method uses twice the space of the other method and
hence should be compared to tables of twice the size
or equivalently with half the load factor.

Figure 1 shows the average number of collisions, the
usual performance measure of hash tables. In terms

of this metric, the twin table method appears better in
raw form but when normalized, does not appear to
offer any advantages. In Figure 2, the use of primary
and secondary hash tables is shown to be better than
or roughly equal to the best of the other methods.
Although not shown in the figures, the twin table
method deteriorates at higher normalized load factors
because the secondary table fills long before the
primary table. This is an obvious property of the

algorithm and may preclude its use in some situations.

Operationally, we have measured the algorithm in
practical use and have concluded that the twin table

method is superior to both the single table and rehash
methods. The twin table method is simple in its
parallel implementation and maps well onto the
Connection Machine architecture.

GENERALITY

The algorithm described is a dependent on the
Connection Machine's SIMD architecture. However, it

is possible to modify the algorithm to execute on
MIMD architectures with private processor memories.

Retrieval uses the sequential algorithm essentially
unchanged but insertion requires some processor
coordination to eliminate race conditions.
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Abstract

This paper describes a methodology for constructing proto-
types of parallel architectures. The prototypes model the func-
tionality of the components of the architecture to any specified
level of detail. The prototypes are programmable, thus bench-
marks of algorithms can be executed. The prototypes are also
flexible, thus allowing the "fine-tuning" of the architecture to
enhance the performance.

In particular, this paper covers a specific working case study.
A working prototype of a pyramid architecture has been con-
structed to 7 levels (5461 processors and 53564 interconnec-
tions) and is used to evaluate the mapping of a wide range, of
computer vision algorithms (i,e. low level image processing
through high level symbolic computations) on such an architec-
ture. The results indicate that a pyramid architecture is not
only useful for low level image processing tasks, but that seg-
mentation and even higher level symbolic computations can be
performed efficiently. Results are presented for a pyramid im-
plementation of a split-and-merge segmentation algorithm.

1. Introduction

The design of parallel architectures often requires a prototype
or test bed in which to develop and simulate algorithms. A test
bed also provides an environment for collecting performance
benchmarks.

The method of constructing the SCOOP _ architecture uses an
object-oriented methodology and allows for the modeling of
the architecture at various levels of detail: architecture level,
processor level, processor component level, gate level, and so
on. The methods for constructing the prototype provide great
flexibility. A prototype built using these methods is easily
reconfigured and allows for the construction of other
architectures of interest.

The prototype constructed for this research is configured as a
pyramid that is modeled at the processor level. By changing as
little as a single method the prototype can represent a SCOOP
architecture of another topology. By changing the description
of the processors (or ports), the prototype can represent
architectures constructed from different components. Thus, the
SCOOP pyramid is a useful tool for researchers who wish to
prototype, benchmark, and design algorithms for their
proposed architectures.

1. The acronymSCOOP stands for"Sout/lernCaliforniaObject-Oriented
Prototype."

pRECEDING PAGE BLANK NOT
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2. Motivation

There are problems when attempting to integrate different
levels of vision tasks on the same architecture. Many
architectures are suited for a particular class of tasks.
Massively parallel two-dimensional mesh-connected arrays are
well suited for low level local operations, but their SIMD
nature does not efficiently support more complex algorithms.
MIMD mesh-connected arrays still suffer from lack of global
communication and global control.

Figure 1 emphasizes another difficulty in attempting to
integrate various tasks into a system. Suppose there tasks A
and B are to be processed. Further, suppose that two separate
architectures are used--each one is designed to efficiently
execute task A and task B, respectively. If the communication
between processes A and B (i.e. between subarchitectures A
and B) takes longer than the processing of tasks A and B, then
the overall process is now I/O-bound. That is, an inter-
architecture bottleneck is formed as dam is pushed from one
architecture to the other. The effects of this bottleneck become
even more severe when we consider that the overall process
might be an iterative process between tasks A and B.

results from

prcc_sing..._

Architc¢tttre for Architecture for

mskA tat,kB

further
processing

Figure1.Separatearchitecturesfor separatetasks.

A prime motivation of this work is the desire to integrate all
levels of the vision process onto the same architecture to avoid
such a bottleneck that would result in reevaluation of the data.
If higher-level analysis showed that further lower-level
processing is needed (goal directed processing), then switching
back and forth between separate specialized architectures
results in a bottleneck. Therefore, it becomes important to be
able to efficiently perform different tasks at different levels of
abstraction on a unified architecture that would allow a smooth
transition between these levels.

Another motivation is to develop a methodology to construct
prototypes of proposed architectures. It is often difficult to
build the full-sized architecture to be studied and often a
scaled-down hardware prototype is not a suitable
representation of the final architecture. Software prototypes
have several advantages over scaled-down hardware
prototypes:

1. The time needed to design, build, and debug the
prototype is considerably less in software than in
hardware.
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2. The software prototype can better assist the software
developer of algorithms for the prototype since the
software prototype can represent an architecture of a
larger size.

3. Software prototypes are much cheaper to build.

4. Software prototypes can be easily modified to reflect
architectures of other topologies, or even architectures
composed of radically differen! types of hardware
(e.g. optical).

Of course, the major drawback of the software prototype is that
the actual time to execute an algorithm is much longer than the
hardware prototype. Several microseconds of processing in

hardware may require minutes of simulation. Thus, the
software prototype is ideal for designing algorithms, analyzing
the architecture, and performing benchmarks, but extremely
poor for processing data in a production environment.

3. Structure

Figure 2 shows the class hierarchy of the structure of the pro-
cessors modeled. This pyramid is constructed so that proces-
sors at higher levels are more powerful than the processors at
the lower levels, thus suggesting the class structure.

PyramidEventMonitor [

t

TopLevelProcessor

Figure 2. Class hierarchy of processors

The construction of the pyramid involves the creation of
thousands of Smalltalk objects. There are objects to represent
each of the processors, the ports between the processors, and
objects to represent the architecture as a whole. There are also
objects to represent the different values and parameters during
the" simulation: pixel values, results from operations, Boolean

flags, and so on. The process of building the pyramid begins
with the sending of the message createPyraroid: to the
driving simulation object class (a subclass of Pyramid class).
The argument of the message is the number of levels for the
pyramid. The method starts out by instantiating a new instance
of a Pyramid (a bare skeleton) and then starts a long process of
creating instances of Processors, TopLeveIProcessoc,
LowLeveIProcessor, and UnidirectionaIPort. Each of these

will be connected properly to its neighboring processors
through the ports.

The actual simulation starts by creating an instance of the class
representing the simulation. For example, an instance of class
Convolution is created for the simulation of a convolution of

the image by a kernel. The instance of the simulation sends a
message to the classes Processor, LowLevelProcessor,
TopLevelProcessor, and UnidirectionalPort to create
instances of each of these. These objects are then
interconnected in a fashion that represents the topology of the

architecture. The pyramid is created by connecting each level
of processors together and then interconnecting the levels. An
interconnection is created by assigning a common instance of

class UnidirectionalPort to the processor's instance variables
that represent the correct port connection to its neighbor. For
example, the processor-(5, 5, 5) 2 is connected to its northern
neighboring processor--(4, 5, 5) by assigning an instance of
UnidirectionalPort to processor--(5, 5, 5) instance variable
toNorth and also assigns the very same UnidirectionaIPort to
processor-(4, 5, 5) instance variable fromSouth. This is
continued until the entire architecture is constructed and

interconnected. To repeat, the prototype is built by creating an
instance of each element of the architecture and then by
interconnecting those elements to form the topology of that
architecture.

4. Results

Figure 3 represents object table usage as a function of real-
clock time (not simulated time) for a 7 level pyramid
simulation of a particular image segmentation algorithm called
the Ohlander-Price-Reddy method I1I.

In addition to object table usage, a prototype requires memory
for each of the objects themselves. Fignre4 represents
memory usage as a function of time for a 7 level pyramid OPR
simulation.

The pyramid is constructed (i.e. all processors nod ports in
place) by 4.5 minutes. This is the most intensive use of objects
during the preparation for the simulation. In fact, it is the most
intensive use of objects throughout the entire simulation. The
consumption of object table space increases rapidly and almost
linearly during the pyramid construction stage. This happens
during the execution of the method createPyram±d: when
sent to the class Pyramid. The 5,461 processors and 53,564
ports consume almost 150,000 objects during the construction.
These results are expected because a large number of similar
objects are created during the construction phase. Both
Figure 3 and Figure 4 represent the construction phase and the
simulation startup phase. The simulation continues with
approximately constant object table usage and memory usage

for the next 600 minutes until completion of the segmentation.
300000

200000 simulation startup f

100000 V _ _g_

pyramid constructed

0 • I • ! • i • ! • i • !

20 40 60 80 100 120

time (mini)

Figure 3. Object table usage in 7 level SCOOP pyramid

For the following times, N is the size of the bottom level, p is
the number of data bands, R is the number of regions, G is the
number of gray levels, and k is the size of the neighborhood
used in merging. The following times are for 1 iteration.

2. Proqessor-(x,y, D refers to the processor at location x,y on level 1.
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Figure 4. Memory usage for a 7 level SCOOP pyramid

The communication for accumulating the bin counts takes

O(N) steps. The time to send the histograms up takes O(RpG)

steps. The histogram analysis requires O(RpG) steps (serially).

Broadcasting the threshold rule takes O(logN) steps. Table 1
lists the times needed (order of magnitude) for the different

subtasks of a single iteration of the OPR segmentation

algorithm using serial, 2-D mesh-connected network 3, and

pyramid architectures.

threshold _ merge

serial RpN 2 N 2 RpG k2N 2

2-D MCN RpN N RpG k 2

pyramid N+RpG log N RpG k 2

Table 1. Performance for OPR iteration

There is quite a speed up for certain tasks in the pyramid (more

noticeable as N becomes large). One takes advantage of using

a powerful processor as the top processor in the SCOOP

pyramid. When the histogram is loaded into this processor for
analysis, it can analyze the histogram at a very fast speed so

that the resulting threshold will be obtained very quickly. The

histogram is still the dominant task in the OPR algorithm and

the SCOOP Pyramid manages to speed it up quite a bit. Note

that all the results are for just one OPR iteration. The number

of iterations is dependent on the data, and the effects of the

speed-up is compounded if there are many iterations (i.e. as the

complexity of the data increases).

Figure 5 shows an example of a segmented image using the

Ohlander-Price-Reddy segmentation algorithm on an image.

The results are good considering the input data was 64x64 pix-
eis, 3 data bands, each 6-bits deep. This image is typical of the

results obtained using the prototype.

5. Conclusion

In summary, a working software prototype of a pyramid

architecture has been constructed. An object-oriented

methodology is used for constructing the model of the

architecture. The SCOOP pyramid is then used as a test bed to

perform simulations of a wide range of computer vision tasks.

The motivation behind this is to explore the potential of the

pyramid architecture as a single, unified architecture to

perform a wide range of vision tasks.

3. The 2-D Mesh-Connected Network (MCN) histogram computation

leaves a distributed histogram along the first column of processors. An

additional N steps are required to have them "funnel-off" to a single

processor for analysis.

The software prototype offers great flexibility. The structure or

the size of the architecture can be changed with a small effort.

The methods of building prototypes used in this work can assist

future work in architecture studies. Prototypes of other

architectures, including optical architectures, can be built and
studied. These SCOOP models can serve as a set of test beds

for performing benchmarks on different algorithms.

Figure 5. Segmentation results on 64x64 image
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CHARACTERIZING THE ADVANTAGES OF
MASSIVELY PARALLEL COMPUTING

R. M. Hord, T.A. Kraay, E.P. McMahon

MR J, Inc.

ABSTRACT

In August 1986, the Advanced Development Center of Perkin-
Elmer, operated by its subsidiary, MR J, Inc., took delivery of
the first commercial Connection Machine TM (CM) computer pro-
duced by Thinking Machines Corporation of Cambridge, MA. A

second 16K machine was delivered in March 1987 and was up-
graded to a CM-2 in January 1988. A Data Vault and Frame

Buffer have also been added. Although this paper talks of our
experience with the CM, we should note that our company and

staff have experience with a wide range of advanced computers
including Cray, the Massively Parallel Processor at GSFC, the
Martin Marietta GAPP (Geometric Arithmetic Parallel Proces-

sor), the DAP from Active Memory Technology, Butterfly
(BBN), FPS array processors, and the Illiac IV. Hence, our

opinions are meant to apply to massively parallel processing in
general.

The intent at MRJ has been to develop applications on the CM
for various Government defense and space customers by first
performing research and feasibility studies, then implementing
operational applications. We were aware before our commitment

that there was an attitude in the computer science community that
only a relatively small percentage of computer applications were
suitable for implementation on a massively parallel SIMD archi-
tecture, problems that are sequential in nature or parallel to a low

degree. It has been observed over our two plus years of experi-
ence that the applications relevant to our chosen business areas

don't exhibit this characteristic. The diversity of our applications
is reported elsewhere at this conference, and we can comment

that virtually all of the applications we've seriously examined do

lend themselves to massively parallel approaches. The CM was
selected by MRJ instead of alternative parallel processors pri-

marily because massively parallel processing offered the possi-
bility of obtaining significant breakthroughs in various algorith-
m/c solutions to problems.

The technical literature of parallel processing is replete with re-

ports of efforts to obtain a speedup factor ofk through the use of
k processors. For some applications, particularly those involv-
ing no interprocessor communications, this k speedup factor is

obtained in a straightforward way. Examples include processing
k pixels, searching k documents, tracing k rays, and computing
k parametric cases in parallel.

On a massively parallel, suitably connected computer, in addi-
tion to the quantitative difference in processor count from coarse

grain machines, there is also a qualitative difference. That qualit-
ative difference occurs because k, the number of processors,

starts to approximate N, the characteristic size of the problems
addressed.

CH2649-2/89/0000/0651501.00 © 1988 IEEE
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One of us (Kraay) has devised new algorithms that allow the
CM to achieve or closely approximate speedup factors ofk(=N_

A simple example is the MAX function, which is 0(N) on se-
quential machines but 0(1) on the CM. Another example is the
FFT; instead of 0(N log N) for a serial machine, the CM algo-

rithm is 0(log N). A third example is matrix inversion. By using
N processors for a matrix of size N x N, the 0(N 3) sequential al-
gorithm becomes 0(N'Z); or if N_ processors can be employed,
inversion becomes an 0(N) activity. Execution times have been
achieved for these algorithms that are better than published times

for supercomputers costing significantly more than the CM.

It is not just sufficient to achieve the best order implementation;
the scaling constant must be minimized also. This constant is

generally strongly dependent on the efficiency of data communi-
cation which, in turn, is dependent on the specific hardware and
the creative use made of it in an implementation.

These algorithms and others are at the heart of solutions for dif-

ficult large problems. The order advantage made possible by
massively parallel processing and CM connectivity makes the
commercial success of these machines and algorithms inevitable

as ever larger problems are being pursued in science and engi-
neering; more and more computational problems are real-world
three-dimensional instead of one- and two-dimensional abstrac-

tions. Three-dimensional applications grow as the cube of a line-
ar dimension S, so as S doubles, the number of data items in-

creases eightfold. Having an algorithm, whether matrix solving,
FFr, or some other, characterized by a lower order measure,
gives rise to a growing advantage with problem size. Hence,

these improved algorithms can result in orders of magnitude ad-
vantage over essentially sequential serial supercomputers.

Another consideration makes fine-grain data level parallelism
more attractive than coarse-grain parallelism, and that is the po-

tential for growth. We believe orders of magnitude in perfor-
mance can be gained by su'aightforward methods such as exten-

sions of the dimension of the hypercube structure, increasing the
memory and power of each processor, and faster clock speeds.

Exotic and expensive technologies are not yet necessary to
achieve enormous increases in performance. Furthermore, the

same algorithms we're developing for the CM-2 are directly ex-
tensible to these machines of the future.

The cost of programming and training cannot be ignored in con-
tract applications. Our focus is on applications rather than in di-
rect research and necessity has been the mother of our invention

of new algorithms. The achievements gained by algorithm devel-

opment under our corporate internal R&D programs have been
applied in later contract work, and all our developers have access

to superior algorithms just as would conventional scientific pro-
grammers have access to a scientific subroutine package. The
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unique creativity needed to produce new parallel algorithms is
not generally required for development work. Most of our work
has been in development and we have demonstrated that produc-

tivity on a massively parallel computer is about the same as pro-
duetivity in conventional scientific programming;, the same crea-

tivity, program design capability, expertise in the appropriate
fields, and discipline are required. There is, of course, a learning
curve, and there are those who acquire the skill of using massive

parallelism better than others, but we find analogous differences
with FORTRAN or C development programmers.

Our experience has been that developing programs on the CM is
significantly easier than efforts reportedly involved on MIMD
coarse-grain parallel processors with the attendant result that
there is a competitive advantage in developing the application as

well as in executing the application. MRJ has a mixed strategy
with regard to programming languages and approaches. For
primitive operations such as FFT and sort, routines that will be
executed many times and used by many programs, coding by
hand from scratch in PARIS is standard. Less computationally

intensive programs cause us to study our choice: PARIS code
runs faster, C* makes more cost effective use of the hardware

because the VAX supports multiple development workstations,
and *LISP provides a richer software development enviromnent.

Factors affecting the choice include project schedule in relation
to hardware availability, need for access to the Data Vault and
Frame Buffer, and available staff skills. For our kind of work it

is very important that the application implementer be knowledge-
able about the application ztself as well as about how the coding
is accomplished.

In summary, we have made a corporate commitment to and are
meedng our business goals in pursuing the application of mas-

sively parallel processing.

John Cocke received the 1988 ACM Turing Award. In his prize
lecture, "The Search for Performance in Scientific Processors,"
he said, "Of the three contributors [algorithm, computer, ma-

chine organization] algorithm improvements are the most impor-
tant. An idea that changes an algorithm from N 2 to NlogN opera-
tions.., is considerably more spectacular than an improvement
in machine organization, where only a constant factor of run
time is achieved."

We believe he is right. We also believe our algorithms that
Cocke would admire have been made possible by the advent of
the CM.

652



A SYSTEMATIC APPROACH FOR DESIGNING
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ABSTRACT

Pipelined data parallel computations achieve a high degree of

parallelism by par_tioning the data set among the processors and
operating on the data blocks in a pipelined fashion. The resulting

algorithms are very suitable for execution on multicomputers. A

systematic procedure for designing pipelined data parallel algo-
rithms is introduced. This procedure starts with a nested-loop
program, manipulates the dependencies between the loops, and
groups related loops to obtain pipelined and data parallel opera-
tions. Using this procedure, it is possible to parallelize a nested
loop automatically.

Keywords: Parallel processing, pipelining, algorithm design,

data parallel algorithms, program restructuring

INTRODUCTION

in the mesh (see Figure 1.). Then, submatrices of B are piped into
the mesh from the host. During each iteration, the following opera-

dons are performed in the processors:
(1) receive a submatrix of B from the north;

(2) send the submatrix to the south;
(3) perform the submatrix multiplication, C._ I _-- AqXB#;

(4) receive a C submatrix from the west;

(5) add the received C submatrix to the result in (3);

(6) send the resultant C submatrix to the east.
Through processor-level pipelining, it can be seen that the

activities in the processors are data-driven and highly overlapped.

In addition, the communications between processors are accom-

plished by regular and local data flows. These properties make the
resultant pipelined data parallel algorithm very efficient.

Pipelined data parallelism is a very general concept for algo-

rithm design. To apply this concept to general applications, it is

necessary to have a systematic procedure of designing this kind of

algorithms. Major theme of this paper is thus such a systematic

procedure. The basic technique used is the grouping of loop

instances.

A data parallel computation divides the set of data among

multiple processors. Parallelism is achieved by simultaneously
operating upon large sets of data, rather than using multiple threads

of control. The resultant algorithms are termed data parallel algo-

rithms (Ref. 2). In terms of programming, programs with loops to

handle static and regular data structures are suitable for data paral-

lel computation.

Pipelined data parallel algorithms arc a subset of data paral-

lel algorithms, which, in addition to data parallelism, exploit

processor-level pipelining among the multiple processors (Ref. 3,4).

Pipelined data parallel algorithms are targeted at medium- to large-

grain parallel computers, especially multicomputers (Ref. 1).

Multicomputers with a few hundred processors are common.
Thus, they hold the promising potential for massive parallelism.

However, the need for explicit data exchanges between processors
to communicate has become the major system bottleneck. Pipelined

data parallel algorithms reduce the effect of communication over-

head by regulating data flows in the system so that data can be

processed and transmitted between processors in a pipelined
fashion.

An Example
A pipelined data parallel algorithm for matrix multiplication

is shown in Figure I (Ref. 4). Assume that the underlying mul-

tiprocessor supports an interprocessor connection of a mesh.
Matrices A and B are partitioned along columns and rows. The

host first loads submatrices of A into the corresponding processors

Organization of the Paper
A general procedure for designing pipelined data parallel

algorithms is first outlined in Section 2. Then, the grouping prob-
lem is defined in Section 3, followed by various grouping tech-

niques in Section 4. Our conclusion is given in Section 5.
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Figure 1. Data flows in pipelined matrix multiplication
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A SYSTEMATIC DESIGN PROCEDURE

In this section a systematic design procedure is outlined. Due
to the similarity of pipelined data parallelism and systolic arrays,
initial stages of our procedure are identical to those used in syn-
thesizing systolic arrays (Ref. 7). However, additional stages are
required to control the granularity of the algorithm in order to bal-
ance the communication overhead on a multicomputer.

A nested-loop program is shifl-invariant if data dependencies
between loops do not change with the loop indices. The typical

loop for matrix multiplication is shift-invariant:

for/ 4- O to 3 do

forj +-- 0 to 3 do
fork 4- 0 to 3 do

cij 4-- ci) + aitbkj;

Using the above program as an example, the design pro-
cedi_e is outlined as follows:

(1) Transform all variables into pipelined variables
The restructuring involves eliminating broadcast effects and

enforcing the single-assignment rule (Ref. 6). After restructuring,

the matrix multiplication loop looks like the following, with neces-
sary initialization omitted:

fori 4- 0 to 3 do

forj 4- O to 3 do
fork 4- 0 to 3 do

aip,4- aij-ij_;

bijk4- bi_id,_;

cij k 4-" Cij,t_ 1 + ai)kbijk ;

(2) Derive the computational structure
If the nested-loop program has n levels, then the computa-

tional slructure, Q, of the program is a directed graph on an n-

dimensional Cartesian space. Each vertex in Q represents one loop
instance and has a coordinate (co, .... c__t) if the corresponding

loop instance has a loop index (c o..... c._1).

There is an arc (dependence vectors) from one vertex v i to

the other vj if the loop corresponding to vj references a variable
which is generated in the loop corresponding to vs. Note that, for a
shift-invariant nested loop, all vertices in the corresponding compu-
tational structure have the same set of dependence vectors. It

follows that such a computational structure Q can be defined by
the two-tuple (V, D ), where V denotes the set of all vertices in Q

and D is the set of dependence vectors.
The computational structure corresponding to the restructured

matrix multiplication program is shown in Figure 2.

(3) Group or project vertices In Q

In conventional systolic array synthesis techniques, a space-
time projection is sought at this step to produce systolic effects
(Ref. 7). All vertices in Q are projected along a particular direction
which represents the time-axis, i.e., the progress of time (Ref. 6).

However, projection is just a special case of grouping. In group-

ing adjacent vertices in Q are merged together to form larger ver-
tices. By controlling the size of the groups, we can control the

granularity of the algorithm.
In Figure 2, the grouping along j with size 4 (i.e., a projec-

tion) and along i and k with size 2 respectively will result in a
contracted structure as shown in Figm¢ 3. As will be shown later,

for many computational structures, certain grouping schemes will
introduce extra dependencies between the groups. This implies

Matrix B

,I

c l 3
Ma

__ Matrix C

Figure 2. The computational structure of matrix multiplication

extra communication in the resultant algorithm. Details of the

grouping will be discussed in Section 3 and 4.

(4) Obtain node programs
In Figure 3, if one group is allocated to one processor in a

multicompoter, then the processor at location 0*,k'), where
0_" ,k' <_1, will execute the following program:

1 4- 0to3 by 2do
/* communicate with neighboring processors */

for j 4- I to 1+1 do
for i 4- 2i' to 2(i'+1) do

for k 4- 2k' to 2(k'+l) do
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Figure 3. The contracted structure of matrix multiplication
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aijk _ aid_l, _ ;

bij t *--bi_ld,t ;

cqk *-- cid,k_ I + aijkbij k ;

In practice, the exact values of design parameters, such as the

size of groups, are unknown at this step. Thus, the constants intro-

duced in the above program should be replaced by variables which
correspond to the design parameters.

(5) Determine design parameters

The design parameters are determined by taking into account

input data sizes and machine characteristics. Optimal parameters

are obtained by balancing the computation with the communication.

An accurate estimation will require an accurate analytic model such

as the one introduced in (Ref. 4).

(a)

-.,)

)i
-J

(_): Base vertex (b)

Figure 4. Grouping with two dependence vectors

THE GROUPING PROBLEM

Let Z, I, and I+, denote the set of integers, non-negative

integers, and positive integers, respectively. The input to the group-

ing problem is a computational structure Q (v, D ) obtained from a

shift-invariant nested-loop program.

Only acyclic computational structures are considered. In

other words, for any subset of dependence vectors, d o..... drieD,

if there exist ao, ..., at_ 1 _ !, such that

aodo + atdt + " " " + at-ldj-I =0

then ao= ...=al_l=O.

<Definition 1>

The grouping Gd:.(Q ) of a computation structure Q along a

direction d of size r is to partition all vertices in Q into disjoint

subsets, P0 ..... P,_-I, such that

(1) Ie01..... [Pk-ll =r

(2) For each subset Pi, O<i<k-l, there exists an ordering,

(v0 ..... Vr-1), for all vertices in Pi such that vj+l-vF-d,

0_j_r-2.

Each subset Pi is called a group of Gd,,(Q). The first ver-

tex, v 0, in the ordering above is called the base vertex of the group.

[]
Note that a grouping might not divide all vertices in a compu-

tational structure evenly. In this case, we can add dummy vertices

at the boundary to make it even, or include those extra vertices into

boundary groups. A group Pi is dependent on another group P/

along d if there are vertices vl_ Pi and vj_ Pj such that vr-vr--d.

<Definition 2>

The contracted structure, Q', with respect to the grouping

Gd:(Q ) is a directed graph, where

(1) Each vertex in Q' corresponds to one group in Go(Q);

(2) If Pi and Pj are the groups in Q corresponding to the vertices

vl and vj in Q', respectively, then there is an arc from v I to v l,

if P/ depends on Pi.

G d:(Q ) and, thus, Q" (V', D') are dependence-preserving if

Q' is an acyclic computational structure with ID' I<lD [.

[]
A dependence-preserving grouping will not introduce extra

dependencies among the resultant groups. This is particularly

important in multicomputers with limited connectivity and non-

negligible communication overhead. The grouping problem con-

sider in this paper can now be stated as follows:

<Grouping problem>

Given a computational structure Q, determine the groupings

of Q which will result in dependence-preserving contracted struc-

tures.

[]

PROPERTIES OF GROUPING

In the following discussion, we will concentrate on computa-

tional structures in two-dimensional spaces. For higher dimensional

spaces, the results obtained here can be extended.

Consider computational structures with one or two depen-

dence vectors. There exist dependence-preserving contracted struc-

tures if the grouping is along the dependence vectors (see Figure

4(a)). This is because the dependence vectors are independent in

acyclic computational structures. Thus, the resultant groups will

not interfere with each other and introduce extra dependencies.

Nevertheless, if the base vertices are not properly chosen, then

extra dependencies will still be created (see Figure 4(b)).

Suppose the grouping is along a direction different from the

dependence vectors of the computational structure. Then, this situa-

lion is equivalent to a computational structure, Q (V, D ), with three

dependence vectors, D ={d o, d l, d2}. Since Q is an acyclic two-

dimensional structure, we can assume that

a2d 2 = a0d 0 + aid I (1)

where a o, a I, and a 2 are the smallest positive integers to satisfy

Equation 1. A typical example of such a computational structure is

shown in Figure 5(a), where D={[I,0], [1,1], [0,1]} and [1,1] =

[1,0]+[0,1].
Consider the grouping along d 2 first. In Figure 5(a), a possi-

ble grouping along d2-[1,1] is depicted in dashed boxes. Figure

5Co) shows the corresponding contracted structure with the group

ids indicated in the circles. It can be seen that an extra dependence

vector, [0,-1], is introduced. Thus, the contracted structure is not

dependence-preserving. In fact, we have the following theorem:

A ,.'_(

B ,,',_,"

c '"i

D
(a)

E .G ^,

"; ' F

(b)

Figure 5. Grouping which is non-dependence-preserving
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<Theorem 1>

Let Q(V,D) be a computational structure. If there exist three

dependence vectors, do, dl, d2eD, where do, dr, and d2 satisfy

Equation 1, then the grouping along d2 with size r>a 2 is not

dependence-preserving.

[2
The proof is given in Ref. 4 and is omitted here. In Figure 5,

since a2=l, it is impossible to find a dependence-preserving group-

ing along [1,1].

Theorem 1 states the conditions when a grouping is not

dependence-preserving. A more constructive way is to study under

what conditions a dependence-preserving structure will be gen-

erated. Given an acyclic computational structure Q(V, D ) with

the dependence set D={do ..... din-t}, where m>3, we can always

find (from linear algebra) two vectors, say, do and di, such that

cld I = aid 0 + bid I (2)

where ai, bi, ciel +, 2<i<m. Define

{area x = Max bwa x = Max
7Ai<,a 22gi<m

The "range of influence" of a vertex v in Q can be defined as

the vertex set X (v), where

X(v) = {w I weV, w=v+xamaxd0+ybmaxdl, 0<_x,y<l}

Then, any vertex ue V which is dependent on v is in X(v).

<Theorem 2>

Let Q (v, D ) be a computational structure with m depen-

dence vectors, where m>3, and the dependence vectors satisfy

Equation 2. Then, the grouping along do with size ro_-ama x and

along d I with size r l_-bmax is dependence-preserving.

[]
Again, the proof can be found in Ref. 4. The implications of

Theorem 2 are: (1) as long as the group size is large enough, there

always exist dependence-preserving groupings along do and dl, and

(2) the resultant contracted structure is a universal planner array

(see Figure 6). A universal planner array is the most general sys-

tolic arrays in two-dimensional spaces (Ref. 6). It follows that, in

the final implementation, each processor only has to communicate

with at most three other processors. Note also that do and d I can

be any vectors which are not necessary in D as long as Equation 2

is satisfied.

Results presented in this paper are preliminary. A mathematic

foundation is needed to abstract the concept of grouping so that

results presented here can be applied to higher dimensional spaces.

Also, the relationship between projection and grouping needs to be

further probed, which may in turn assist in designing more efficient

systolic arrays. Ultimately, we could expect results obtain in this

research will contribute to intelligent compilers for multicomputers,

which parallelize programs (semi-)automatically.
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CONCLUSION

We have presented in this paper a systematic procedure for

designing pipelined data parallel algorithms from shift-invariant

nested loops. This procedure concentrates on grouping loops in the

original program so as to reduce the number of communicating

processors, control the granularity, and increase the degree of pipe-

lining.

Figure 6. A universal plannar array
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CMS: An Integrated Simulation Environment
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Abstract

The Connection Machine is a massively parallel archi-

tecture designed for general computation. This pa-

per describes a simulation environment which allows

one to execute programs written for a connection ma-

chine. The CMS simulation environment provides sev-

eral tools for empirical analysis of these parallel algo-

rithms. First, it provides performance statistics on the

simulated connection machine as it runs different user

programs. These statistics compiled from the simu-

lated execution of a set of algorithms provide a measure

by which one may arrive at the optimal solution from

that set. Secondly, The behavior of the simulated envi-

ronment is governed by configuration parameters which

may be altered to find the optimal connection machine

configuration in which to run an algorithm. The CMS

simulation environment runs on the Sun Workstation

and uses the windowing and mouse interfaces provided

by the SunView TM integrated application environment.

Different windows allow the user to view different parts

of the simulated connection machine at the same time.

This paper also includes a discussion of the internals

of the simulator and tile reasoning behind the methods

used. By examining these details one can learn more

about the hardware implementation of the connection

machine.

Overview

This paper provides an introduction to CMS, a simu-

lator for a connection machine [Hillis 86]. The goal of

the simulation is to provide an environment in which to

run connection machine algorithms and gather detailed

statistics about their execution. The simulator runs

in an integrated environment which provides window-

ing and support for a mouse. The simulator software

and integrated display simplifies the presentation of the

connection machine hardware enough to make it under-

Abbas Birjandi is Assistant Professor of Computer Science at
Northeastern University in Boston and Les Walker is an employee
at Charles River Analytics in Cambridge Massachussetts.

standable to the novice user while keeping it accurate

enough to represent the connection machine hardware.

The connection machine is a massively parallel com-

puter architecture. The granularity of the processors

which compose a connection machine is very small-one

bit. The architecture works most efficiently on large,

uniform problems with very small granularity. Some

examples are database query searches and kernel con-

volutions.

The algorithms that run on a connection machine

need not be vectorized to run efficiently. In fact, the pro-

cessors may be considered to be arranged with complete

adjacency, meaning that every processor is directly ad-

jacent to every other processor. This means that trees,

graphs, and other geometries may be implemented on

the connection machine as well as vectors.

Connection Machine Architecture

Interfacing

The connection machine is not equipped to perform sys-

tem tasks such as device control and data acquisition.

For this reason it must interface to a host computer

which provides these types of services. The host has full

access to each processor's memory and also provides the

instruction stream which the individual processors will

execute. The host usually will provide an initial state

for the connection machine by depositing the appropri-

ate data into the memory of each of the processors. The

host may also retrieve results from the processors' mem-

ories during execution or afterwards.

Cells

Processors in the Connection Machine are referred to

as processing cells. Each processing cell is able to inde-

pendently execute the basic building block operations

of the whole machine. These processing cells are iden-

tical and each contains it's own memory, registers, and

ALU. Each of these components as well as all of the

CH2649-2/89/0000/0657501.00 © 1988 IEEE
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correspondingdatapathsareuniformalyonebit wide.
Thesingle-bitregistersin acellarereferredto ascell

flags. General Purpose cell flags may be set, cleared, or

read by the cell without side effects. These are used to

store a single bit of information. Special cell flags have

side effects to being set, cleared, or read. These flags

are the means by which a cell communicates with other

cells and the routers.

The connection machine is a SIMD (Single-

Instruction Multiple-Data) multiple processor architec-

ture. The instruction is broadcast to each cell via the

global instruction bus.

The Network

Local Areas The processing cells in the connection

machine are grouped into uniform sets which we shall

call local areas. The cells in a local area share several

communication structures:

• daisy chain The output of each cell's ALU is

linked with a special purpose register on another

cell in such a way that a circular chain is formed.

Data may be passed through this chain in serial

fashion.

• NEWS Similarly to the daisy chain, the output

of each cell's ALU is linked with a special purpose

register in four other cells so that the cells form a

square with each cell able to communicate directly

with cells in four directions.

• router A special purpose register of each cell in a

local area is linked with the router for that local

area. The routers form a network that establishes

the complete adjacency of the architecture.

In this simulation cells are refered to in relation to

thief local area. Each cell has a number in it's local area

and that local area has a router number. So, each cell

is refered to as:

<cell,router>

Network Topology It is obvious that with groups of

cells being served by touters, all cells are not actually

directly adjacent. Complete adjacency is established in

the architecture by the fact that each cell can commu-

nicate indirectly with any other cell in the connection

machine without cells being a part of the communication

process ezeept at the terminal points. In other words

cells only see messages that they send or are sent to

them - a cell will never recieve a message that it must

pass on. The task of transmitting messages is handled

by the network. The network is composed of routers

and data paths. Routers are described below. The data

paths are bi-directional links between routers.

The routers are connected to each other by bi-

directional data paths which allow routers to transmit

messages to each other in both directions. The adjacen-

cies made by these data paths form a boolean n-cube

in which no router is further than lg n data paths from

any other router. Messages are addressed to a particu-

lax cell within the local area of a particular router. The

cell is addressed by a cell number (cell address), while

the router is referred to by it's location on the n-cube

relative to the router that is sending the message (router

address). The router address contains all the informa-

tion necessary to route the message at an 3, point in it's

transmission.

Each router has lg n data paths which establish it's

adjacency with lg n other routers on the network. These

data paths may be enumerated so that path i on any

given router is known as path i to the router on the

other end. In this way if two touters both transmit

a message along path i they exchange messages with

each other. The numbers that are given to the paths

are called the path's dimension and all the routers in

the network transmit on only one dimension at a time.

When all of the routers transmit on one dimension it

is referred to as a dimension cycle. The network exe-

cutes dimension cycles for each dimension consecutively

beginning with the first:

1 2 ... lg n

Once the network has executed a dimension cycle for

all lgn dimensions it starts over again at the first di-

mension, lg n dimension cycles make up one petite cycle

in which dimension cycles are executed for all of the

dimensions:
1

2

: = petite cycle

lgn

Routers The routers are composed mainly of buffers

and termination points for data paths. Since the data

paths are of limited capacity, the router saves it's mes-

sages in buffers. Messages have priorities and addresses

that regulate their transmission. Addresses tell which

data path a message needs to travel on and priorities

are used to resolve the collision that occurs when more

than one buffered message needs to travel on a single

message path at the same time.

The Simulator

We have constructed a piece of software that simulates

the connection machine described above. This software

simulates the hardware from the host machine inter-

face down to the level of each bit of the connection ma-

chine. Cells, routers, and data paths are all visually

represented.
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Thesimulator runs as a separate process that re-

cieves instructions and memory requests from a user

application. The user application starts the simulator

and establishes several lines of communication with it.

These communication lines are analogous to the inter-

face with the host machine and the user application is

analogous to the process running on that host ma_zhine.

The communication lines allow instructions to be sent

to the simulator and allow access to the cell memory one

byte at a time, The disk DMA path is not supported.

The network is composed of 256 touters each having

16 local processing cells. Each cell has 2k bits of local

memory.

Operating Environment

CMS is implemented under Unix TM using the

SUNView TM integrated application environment. All

displays that are called control panela are implemented

using the SUNView TM panel objects and SUNView TM

canvases. It is sufficient for the user to familiarize them-

selves with the operation of these objects to use most

of the mouse commands in the simulator.

User Interface

The simulator provides an in-

terface through SUNView TM which behaves much like

a traditional machine level debugger.

Windows

The simulator visually represents the components of the

simulated connection machine through several windows.

These windows may be overlapped in the SUNView TM

environment as shown in Figure 2. There are separate

windows for:

• Ceils

• Routers

• Complete Network

• Global Instruction Bus

These windows contain control panels which provide

access to the commands via the mouse. The data in the

windows is updated in real-time. For example, when a

flouter_ 8 Cell: 0

Clock: 0

NC 0 Z

GGGGGGGGEURRAPIE
PPPPPPPP_BDA3A_R

012345_73EFFYRPO
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Figure 2: A sample CMS screen
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memory request comes through from the host to store a

value in memory and the cell which owns that memory

is shown, then the window which shows that cell will be

updated with the new memory value.

Commands

The simulator commands are meant to allow it to fuc-

tion similarly to a traditional machine language debug-

ger. There are commands to alter the contents of cell

memory and cell flags, execute instructions, and even al-

ter the behavior of the machine. All commands may be

entered as text in a command line format, and some are

accessable via pushbuttons and control panels. There is

also an indirect command file capability for automated

execution.

The area of the windows which displays the data is

active in the sense that clicking the mouse over certain

areas of the display will cause commands to be executed.

Some examples:

• Clicking the mouse over a cell flag will cause the

flag to change in value to a '0' or '1'.

• Clicking the mouse over one of the adjacencies

in the router window will cause the window to

switch from displaying the old router to display

the router adjacent to it on the dimension that

was selected.

Application Interface

Ill the actual connection machine hardware, a conven-

tional computer is required to host the connection ma-

chine hardware. The host provides a front end for the

connection machine's specialized computing power. It

is essential for the simulator to have this design also so

that the programmer has a feel for the abstraction pro-

vided by the interface between the connection machine

and the host. The connection between the host and the

machine is called the microcontroller.

The microcontroller functions as both an interface to

the connection machine hardware, and a low-level ab-

straction of the connection machine's functionality. In

general one macro-instruction is translated by the mi-

crocontroller into several connection machine instruc-

tions called nano-instruction_. Because one macro-

instruction can produce many nano-instructions the

microcontroller must buffer the nano-instructions in a

FIFO buffer.

The simulator provides a microcontroller as well.

This microcontroller passes nano-instructions which are

produced by the application through a pipe to the simu-

lator which will read them in one at a time and execute

them. The simulator in turn responds through another

pipe for each instruction, thus providing the necessary

syncronization. The microcontroller is divided into 2

N_no-lnstructions
and

Memory

SimulatorMicro.1 Requests _ I ApplicationMicro.controller _ controller

Acknowledgments

Figure 3: Diagram of relationship between microcon-

trollers.

modules: the application microcontroller (used by the

host) and the simulator microcontroller (used by the

simulator).

The Application Microcontroller

The application microcontroller provides access to the

connection machine from the user application program.

The goal in it's design was for the application to ap-

pear to be talking to an actual hardware device whose

memory was attached to the bus. However, to be

realistic the microcontroller must also provide macro-

instructions and translate these into nano-instructions

for the machine to execute. The decision was made to

do this on the application side so that the user is able to

experiment with his own high-level abstractions of the

connection machine operations.

The Simulator Microcontroller

The microcontroller on the simulator is not under the

same burden of having to appear to be talking to hard-

ware. It is implemented as a separate module of the

simulator software. There is no direct communication

between the programmer and the simulator microcon-

troller, except via the application microcontroller.
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SIGNAL PROCESSING WITH NODAL NETWORKS ON A

SIMD MASSIVELY PARALLEL PROCESSOR

William I. Lundgren
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ATL Building, Moorestown, NJ 08057

Ab_ract

The goal of the work reported in this paper is to
develop methods for using a large scale SIMD parallel
processor such as the Connection Machine for signal
processing. The primary focus of the work reported in
this paper is to develop nodal network methodologies
that can be used to effectively implement algorithms that
range from signal processing to discrete logic systems.
One benefit of nodal network methodologies is their
inherent SIMD nature. As a result their implementations
are closely related to the architecture of SIMD parallel
processors like the Connection Machine. Also, the
homogeneity provided by such systems allows the
uniform integration of signal processing and discrete
logic systems. As a first step we have implemented two
versions of an algorithm to track formants in speech. The
first .implementation uses data parallel coding
techniques. The second implementation uses a nodal
network. The algorithm contains logic that, at every
frequency/time point in a spectrogram, chooses between
several filters to find the filter that best matches linear

energy structure at that point. The choice of filter at each
point is determined on the basis of information in
adjacent points. The nodal network implementation of
the algorithm uses only two node types, a fuzzy AND
and a fuzzy OR (henceforth referred to as AND nodes
and OR nodes respectively). The connections between
nodes can be either non-inverting or inverting. The
inverting effectively produces a NOT. The algorithm
relies on the parameters associated with each node and
connectivity between the nodes to simulate the original
algorithm. The result is a nodal network "programmed"
to identify formants in a spectrogram. The two
implementations are comparable in performance and
speed of execution. The conclusion is to continue the
investigation of this type of nodal network.

pREClEDtNG PAGE BLANK NOT FILMED

1.0 Introduction

The long term goal of this work is to develop nodal
network techniques for large vocabulary speaker
independent speech recognition. In speech recognition,
the biggest problems are that small changes in the
acoustic signal can change the word recognized, and
conversely, acoustically different speech signals may be
recognized as the same word. Systems that use data
reduction to decrease the size of the input vector smooth
the signal and remove some distinctive features of the
speech. Large input vectors are necessary if the input is
to contain enough information to make fine distinctions
between acoustic inputs. Further, the classifier must be
able to selectively focus on small or large amounts of
acoustic information as required. This provides the
capability to build a classifier that is a complex mapping
between the acoustic input and the words recognized.
Unfortunately these two characteristics, a large input
vector and flexible use of the acoustic input, make the
task of training very difficult.

Nodal networks provide the capacity and flexibility
required. The network described below was designed to
provide a means for dealing with large input vectors,
complex classifiers and, eventually, automatic training. A
high level diagram of the sought after system with
training is shown in Figure 1. The system is divided into

_put 1 1 R|lult

II  1111 ,o.. I__1

l 2.,1+--'-Figure1. High Level Diagram of Future System.

Knowledge

CH2649-2/89/0000/0663501.00 © 1988 IEEE
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a classifier and a trainer. The classifier consists of a

large network of nodes, an input preprocessor and a
post processor. The automatic training consists of a
node configuration module and a knowledge base. Note
that rather than applying the knowledge during the
classification process the knowledge is used off line to
train the network. The heart of the problem is to decide
how the network configuration module should choose a
network configuration to address a particular recognition
task. For even the very simple network topology
described below using a modest set of nodes (10 levels,
1000 nodes at each level) leads to a huge set of
potential solutions. It is easy to establish a lower bound
of 10 to the power of 60,000. The system described
below does three things to help the node configuration
module select a meaningful solution. It uses:

1) a knowledge base to guide the training of the
network from the top down.

2) well established node configurations that can
be used for specific types of tasks.

3) consistencies in the acoustic input to drive the
training from the bottom up.

The knowledge makes it possible to train the network in
spite of a small amount of training data compared to the
size of the solution space.

This paper focuses on the development of nodal
network configurations for processing data. After the
configuration of nodes for various tasks are adequately
understood, the effort will be shifted to the automatic

training of the nodal networks. The approach to training
proposed in this paper differs from that proposed by
others (Refs. 1, 2]. Some basic ideas for the training of
the nodal network are presented in the appendix of a
technical report by Dave Graft and the author (Ref 3).
The methodology discussed there is manual training.
That methodology was deveFoped with the intent of
eventually automating the procedure and introducing a
knowledge base to produce an automatic training
capability.

2.0 The Nodal Network

The nodal network is designed to provide the
following two features:

1. Hierarchical processing of the data. The goal is
to provide layers of information, each slightly more
abstracted from the data. The hierarchical nature of the

system provides information at each level on which
future training can be based. Hence, during the course
of training an instance of the nodal networks, one would
have an increasingly complete set of fundamental
nodes. As the set of nodes becomes more complete the
training will become easier.

2. Uniform integration of "symbolic" and numerical
processing. Each node in the system can be thought of
as a numerical value and symbol pair. For example, the
input nodes described below are a Power Spectral
Density (PSD) of the speech signal. The node can be
labeled "Spectral Power at _f * n hz." _f is the frequency
resolution of the PSD and n is the number of the PSD

nodes, Higher in the network the node values
approximate a likelihood. For example, one of the nodes
described below will be "band of spectral power at ,M * n
hz and angle k".

The intent is to develop a knowledge base and a
set of nodes that are directly related. This will insure that
the node configuration module will be able to use the

knowledge base to assist in the configuration of the
nodal network. Further, the hierarchical nature of the

network will provide knowledge that is increasingly
abstracted from the acoustic data and more directly
related to the words. The homogeneous representation
of knowledge at every level of the system makes
feedback between any levels in the system possible. It
also provides for homogeneous access to all levels of
information when making a decision.

2.2 Description of the Nodal Network
A nodal network can be fully described by

specifying the node layout, the interconnectivity of the
nodes and the definition of how the nodes process their
inputs. An example of the node layout and
interconnectivity is shown in Figure 2. There are multiple
levels of nodes (10 or 20 levels is reasonable) and in
the current system there are two inputs to each node.
Past implementations by the author have used four or
five inputs to each node. Any network using two or more
inputs can be implemented with a networks using only
two inputs to each node. At this point it is not clear that
there is any advantage to using a larger number of
inputs per node. Feedback is a potentially powerful
device not used in the current network. Figure 2 shows
one example of feedback. The role of feedback and
stability of networks with feedback will be the subject of
future work.

The nodes are simple in behavior and similar to
some of the other nodes used in the neural network

community (Ref s.1, 2). The inputs are each transformed
with a linear equation. The slope and the intercept used
are unique for each input of each node in the network.
The result is then thresholded to maintain the value

For example:

Output Formant Rising
from 800 hz

,wo/ 
Inputs to "_ _._ _ _ \ _P) T

\d J-V
r

.. :,_ . input .....

Figure 2. Node Layout and Interconnectivity.
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between1.0and0.0.Theinputscanbe"inverted",i.e.
after transformation and thresholding the result can be
subtracted from 1.0 to produce a NOT of the input. The
two inputs to a node are either summed and divided by
2 (to insure the input remains between 1.0 and 0.0) or
they are multiplied. The summation produces a node
that behaves like an ORing of the inputs. The
multiplication produces a node that behaves like an
ANDing of the inputs. Two examples of nodes are
shown in Figure 3.

Yl = th(2.5 x1- 1.0)

Y2- th(2.5 x2 - 1.0)

Y=Yl * Y2

xI

Figure 3a. AND Node.

Yl = th (2.5 x I - 1.0)

Y2 = 1.0- th (2.5 x 2 - 1.0)

Y = (Yl + Y2 )/2"0

x 2

x1

Figure 3b. OR Node.

3.0 Approach
The approach is centered on the use of a relatively

simple application as a tool to explore programming of
nodal networks. The application chosen for this study
was recognition of formant peaks in a
time-frequency-power representation of a speech signal.
Two implementations of an algorithm to identify formant
peaks were coded for comparison. The first used
standard coding techniques with one processor
assigned to each element in the time-frequency plane.
The second implementation used a similar processing
string, but was coded with a network of fuzzy AND and
OR nodes. Each node in the network was assigned to a

processor.
This approach was chosen because it illustrates:

1) The feasibility of using a nodal network to perform a
signal processing task and 2) the design of a basic
nodal network to perform some functions required by a
signal processing task.

4.0 The Application
4.1 The Input Data

Formants are bands of energy in the spectral

representation of speech. They are a result of the shape
of the vocal tract and the associated resonances at the

time the sound was produced, for this study, the time
waveform of speech data was passed through an
anti-aliasing filter with a cutoff at 4000 hz and was then
sampled at a 10 kHz sampling rate. The analysis frames
were hand aligned to the pitch periods in the time
waveform (see Figure 4). This removed much of the
temporal variation in the magnitude of the formants.
(One of the next tasks will be to develop a spectral
analysis network that automatically centers analysis
frames on the pitch periods.) The analysis windows
were hamming windows 128 samples long. The FFT
produced a spectrum of 64 values ranging from DC to
4922 hz in 78.1 hz increments. An example of the
formants used in this study are shown in Figure 5 (next
page). The spectrogram shown is of an adult male
speaker. The pitch period for this speaker averages
about 10 msec.

The formants extend for a finite duration in the time

direction and move up or down in frequency over time.
The objective of the algorithms coded for this effort is to
track those formants as they start, stop and move
through time.

Figure 4. Segement of Speech Data. Each repetition of
similar data is a pitch period.
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4.2Processing String - Conventional Algorithm
1) The first step is to convolve the image with 19

elongated kernels oriented at angles between -45
degrees and +45 degrees (0 degrees is aligned with the
time axis). The idea of using elongated filters at different
angles was first suggested by Dr. John Meckley (Ref 4).
At each time-frequency point the kernel most closely
aligned to the energy structure in that region is selected.
The kernel is selected by choosing the convolution
result that changes the most as the kernel is shifted
along the frequency axis. If two or more results are the
same size the angle nearest to 0 degrees is chosen. The
value of that convolution becomes the new value at that

pixel. The angle of orientation of the largest convolution
result is also recorded. The result of this matched

filtering is an enhancement of the formant peak energy
relative to the other energy in the signal.

2) The new image is then rescaled at each point
by thresholding with the average energy in nearby
locations.

3) The data is then spread along the angle chosen
in step one: a) The data is multiplied by 1/3 and added
to the data samples which are two data points away
along the chosen angle (both backward and forward

along the angle), b) The data is then multiplied by 2/3
and added to the data in the adjoining points along the
chosen angle.

This process, spreading the likelihood of being a
peak along the angles selected in step one, would be
equivalent to low pass filtering if all angles were aligned.

4) The final step is to again threshold the result of
step four to produce a binary output image.

The implementation on the Connection Machine
was accomplished by assigning one data point to each
processor and simultaneously working on 128
spectrums of 64 data points each.

The rescaled data and the final results are shown

in Figure 6.

4GO0--

2900--

1000--

Time

Figure 5. Spectrogram of Adult Male.
areas are formants.

Elongated dark

4.3 Processing String - Nodal Network Algorithm
The processing steps used in the nodal network

are similar to those used in the conventional algorithm.
The primary difference is a change in their sequencing.

1) The first step is low pass filtering (LPF) of the
data along the time axis. This smooths out some of the
irregularity in the spectrum that results from noise added
to the formant structure.

2) A local average LPF spectrum is calculated
based on 8 data points. Again this is along the
frequency axis. This result is maintained independently
of the LPF spectrum from step 1.

3) The LPF spectrum is then set to zero if it is less
than the average in its area, to one if it is 1/8 or more

bigger and otherwise scaled linearly between those two
values. This rescales the whole spectrum relative to the
average in the area around it.

4) The data is then reduced further by determining
if each point is a peak in the modified energy along a
given time slice.

5) The final step is to determine if there is a

continuity of peaks along each of the possible angles.

The results at Steps 3, 4 and 5 are shown in
Figure 7. For completeness, all node definitions are
given in Table 1. The first three layers of the nodal
network are diagrammed in Figure 8.

m

looo-

"rim

Figure 6a. Conventional Implementation - Rescaled Data.

=o m-
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m

/
,p,,==_= ,.,p,.=p=

ThTIle

Figure 6b. Conventional Implementation - Finale Result.
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Explanation of table:
Each node Is repeated for every elemenl (64 0f them) in the

spectrum. The first array Index Is the offset along the frequency axIs.
The second index Is the offset along the time axIs. Note that all time

offsets are less than or equal to zero. This is because the "recent"
history o! a node Is kept but future values are unavailable. If the time
offset is 0 the second index is omitted. The name to the left of the

equal sign is the name of lhe code. The two (or one) names to the

right of the equal sign are the names of 1he input nodes. If a pair of
numbers enclosed in braces follows the nods name that Input is
transtormed using the first number as the slope and the second the
intercept. If there Is no pair of numloers the slope is by default 1.0

and the intercept 0.0. If a NOT follows the node name (or the
braces) the input is inverted.

New input data is inserted every time iteration.
input{0] INPUT

Low pass filter (LPF) the input along the frequency axis.
Ipf 110] - input{0] OR inputll]

Ipf 210] - Ipl 1[0] OR Ipl_l[-1]
Ipf 310] = Ipl_2[0] OR Ipf 211 ]
Ipf_4[0] = 11)1_310] OR Ipf_3[-ll

Average the 8 LPF along the frequency version.
Alpf_llO ] = Ipl_4[O] OR 11:)1_411]
Alpf_210] = Alpl_l[0] OR Alpf 112]

Alpf[0) - Alpl_2[0] OR Afpf_2[-4]
Rescale lhe data to remove low amplitude energy.

sclI[0] = Ipf 4[-3] OR Alpt[0] NOT
scl[0] = sdl[0] {16. -8.] SCALE

Iderdity local maximum along the frequency version.

pkl [0] = scl[0] OR scl[-1] NOT
pk2[0] = scl[0] OR scql] NOT

pk[0] - pkl[0]150. -25.) AND pk2[0](50. -25.}
Identity Continuities along lime version of length 2.

C_00[0] -pk[0](2. 0.} OR pk[0](-1]{2. 0.}
C_01[0] = pk[0]{2. 0.) OR pk[1]l-l] [2. 0.}

M_01[0] =pkl0]{2.0.) OR pk[-1]l-l](2,0.)

Form Continuities of lenglh 4 at various angles along time dimension.
C_0000[0] = C_00[0] OR C_00{0] l-2)

C_0001[0] - C_00[0] OR C_0110]1-2]
C_001110] - C_00(0I OR c_oo[1]l-2]
c o1111o] = c o1[ol OR C_00[1]1-2]

C 001210] = C_00[01 OR C_0111]1-2]
C_011210] = C 01[0l OR C_01[11[-2]

C_0122[0] = C_01[0] OR C_0012][-2]
C_0123[0] , C_01[0] OR C_0112][-2]
M 0001(0] = C 00[0] OR M_01[0][-2]

M_001110] = C_00[0] OR C_00[-ll[-2l
M_011110] . M_01[0] OR C_00[-11[-2]

M 0012[0] = C_00[0] OR M 01[-1][-2]
M_011210] = M 01[0] OR M_01[-1][-2]
M_0122[0] = M_0110 ] OR C_00[-2][-2]

M_0123[0] = M 01[0] OR M_01[-2][-2]
Determine if one of the continuities of lenglh 4 is large• Input
threshold, {8. -5.}, requires three oul of the four Inpul peaks be large.

There are actually only 15 conttnollies The input to the first node is
multiplied by 4 (rather than the 8 used in the other nodes) so that its

contribution will be the same as the other 14 nodes. The final scaling
requires that 1 of 16 continuities be large

C_t 11[0] = C_0000[0] {4. -2.5) SCALE
C_t12[0] = C 0001[0] {8. -5.} OR M 000110 ] {8. -5}

C t13[0] = C_001110] {8. -5.} OR M_001110] {8. -5.]
C_t14[0] =C_0111[0]{8. -5.} OR M_0111[0][8. -5,}
C_t15[0] = C_0012[0] {S. -5.} OR M_0012[0] {8. -5l

C_t16[0] = C_0122[0] {8. -5.} OR M_0122[0] {8. -5.}
C_t17[0 ] = C_0123{0] {8. -5.} OR M_0123[0] (8 -5.}

C_t18[0] = C_011210] {8. -5} OR M_0112[0] {8. -5.}
C_t21[0] = C_t 11[0] OR C_t 12[0]
C_t22[0] = C_t1310] OR C t14[0]

C_t23[0] = (::11510] OR C t16[0]
C t24[01 = C t17[01 OR C t17[0]
C_t31[0] = C t21101 OR C 12210]

C t32[0] = CJ23[0] OR C_f24[0]
C_t4t[0] = C_t31[0] OR C_132[0]

final{0] - C_t41[0] {32 -2.} SCALE

Table 1. A Listing of All the Nodes
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Figure 7a.
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Nodal Implementation - Resclaed Data.
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Figure 7b. Nodal Implementation - Formants Identified.
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Figure 7d. Nodal Implementation - Final Result
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Figure 8c. Nodes to Enhance Spectral Peaks

LPF Inputs

Figure 8b. Nodes to Average LPF'd Data

all connections have

slope of 1.0 and

intercept of 0.0

Input nodes

4 6 4 I

relative weighting of nodes

Figure 8a. Nodes to Low Pass Filter Spectrum

The nodes shown in Figure 8a are low pass filter

(LPF) the inputs. The connections shown by the heavy
lines indicate the paths that lead to a single output node.

Notice that the input nodes contribute through multiple
paths to the output nodes. The numbers at the bottom
indicate the relative contribution of each of the nodes.

Notice that the scaling of inputs is consistant because at

every level all values are divided by 2.

The nodes in Figure 8b calculate the average of

the LPF. The three levels together produce outputs that
are the sum of 8 LPF nodes. Notice that the input nodes

contribute only through a single path to the output

nodes. The division by two at each of the three levels
accumlates to a division by 8. The result is an exact

average of the 8 input connected by the heavy lines.

The nodes in Figure 8c perform a rescaling by

summing the LPF value (Ipf) and the inverted average
(Alpf). The intermediate result (scll) is:

scll -- (Ipf + (1 - Alpf)) / 2 (i)

or reducing

scll = 1/2 +lpf/2 - Alpf/2 (2)

The next node multiplies this result by 8 and then

subtracts 4 to give the output z. Inserting and reducing
gives:

z = 4 * (Ipf- Alpf) (3)

Notice that the result is 0 if Alpf is greater than Ipf. It is
equal to one if Ipf is greater than Alpf by more than 1/4.

The implementation of this algorithm on the

Connection Machine is accomplished by assigning one
processor to each data point in the network. The

spectrums, each with 64 data points, are pipelined
through the system. In affect the system is being used in

a "compute level" parallelism fashion.

5.0 Results

The figures in the previous section illustrate that

the algorithms do work for the example given. Note that

the single spectrogram evaluation is very insufficient but,
the goal of this effort was to illustrate the use of nodal

networks not to produce a "fieldable" algorithm. Both

algorithms perform similarly on this spectrogram.

The speed of execution of the two implementations
indicates that there is not a strong difference in the

efficiency of the two algorithms. The ratio of execution

time is approximately 4:1 (nodal network to

conventional). It must be pointed out that performance
was not a focus of this work. The conventional

implementation was mildly massaged to improve the

performance. No such massaging was done for the
nodal network algorithm. Further, the nodal network

algorithm was implemented in floating point and the
conventional algorithm in 8-bit integer. The nodal
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network implementation can be easily implemented in
fixed point and the data communications can be
dramatically improved without much effort. It is very likely
that the execution time of the two systems would then be
comparable.

6.0 Conclusions

The first conclusion suggest the continuation of
this work. Nodal networks can provide a method for
parallel processing one dimensional signal data in a
massively parallel SlMD processor if the processor has
a reasonably efficient system for random interprocessor
communications. There are certainly a lot of questions
left unanswered about the long term system. Still the
experience is encouraging. The software that supports
"programming" of the nodal network is improving and, in
turn, making the exploration of these systems much
easier.
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ABSTRACT

We have been investi_atlng the extent
of increase possible in the efficiency of

computations of electronic structures and

properties of atomic, molecular and conde-

nsed matter systems when one uses the

Massively Parallel Processor (MPP). The

usefulness of MPP in improving the speed

of evaluation of two-center electronic

integrals and formation of Fock matrix

elements necessary in electronic structure

investigations of molecular and solid

state systems is analyzed. The

possibility of reduction in the

computational time for calculation of the

large numbers of matrix elements for

electron-electron interactions needed in

many-body perturbation theory for atomic

systems by using a parallel algorithm for

numerical integrations is also discussed.

Keywords: Electronic Structure, Hartree-

Fock Theory, Many-Body Theory, Atoms, Mol-

ecules and Solids, Parallel Computation.
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systems accurately in the one-electron ap-

proximation. The third procedure we have

been examining for adaptation to the MPP

is the many-body pertur-batlon theory

(Ref. 3) which has been employed within

the framework of both non-relatlvlstlc and

relativistic theories for electronic stru-

ctures and hyperflne properties of a large

number of atoms. It is expected that the

analysis of these three procedures will

provide a broad-based test of the potentl-

al advantages of the MPP (Ref. 4) for

electronic structure investigations.

Whlle our Investlgatlons are currently in

their early stages, we believe that the

results of our efforts so far may be

useful to other investigators interested

in using MPP for similar calculations.

Section II wlll present our work on

the Hartree-Fock Gaussian procedure for

molecular and solid state systems and

Section III on the many-body perturbation

theory for atomic systems. Space does not

permit us to describe our project concern-

ed with the adaptation of the SCCEH

procedure to the MPP. It wlll be

preseoted in a future publication.

Section IV summarizes our conclusions.

We have been engaged In an examlnatl-

Ion of the possibility of enhancing the

speed and scope of electronic structure

investigations in atoms, molecules and

condensed matter systems through the use

of the Massively Parallel Processor (MPP)

at the NASA-Goddard Space Flight Center in

Greenbelt, Maryland. In thls connection,

we have been investlgatlong three differe-

nt procedures for calculation of electron-

ic structures and properties. The first

procedure that we have been trying to

adapt to the MPP is the seml-emplrlcal

procedure referred to in the literature as

Self-Conslstent Charge Extended H_ckel

(SCCEH) procedure (Ref. i) which has been

applied extensively in the literature for

the study of the properties of large

molecular systems, including hemoglobin

derivatives, using serial computers. The

second procedure uses the flrst-prlnclples

Hartree-Fock approach (Ref. 2) using

Gausslan basis sets to study the electron-

ic structures of molecular and solid state

SECTION II. ADAPTATION OF THE HARTREE-FOCK

PROCEDURE INVOLVING GAUSSIAN BASIS TO MPP

The Hartree-Fock method(Ref. 2)

involves a first-princlples approach for

evaluation of electronic energy levels and

wave-functlons in the one-electron approx-

imation. The Hamiltonlan of a molecule or

a cluster of atoms used to simulate a sol-

id state system (Ref. 5), which contains n

electrons and N nuclei Is given by

where atomic units have been used, the Z I

referring to the charges on the nuclei at

positions _I' _i being the position vector

of the ith electron. The problem of

determining the electronic structure

reduces to solving the many-electron

Schr_dlnger equation _[_:E_ , where in the

Hartree-Fock approximation _ Is a
determlnantal function built out of LCAO-

MO (Linear Combination of Atomic Orbitals-
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Molecular Orbltals)wave-functlons of the

form _=Y_t_i, e/__being atomic basis
functlon'8. In the Gausslan basis set

approach the 0C_ have the form:

e- _'r_ (2)
_t_Ob: cg

where the symbol I refers to the nucleus

which the orbltal_ is based, _ ref-on

erring to the position vector of the Ith

electron with respect to the nucleus I.

The solution of the many-electron Schrod-

Inger equation by a variational procedure

entails solution of the linear equations:

HF

where Sil and hMiF1 are the elements of the

overlap _nd Fock'matrlces and are given

for the choice of real orbltals by

The non-trivial solutions of the Equations

3 are obtained as usual by solving the

secular equation _e+-Ih_f-6t*Sql

to determine the blO energy levels ____,
these bel-ng used in Equations 3 together

with the normalization conditions on the

MO, _,_ to determine the corresponding C/_ i.
An Iteratlve procedure involving

successive evaluation the h_ using the C_i

obtalned from Equations 3 "'#isnecessary to

obtain a self-conslstent solution.

An analysis of the computational

steps involved in the Hartree-Fock

procedure leads one to expect that it can

be effectively implemented on the MPP with

significant enhancement in speed by using

suitable algorithms for parallellzatlon of

the following steps:

(a) Evaluation of the multl-center

one-electron and two-electron integrals in

Equation 5 and the overlap integrals Sij
in Equation 4.

(b) Formation of the Fock matrix _'_q

using the calculated one and two-electron
-- j

integrals and the C/_£ from the preceding

step in the iteration.

(c) Solution of the Equations 3.

Considering the step (a), it is clear

that the integrals involved in Equations 4

and 5 are independent of each other, maki-

ng them good candidates for parallellzatl-

on. However one has to develop suitable

algor-lthms to map the computational prob-

lem to the architecture of the MPP. As a

first step in this dirctlon we have utili-

zed the MPP to evaluate the overlap matrix

S and benchmarked the speed with respect

to the serial computer UNIVAC 1100/91.

An important consideration in the

parallellzation of the procedure to evalu-

ate the overlap matrix S is that the over-

lap integrals between two Gausslan orblta-

is of any angular momentum (such as s,p,d)

on different centers can all be expressed

In terms of overlap integrals between Gau-

asian s orbltals (with ai=o-bi=cl) in Equ-

ation 2 on these centers, these integrals

being expressible in the form (Ref. 2):

(_^ Ij_ :_ _^ _ _(_l_b v_ ( 6)

endl_+lz is the square of the distance

between nuclei A and B. Typical overlap

integrals <ZA] SB> and <ZAl ZB> , where z A

and z B represent Gausslan Pz orbitsls on A

and B with al=0 , bi=O and c i = 1 in

Equation 2, are given by (Ref. 2):

cz^l_>=-_a lC_)zl <s^lx_>l

and -m'fSr.X_ `'-'" ' (s)
Thus the only overlap integrals that need

to be calculated are the <SAlSB> between
various centers in the molecule or cluster

under study. It should be noted that some

of the overlap integrals in Equations 6

and 8 can be one center integrals with

=I for the <sAl sB> terms since IA_|2 vani-

shes. For orbltals of different symmetry

such as s and Pz' Equations 8 show that

the one-center integrals vanish. The

evaluation of the <SAi SB> integrals using
the MPP involves the following steps.

(a) Determln_tion of the distance matrix

components (A_)x,y,z from which I(_)_'can
be calculated.

(b) Determination of the _A_B matrix.

(c) Determination of the _AB matrix

(Equation 7).

(d) Determination of the N.N B matrix
involving the products of t_e

normalization factors occurlng in the

orbital expressions (Equation 2).

(e) Determination of the K matrix

(Equation 7).

Since the MPP can do arithmetic operations

involving 128x128 parallel arrays (Ref.

4), the Gaussian functions are divided

into blocks of 128 Gaussians and all the

parallel arrays or matrices involved in

the steps(_e) have dimension 128x128. As

an example, we will describe the algorithm

for the evaluation of the distance matrix

for 128 points. For this purpose, one

first constructs three 128x128 parallel

arrays with each column containing the x,y

or z coordinate of a single point, e.g.

[C]ni=Xl, [D]ni=Yi , [E]ni=Zl (9)

for n=l to 128 and i=l to 128. For

instance:

_lzs ( 10 )
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with 128 rows and 128 columns. One then

calculates the transpose of matrices [C],

[D] and [E] from which

are obtained. One can easily see that

[.×-],:j=x_-_'_, [Y 3_--k='t_-"d_°'''4 r--z-3_.:J=z_--zJ (_2)
Therefore the distance matrix for

different centers can be obtained from

[¥-] * [y] Lzti,Lz?
In contrast to serial computation where

the arithmetic operations are carried over

one data Item, llke xl-x4, here we are ev-
aluating the difference _etween x-coordln-

ates of ell the 128 centers simultaneously

This can lead to considerable saving in

computatlonal time. A slmilar procedure

is followed in carrying out the steps (b)

to (d)o Once the matrices In (a), (b) and

(c) have been evaluated, the matrix (e)

can be obtained directly using Equation 7.

The parallel pascal programs for these

steps have been written and tested on the

MPP. It is straightforward to calculate

the overlap Integrals <aAi _ using Equation

6. If overlap integrals involving other

orbltals besides s are needed, one makes

use of relatlons llke those in Equation 8,

the quantities involved in these relations

being already available on the processors
of the MPP.

In actual molecular calculations, the
atomic basis sets on different centers are

expressed as linear combinations of

Gaussian functions G_ I (same form as in
Equation 2) In the f_rms:

OL:=_apiq_:, =

The overlap integral between _: and _--_can then be written as

/_1...,.,__;) I>1, "--(_ • iq,l,, ( t s)

Equation 15 can also be evaluated on the

MPP by computing <G fIG i>, the overlap

integrals between t_e primitives, and then

multiplying it with the d_.dq, matrices
and performing the sum in_ca_ed in

Equation 15.

Our benchmarklng procedure using 128

atomic basis functions of the type %_ In

Equation 14, with each basis function con-

sisting of a combination of three Gaussia-

us, has shown that these one electron-two

center integrals can be computed 15 times

faster in MPP compared to UNIVAC 1100/91.

The maln features of the algorithms

developed for the overlap matrix elements

can be directly applied to evaluate the

one-electron integrals (referred to as ki-

netic energy integrals) in the first term

In the Fock-matrlx element expression in

_uatlon _ This family of Integrals inv-
ves no re than two centers as in the

case of the overlap integrals and similar

expressions are available (Ref. 2) for

them. The nuclear attraction integrals in

the second terms of the Fock-matrlx (Equa-

tion 5) involve three-center integrals in

addition to one and two centers which occ-

urred for the overlap matrix. The electr-

onelectron Coulomb and exchange interact-

ion integrals represented by the third and

fourth terms of the Fork-matrix expression

(Equation 5) can involve both three and

four-center integrals. These integrals

are much more numerous than the overlap

and kinetic energy integrals. However, an-

alytic expressions analogus to those for

the overlap Integrals, but somewhat more

complicated, are available for them. In

principle then, the nuclear attraction and

electron-electron coulomb and exchange in-

tegrals can be adapted to the MPP by proc-

edures slmilar to those used for the over-

lap integrals. We are currently investig-

ating suitable algorithms for computing

these integrals on the MPP.

Once the one- and two-electron integ-

rals in the Fork matrix expression in Equ-

ation 5 are obtained, the Fock-matrlx ele-

ments h_ can be evaluated. As far as the

one-electron contributions representing

the first and second terms in hlj are con-
cerned, nothing more Is needed. For the

two-electron terms however, Equation 5

shows that matrix multiplications have to

be carried out between the density matrix

(with elements c_c/ct ) and the electron-

electron interaction matrix (involving

elements <lJlkl> for coulomb and <Ik}Jl>

for exchange interactions, kl being runn-

Ing indices for fixed I and J depending on

the Fock-matrlx element being evaluated,

followed by a summation over the occupied

states _. We have developed algorithms for

carrying out these operations on the MPP

which involve terms llke SUM {[<lJ kl>]

*[(COLBOARD C_ )]*[(COLBOARD C_ )]_} where

SUM (Ref. 4) represents the summation of

all the elements in the parallel array re-

sulting from the operations within the cu-

rly brackets. The COLBOARD operation (Ref

4) involves propogating a column vector C_

over all the columns of the MPP producing

a matrix with Identical columns. Each pr-

ocessor in the MPP is assigned an element

of the matrix [<lJ kl>] corresponding to a

particular choice of kl. The products

between the matrices marked by asterisks

in the curly brackets are element by

element products and not matrix products.

The entire procedure has to be repeated

for all the occupied states _ and a summ-

ation of the contributions for different_

has to be carried out to get each Fork

matrix element h_. In principle, for a

problem Involvlng'upto 128 basis functio-

ns, this procedure can lead to a reduction

in the number of floating _olnt operations

by a factor of about (128) =. From our ex-
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periencewith the evaluation of overlap integrals,

the saving in terms of computational time is ex- 2
petted to be significantly smaller than the (128)

factor because of various machlne-related factors

llke the I/O operations between the MPP and its

host and the relatively lower speed of floating

point operations on individual processors of the

MPF. The alggrithms for construction of matrix

elements of h_jF are expected to be also applicable

to the evaluation of expectation values over mole-

cular orbltals of operators associated with spe-

cific electronic properties, for instance hyper-

fine properties of most interest to us (Ref. 5).

After the formatlon of the Fock-matrlx and

overlap matrix S, the next process is to solve

the linear equations in Equation 3. This can also

in principle be carried out on the MPP and we are

exploring available algorithms for this purpose

(Ref. 6) to use for both Hartree-Fock and semiem-

plrlcal SCCEH procedures.

SECTION III. ADAPTATION OF THE MANY-BODY PERTUR-

BATION PROCEDURE FOR ATOMIC SYSTEMS TO MPP.

We have also been exploring the capability

of the MPP for enhancing the scope and speed of

accurate many-body perturbation theoretic inves-

tigations (Ref. 3) of electronic properties of

atomic systems. The most time-consumlng aspect

of these investigations is that of computing elec-

tron-electron interaction integrals of the form:

_-J) T_l 'Rm _%'_5 'm (16)

involving four excited state wave-funtions_s,,_,_

and_4of the system which are unoccupied. Since

one has often to deal with as many as twenty-flve

excited states of different symmetry, t_e number
of such integrals is a multiple of (25)-- in many

instances about ten times this number and it is

often impracticable to carry the accuracy of the

theory to a level where all these integrals are

needed. These integrals have so far been carrled

out on serial computers using standard numerical

integration procedures because the wave-functions

_R used are in numerical form. The integration

procedure most commonly employed is the Guass-

Laguerre method (Ref. 7), where an integral of

the form:

is expressed as

(1+)
i=t

the x i being positions of the zeros of taguerre

polynomials and w i being weight factors. This

summation form was found amenable for adaptation

to MPP and we have developed an algorithm for

calculating 128 such integrals I simultaneously

on the MPP. In this algorithm, one constructs

three parallel arrays (Ref. 4) involving x i, w i

and g(xl). For N-128 in Equation 18, three

multiplications and seven addition of floating

point numbers are required to evaluate the 128

integrals I. These replace the 49,152 multipli-

cations and 16,384 additions that would be re-

quired for serial computations. With this large

reduction in number of floating point operations,

the evaluation of the large numbers of integrals of

the form in Equation 16 is expected to become more

practicable. Details of our algorithm and applica-

tion to specific problems will be given in a future

publication.

SECTION IV. CONCLUSION

The possibility of adapting a number of cur-

rent computational procedures in the investigation

of electronic structures of atomic, molecular and

condensed matter systems has been examined. We

have developed a number of algorithms for carrying

out the computational steps involved in these pro-

cedures, which are rather time-consuming when one

uses serial processors. These algorithms show

that using the massive parallelism of the MPP, it

is possible to reduce the numbers of serial arith-

metic operations by very substantial factors. How-

ever, our benchmarking in a few cases that we have

been able to completely study so far indicate that

only a fraction of the expected saving in computa-

tional time is being attained. While this is al-

ready quite useful, future improvements in the

speeds of the individual processors of the MPP and

in the data transfer to and from it, should make

this kind of machine a very valuable tool in elec-

tronic structure investigations.
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ABSTRACT

Tools for managing massively parallel systems are discussed

in the context of existing tools and models for concurrent systems.
Based on a survey of existing tools for parallel systems, creation of

a "consensus tool", integrating the best features of these with addi-

tional functionality for behavioral study and performance evalua-

tion, is proposed. Flow graph models for concurrent systems are

shown to be in widespread use and flexible enough to be used as a
basis for creating models for this tool.

PARET (Parallel Architecture Research and Evaluation

Tool), an environment that uses interacting, multiple flow graphs

to form a system model, is discussed in some depth as an existing

tool with many of the desirable features of the target consensus

tool. PARET, which has been used for medium-size systems, has

features for use in modeling larger scale systems. The modeling of
a Linda machine and its implementation using PARET is shown as

an example of system modeling using a progression of interacting
flow graphs.

Keywords: Multiprocessor Tools, Performance Evaluation, Mul-

tiprocessor Models, Visualization Tools, Discrete-Event Simulation

IN TR OD U CTI ON

Now that large-scale parallel machines are in use, the time is

past due for tools to assist system architects in performance and

behavioral evaluation of such systems. Creating tools involves

anticipating the questions of interest about massively parallel sys-

tems. The fact that we are still discovering the nature of the

significant questions that will need to be answered complicates this
process. This work partially focuses on the construction of tools

and partially focuses on the discovery process, particularly for

larger systems. Ultimately, some experimentation with tools will

be required, and some wrong paths will be taken. The goal of this

work is to synthesize the best aspects of previous approaches to

tools for medium-size parallel systems with new ideas for handling
more complex systems into a tool for the future.

Performance evaluation programs for parallel computers of

any size are still in infancy, although a number of efforts are

appearing. One of the striking things about these is the frequent

emphasis on a visual component. These include Poker [1, 2], PIE

[3], tools for the B-HIVE project [4l, PROFILE [5], the Software

Oscilloscope [6], and PARET[7]. The wide variety of approaches

taken is indicative of the diversity of data available in a parallel

machine and the range of requirements of architects of different

parts of the system. It is time to move toward a "consensus tool",

that is, one which represents the intersection of the previous major

efforts and provides a platform for enhancements. The major les-

son of these tools and of research work on parallel performance

evaluation [8,9, 10], is that performance cannot be represented

solely by a number in the parallel computing world.

The ubiquitousness of certain features and the growing reali-

zation that performance characterization is a complex and

application-dependent task points to the possibility of creating a

consensus tool containing a toolbox of frequently used perfor-
mance measurement functions. The consensus tool must also be

customizable, so it can grow with the body of applications. A good
starting point for such a tool is to use discrete-event simulation of

models, followed by partial or full use of post-mortem machine

trace information to drive simulations. A longer range possibility
is to use the tool as a front-end to actual machine control and
observation.

Parallel systems can be viewed at several layers of abstraction

including: the user program(s) running, the operating system coor-

dinating the running user program(s), and the topology of the phy-

sical interconnect. These real systems must be modeled in a way

that expresses only the requisite degree of complexity, hiding and

grouping details that are not of immediate interest. A model

represents a real system in the tool's environment, facilitating user

observation and interaction with as many or as few of these

abstract representations as desired. Nonessential layers should be

either idealized (e.g. zero communications time) or observed only

by their effects on other layers (e.g. communications delays affect

user programs). Furthermore, the environment should permit a

model to evolve from a first pass of gross detail to a more sophisti-
cated version of finer detail.

The principle advantages of PARET in the context of this

paper is that the underlying model on which it is based is extensi-

ble to parallel systems of arbitrary size and complexity, and that

the model used in PARET is intuitive and is similar to many other

modeling approaches. Modeling approaches will be discussed in

the next section. In the third section, the major questions that

should be answered are examined, i.e. what should be the func-

tionality of an effective tool? The fourth section shows an exam-

ple of evolving a system model, and is followed by Conclusions.

MODELING LARGE, CONCURRENT SYSTEMS

A model represents the actual system in the tool's environ-

ment in a way that is easily comprehensible to the user. An

abstract method of modeling parallel systems is clearly required to

represent massively parallel systems. Preferably, the modeling

methodology should be continuously extensible from smaller to

larger parallel systems. Further, a modeling environment should

have the same general characteristics regardless of which subsys-

tem is under consideration or the level of detail represented. As

stated in the Introduction, a model must be flexible enough to

represent all aspects of a parallel system at varying levels of detail.

Thus, a system may be modeled at a crude level of detail early in

the research and design processes, with progressive refinements

permissible.

In order to characterize successful models, previous work in

the field is reviewed. This work is roughly divided into four areas:

user software representations, control and operating system

CH2649-2/89/0000/0675501.00 © 1988 IEEE
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models, topology of the physical interconnection, and communica-

tion structures and other architectural issues. Flow graphs are

shown to appear as a persistent theme in these models, providing

an intuitive, widely used method of modeling parallel systems and

a prime candidate for a modeling the basic components of a sys-

tem. What remains is the problem of tying the flow graph com-

ponents together into a system model and creating a tool environ-

ment that adequately presents the model to the user.

There are two distinct approaches to creating parallel user

programs. The first (transparent) hides the parallelism from the

user and the second (explicit) gives the user total control over

parallelism. Transparent parallelism occurs when sequential pro-

grams are transformed by intelligent compilers into parallel pro-

grams (e.g., Alliant FX/Fortran). In explicit parallelism, program-

mers designate which parts of the program may be executed con-

currently and when and how to exchange data between processes

(e.g. Cosmic Cube C). Various intermediate approaches allow

users to annotate where parallelism should occur, as in Poker [2].

Explicit control usually results in optimized program execution

times, while transparent parallelism reduces programmer develop-

ment time. For medium-sized systems, transparent approaches

can produce efficient code. This has been shown by various

approaches to "dusty deck" transformation, and by the Apply sys-

tem that has been used at Carnegie Mellon [1 1]. Both explicit and

transparent approaches frequently make use of directed flow graphs

(sometimes in the form of directed acyclic graphs, DAGs, as a

special -use) to represent the program. Explicit approaches often

allow the user to enter or view a program as a flow graph of con-

nected software components. Parallelism-extracting compilers

transparently form these graphs and use them to make automatic

program improvements. Some of the more explicit approaches,

such as Poker [2] and large-grain dataflow (LGDF) [12, 13], have

users enter programs graphically, at least in part. PARET [7] uses

a general flow graph model that may be used to represent any

graph. Typically, each node of the graph represents a portion of

user code, from a few lines to an entire process.

Representation of operating systems and control structures is

less prevalent in the literature than work with user programs. An

operating system is itself composed of programs, with the major

difference that the programs are more frequently responding to

and creating events external to their own program code, so the

user program representation methodologies should be applicable.

In addition, Srini and Shriver show how extended dataflow graphs
[14] (EDFGs) can he used to model the control structures of

reconfignrable, concurrent systems. Work that has been more

strongly identified with control structure analysis has been done by

using variations on Petri Nets to develop performance-oriented
models that represent the control structure of concurrent systems

[15, 16]. Petri Nets may be thought of as flow graphs with a more
restrictive set of formal rules.

Interconnection networks have been traditionally represented

by directed flow graphs, with Poker, PARET, and the B-HIVE pro-

ject tools[4], all examples of tools that incorporate such models.

Unfortunately, interconnection graphs with a only a moderately
large number of nodes and arcs, for example a 6-cube, are not

easy to observe in a two-dimensional view. To represent large-
scale or massively parallel interconnects, additional visual tech-

niques are clearly required to present the graph in a coherent

fashion, but hierarchical modeling techniques that provide users

with a conceptual framework for focusing on portions of the inter-
connect are also needed. This approach was taken in a recent work

on generalizing families of architectures for massively parallel

computers [17] shows. The interconnection topologies of these

architectures rely on the concept of hierarchically structured,

interacting directed graphs. Interacting flow graphs have been suc-

cessfully implemented in PARET, along with some hierarchical
features that will be discussed later.

A number of other architectural features of varying levels of

abstraction have been successfully modeled with flow graph tech-

niques. The previously-mentioned EDFGs have been used to

model the architecture of a Cray computer. The Poker environ-

ment uses visual programming of message passing to eliminate

writing explicit message-passing code and so that communication

structures are represented by flow graphs, a method that has pro-

ven easier to use than explicit port designation [2]. Among the

more abstract concepts represented by flow graphs is the mapping

of processes to an architecture [4].

The above survey of previous work shows that, as a model-

ing environment, flow graphs are: intuitive, evidenced by their

ubiquitousness; extensible, by decreasing the complexity of the

component represented by each node; and flexible, when an arbi-

trary number of flow graphs can be made to interact. The strength

of basing a tool for massively parallel systems on flow graph

models is that it inherits these advantages and can build on previ-

ous work if the methodologies cited above can be implemented

under the new environment in a fairly straightforward fashion.

Although a tool that allows for general flow graph representa-

tions can apply previously used modeling techniques, a consensus

tool should also unite all these disparate modeling techniques. In

this paper, the consensus tool is presented as a prismoid, with a

number of facets. Each facet can represent one level of abstrac-

tion, one subsystem, or one modeling technique for the target

parallel system. It is possible to look into any individual facet, to

rotate the prismoid, observing one facet at a time, or even to view

a number of facets at a time. The model chosen to represent a

parallel system must support a multifaceted view of the system and

a way to integrate all the facets. To form a muhifaceted view, flow

graphs must be made to interact, preferably in a hierarchical
fashion.

PARET is an example of a tool that is based on interacting

flow graphs whose complexity and functionality is left to the user.

This makes it a good point of departure for design of a consensus
tool. A PARET model consists of one or more directed flow

graphs, that interact during simulation either via explicit connec-

tions (ethers), and according to rules specified by the modeler, or

by sharing resources. The model comprises objocts: graphs are

composed of nodes interconnected by arcs, either of which may

contain buffers storing tokens, the PARET unit of data and control.

(See Figure 1.) Nodes are executed by elements operating con-

currently, and nodes from different graphs can execute on the

same element. Buffers from different flow graphs can be con-

nected by ethers that provide a path for tokens to follow between

graphs. All subsystems are modeled under this general paradigm,

but the descriptions and functionality of the objects differ. By per-

mitting interaction of an arbitrary number of flow graphs to form a

model, models can he developed in a hierarchical fashion.

In a PARET model, a user program may be represented by

one flow graph (perhaps compiler output), and the interprocessor

communications topology by another. These flow graphs are

viewed one at a time during a PARET session, implementing a

separation of system abstractions. By decreasing the functionality

represented by each node of a graph and increasing the complexity

of the graph, a model can be made progressively more complex.

Thus, PARET permits abstract layers to be represented with a

unified model within a uniform user environment where models

may have a wide range of complexity.

The features of PARET, both advantages and shortcomings,
will be examined and discussed as a basis for the consensus tool.

In the next section, the visual features of PARET will be

presented. An example of modeling a proposed architecture with

increasing refinement will be shown in Section 4, illustrating the

power and feasibility of this approach. Additional features that are

lacking in PARET and appear to be necessary for the study of
massively parallel systems will also be discussed.
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ANSWERING THE QUESTIONS

A tool for massively parallel systems will have to provide

means for answering the important questions about architectures,

applications, and their interaction. In this section, performance

studies and existing tools are surveyed for the questions they have

asked, and for the approaches that have been taken to provide

these anwswers. The approach taken by PARET is described in

some depth, so that the example of the following section can be
followed.

Parallel programmers have long been concerned with the

effect of changing the number of processors assigned to a target

program. More recent work has revealed the importance of the

effect of changing the number of processors on how one thinks

about the problem or how much larger a problem can be

accommodated as an architecture is scaled upwards [18]. A tool

should provide the means for comparing the execution of a given

application running on different numbers of processing elements.

In addition, for a scalable algorithm, it should be possible to fix

the number of processors and increase the problem size, until it is

no longer possible to execute the problem.

Comparative studies of interconnection networks normally

focus on the latency of message communications, and graph

metrics like network diameter. For scalable architectures, impor-

tant measures include the increase in latencies and the change in

traffic levels on the network links or through communications pro-

cessors with increasing network size.

From the architectural point of view, studies comparing a

number of architectures executing the same program or a suite of

programs [8] show the most promise for providing evaluations.

Another important function is to observe the effects of incremen-

tal architectural changes on system performance [9, 14].

In general, supplying execution times, or estimated execution

times, is not sufficient. The amount of processor idle time and the

amount of time spent on overhead functions provide useful meas-

ures of how well the operating system matches the architecture

and application [6, 10].

The above work requires many approaches. Comparative

architecture studies clearly benefit from an environment where

program models and architectural models are easily interchanged

and incrementally alterable. Some of the statistics required are

simple values, like execution time, average idle time, or the
number of times a resource was used over a fixed time. In some

cases, the questions require observation of a statistic over time,

e.g. to detect "hot spots" for some resource. Information can con-

cern usage levels, presence or absence of activity, state of a com-

ponent or number of times a component has been in a certain

state. The state of a certain process or of a single processor, or of

a region of the software or architecture that may be considered to

be a cluster of atomic actions, may be examined. Surveying
current tools reveals a number of methods used to make this data

available to the user.

Some tools show the flow of data and control in an architec-

ture, while others are geared toward observation of resource usage.

The former is usually accomplished by animation of a flow graph

model, and the latter has been accomplished by providing graphical

monitoring devices of resources or model components. To

differentiate these two approaches, depictio_ of a portion of a

model provides a view of the system and is referred to as a facet,

to maintain the prismoid analogy introduced in the previous sec-

tion. A data collection and presentation method will be referred to

as a monitor. These generally appear as either graphical meters or

simple state information provided in response to a query. A few

examples are cited below.

In his aptly-named Software Oscilloscope, Katseff [6] pro-

vides time-changing data for each processor on the amount of time
spent on user, system, and idle, or waiting, time. This data has
proven useful for determining load balancing information about

particular parallel programs. The Software Oscilloscope provides

dynamic performance-oriented information about each processor

and is clearly in the monitor class, but does not provide data on

the interconnection network or the structure of interprocess com-
taunications.

In Poker, a number of useful views of a program running on

a particular architecture are provided to the user, although anima-

tion and performance feedback appear to be minimal. Thus, Poker

provides a number of facets, but the only monitors are the indica-

tions of current state contained in each node. This environment

has to be laboriously customized in order to handle a new architec-

ture[19] and cannot be used as an exploratory tool.

In PARET, a number of facets are possible for a system, one

for each flow graph in the model, and these flow graphs are

animated and alterable during simulation. Simple monitors allow

the user to select the components of the facet being observed to

get the current state information. A limited selection of dynamic

monitors (meters) are provided that present resource use as a

function of time for a sliding time window. In addition, summary
statistics of a simulation are collected.

A typical PARET window is divided into four parts: a display
area where a single flow graph at a time can be observed, a meter

area where a set of user-selected meters is displayed, a local control

panel that is specific to the flow graph presently in the display

where the simulation is controlled, and a global control panel where

universal aspects of the model and its simulation are controlled.

PARET also contains some visual features for representing com-

plex graphs. These additions were intended to allow the applica-

tion of the PARET visuals to large systems: expansion of selected

portions of a displayed flow graph (selected magnification), and

grouping of nodes into supernodes (hierarchical structure). Nei-

ther of these requires any changes in the underlying graph model.

The first has been implemented by displaying a flow graph in a set

of viewports each of which are controlled by separate movable,

resizable reticles on the full flow graph (the display area shown in

Figure 2). In the second method, although we visually represent a

group of primitive nodes by a single node, the back end (simulator

or machine) continues to treat the primitive nodes individually and

has no notion of the supernode.

To adequately support massively parallel environments,

PARET needs an improved suite of selectable and customizable

performance meters, a variety of permissible methods for connect-

ing the various flow graph views of a system, and the ability to

replay trace information gained from real machines. Although all

of these extensions are possible, it may be preferable to develop a

new tool based loosely on PARET and incorporating facets and
monitors from other tools.

AN EXAMPLE MODEL

In this section, a model is presented for a Linda machine

[20], an architecture that supports the Linda parallel programming

language by emulating a type of shared memory particular to

Linda, called tuple space. In the Linda language, all processes may

access objects (tuples) in the shared space (see Figure 3). One

characterization of architectural performance is the total number of

data tuples that can be handled by the implementation over some

period of time, as well as the average amount of time for the

shared tuple space to respond to requests for particular tuples.

This will be presented as an example of creating a rough model

and beginning to refine it. In addition, this example will show

methods of representing shared memory within the present con-
straints of PARET and will propose additions to the model.

The Linda machine has N horizontal buses, called tuple

beams, and N vertical buses called inverse beams, as shown in Fig-
ure 4. At the N 2 intersections of these beams are Linda Nodes,

each of which interfaces to a CPU. At each Linda Node, there is
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anIn Processor, an Out Processor, and a Tuple Memory as shown in

Figure 5. We begin by depicting these elements of each Linda

Node by three PARET nodes as shown in Figure 6. This ignores

some of the details of the actual Linda Node, but maintains the

features of interest for our performance study. We place buffers

inside each of the nodes; in the In and Out Processors, they hold
data (PARET tokens) waiting to be sent on the inverse beam or

tuple beam, respectively. For the Tuple Memory, the buffer

represents the physical memory with PARET tokens representing
tuples.

Since PARET does not have a construct for representing a

bus structure, the beams are represented by PARET nodes.

Further, rather than using a model of a Linda program to drive the

architecture, a simpler model, generating tuples of randomly

selected sizes at random intervals, is used to get initial perfor-

malice data. For this purpose, a random token generator node is

used to create tuples for the Out Processor, and another random

token generator node creates requests for the In Processor. These

two additions are shown as dashed nodes in Figure 6. The random

tuple intervals are centered around a mean value referred to as the

gra/n s/re of the computation. The undashed nodes in Figure 6

form a Linda Node, or in PARET, a cluster. An initialization

function was written which builds a system model given the

number of buses desired. Thus, the number of processors in the

model is easily scaled by making a change in the input model

description file.

Although creating a model of arbitrary size is easy, scaling

the visual information is more problematic. The flow graph

becomes increasingly more difficult to observe and interpret as N

grows large. One approach to reducing the visual complexity is to

encapsulate the PARET nodes of a single Linda Node into a super-

node, a PARET feature allowing a set of nodes to be visually gath-

ered into a single representation, but the number of these super-

nodes still grows as the square of N. In addition, we can use the

reticle and viewport system to isolate sections of the graph.

To introduce another facet to the model, a second graph is

added (shown in Figure 7), showing a programmer's conceptual

view of the Linda machine. Here the entire tuple space is

modeled as a shared memory node attached to N 2 user processes.

These process nodes contain the generator nodes from the original

graph, and PARET ethers [21] are used to pass tokens between

graphs. A more sophisticated model can be created if the process

nodes represent actual user program graphs instead of the genera-

tor nodes. These graphs can be connected to the process node by

ethers, or the process node can be a "grouped" representation of

that portion of the user graph that makes up the process.

The average response time can be compiled as a function of

the number of processors in the architecture and the grain size, or

the average time between tuple and request generation. A set of

these values is currently being compiled.

CONCLUSIONS

Tools for massively parallel systems require a very basic and

flexible underlying model. Flow graphs have proven efficacious in

many concurrent modeling methodologies. Since effective tools

will requite a "consensus approach", a marriage of the various

current approaches to representing parallel systems and monitoring

their performance, techniques for permitting the interaction of a
number of flow graph models in a flexible tool environment are

requited. PARET was shown to be a tool which lays important

groundwork for such a tool and an example implementation of a
scalable architecture model in PARET was shown to illustrate its

use.
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ABSTRACT INTRODUCTION

The CMU Scan Line Array Processor (SLAP) is a

SIMD architecture designed for image computation
and similar applications. A SLAP includes a se-

rial control processor and a long vector of word-
parallel processing elements. Such an architecture

is compact, i_trinsically capable of high clock rates,

and scales very well with improvements in chip tech-
nology. In this paper we demonstrate that with

a modicum of compilation complexity a SLAP be-

comes a versatile tool, efficiently supporting a number

of useful programming models: position-independent

(low-level image processing operations), scan-line

(intermediate-level image processing and graphics),

and systolic. We discuss the impact of programming

issues on overall system architecture, specifically with

respect to hierarchical control structures, the han-

dling of concurrent I/O streams, and the importance
of considering whole applications. Such considera-

tions are critical to the success of highly parallel sys-

tems, particularly those designed for imbedded appli-

cations, yet often are treated as afterthoughts. The

high level SLAP programming language SLANG is
introduced. A prototype hardware and software sys-
tem are under construction.

Keywords: compilation, conditionals, directionals,

image-processing, linear array, programming models,
real-time, SIMD.
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There have been a large number of image comput-

ers, their architectures running the gamut of archi-

tectural diversity. The most common form of proces-

sor control found in such systems is SIMD. In general
SIMD systems have had essentially a grid topology,

from Unger's early work (Ref. 14) through more re-

cent machines such as the DAP (Ref. 9), CLIP4 (Ref.

3), and the MPP (Ref. 11). More recent SIMD sys-
tems have either provided a much richer connection

structure (the Connection Machine (Ref. 2)) or have

elected to provide an even simpler topology, the linear

array (AIS-5000 (Ref. 12), CLIP7A (Ref. 10), SLAP

(Ref. 7)). All image computers have to deal with high
bandwidth I/O requirements and the unusual pro-

gramming models that their native mode presents. In

this paper we examine both issues within the context

of the CMU Scan Line Array Processor.

A Scan Line Array Processor (Refs. 6, 7) (SLAP)

is a SIMD machine comprising a long linear array of

word-parallel processing elements (PEs), whose in-
struction stream is organised and sequenced by a

flexible conventional processor (the controller). The

SIMD model and the point-to-point connectivity of
the vector guarantee that communication between

PEs is both synchronous and fast. The nearest-

neighbor connectivity of the vector permits easy ad-

vantage to be taken of increased on-chip gate counts.

Input, output and computation are pipelined, per-
mitting high data bandwidth with almost zero cost in

terms of lost processing cycles. The SLAP is intended

to be a support processor for computer perception ap-

plications that require flexible, high throughput pro-

cessing. Generally, the input is in the form of a con-

tinuous image stream. Images from optical sensors

are currently typically 512 x 512 with 8 bit pixels, re-

ceived scanline by scanline at a rate of 30 images per
second. The prototype under construction includes

custom 2# CMOS processor chips. Each chip holds
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four processors. The prototype can deliver up to 500
sixteen bit integer operations per pixel while main-

taining video-rate throughput. The prototype's peak

(internal) aggregate bandwidth is approximately 16
Gbyte s -1, with an execution peak of over 4 billion

sixteen bit integer operations s-1.
We describe the hardware and software architec-

tures of a SLAP emphasising programming consider-
ations. The common theme is the appropriate alloca-

tion of responsibility within the system. One result

of this approach is that, in contrast to the major-

ity of SIMD image computers, the SLAP has a two-
level controller. The next Section contains a brief

review of the system goals and premises. In Section
we examine the hardware structure. Section in-

cludes an overview of the software architecture. A

high-level language, SLANG, an augmented impera-

tive language, has been developed for use with the

SLAP. We conclude with a status review of the sys-

tem that is now being built.

GOALS AND PREMISES

A SLAP is an image computation accelerator for a

general-purpose Host. As such the general purpose

facilities it must provide are limited. Rather, a SLAP

must be able to conveniently offioad computations
and return results with minimal interference to inde-

pendent Host computation. We expect Host - SLAP
interactions to be on the order of one video frame

(about 30ms). This is a significant amount of time
on a current workstation. The Host is probably ill-

equipped to handle video rate I/O and definitely un-
able to provide the computation bandwidth required.

Certain characteristics of image computations have

been set up as goals.

Data and computation rates. Video rate

throughput and video synchronisation is neces-

sary. Concurrently there must be high enough

instruction rate counts to perform interesting

computations online.

Communication of results and parameters.
There must be a convenient mechanism for mov-

ing low bandwidth information between the Host
and the SLAP.

Pixel-level processing abilities. There is no need

to provide floating point operations for the vast

majority ofimage computations. Integers are ap-

propriate. Provision of features to ameliorate the
inflexibility of SIMD can significantly increase

the machine's power. For example, sorting bene-

fits greatly from local address computations and
local context control.

• Image storage and access. Vision systems fre-

quently need to be able to hold an image for sev-

eral operations. Such facilities must be provided
in an appropriate manner. A number of compu-

tations can achieve significant performance in-

creases by the provision of transposed versions

of an image. Speed gains can also be realised

using region of interest selection. Numerous al-

gorithms require access to several images simul-
taneously.

• Feedback. Iterative operations require that there
be a mechanism summarising an aspect of com-

putation state.

There are a number of successful image processing

libraries (eg., SPIDER (Ref. 13)). The functionality
of the routines in such a library meet the needs of

a large number of applications. A successful system

should also provide a library together with the appro-

priate "glue". Furthermore, particularly in a research

environment, it must be easy to create efficient solu-
tions that can be added to such a library. By this

we mean that a high level language should be avail-

able, together with a compiler that can generate good
quality code.

Unusual machines do not obviously provide famil-

iar programming models. The SLAP has at its core

a very long vector of SIMD processors. One of our

goals in the SLANG language is to support program-

ming models encouched in a fairly familiar high level

imperative language and to make implicit the task

of synchronisation with the concurrent I/O streams.

Compilation for a parallel machine is not trivial.

The SLANG language includes some novel concepts

that appear to provide a compiler with a significant
amount of information for easily realised optimisa-
tions.

In applications such as mobile robotics where the

computation engine must be an integral component it
is very important that the system be both physically

compact and power-efficient. These are implicit in

our focus on a VLSI implementation of a linear array.

SYSTEM COMPONENTS

We describe the SLAP hardware architecture in terms

of the requirements imposed on the system, how they
can be dealt with by certain types of subsystem, and
the control mechanisms needed at runtime. There are

three major subsystems, the controller, the sequencer
and the PE vector. The Host communicates directly
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only with the controller over a VME bus. Code and

data memories (and a number of control registers)
are mapped into the Host address space. Interaction

at this level is coordinated on the controller by pro-

grams written in C. In our prototype system (Ref. 8)
the controller is a Motorola 68030. A SLAP system

sketch is shown in Figure 1.

The controller is not fast enough to provide the

vector instruction sequencing which in the prototype

is about 8 MHz. This task is performed by the se-
quencer. The sequencer also contains a 16 bit ALU

constructed from bit-slice devices (IDT chip set). The
sequencer is thus able to perform substantial runtime

computation. The primary function of the sequencer

requires that it operate in lockstep with the vector.

Thus, the sequencer and the vector can (as in the
ILLIAC IV (Ref. 1)) compute simultaneously, com-

municating data without any synchronisation over-

head. In fact, by mimicking the operation set of a

PE in the sequencer we have a very convenient mech-

anism for off-loading global runtime computations to
the sequencer for concurrent execution with the vec-

tor. Data is broadcast to the vector by insertion into
the instruction stream. There is also a bidirectional

data link between the sequencer and the vector at the
latter's extremes.

In the remainder of this section we will briefly de-

scribe the I/O subsystem, the image storage mecha-

nisms, and the abilities of the Processing Elements.

I/O

As explained elsewhere (Ref. 6) a SLAP can efficiently

handle video-rate I/O within the PE vector. (Briefly,

there is a distinct video route along the vector that

can operate independently of instruction exection.)
The pixel level synchronisation problem is avoided

by the common clock of the SIMD system and the

short point-to-point connections of the vector. Syn-
chronisation at the row and frame level are handled

by the sequencer. The appropriate video conditions

are made available to the sequencer branch unit.
Communication with the Host is low bandwidth.

The Host provides starting addresses and parameters,
the SLAP returns low volume results. Host communi-

cation requires being able to communicate with what-

ever protocol the Host assumes. This is handled by

the controller, programmed in the C language with

the corresponding selection of libraries to draw upon.

IMAGE STORAGE

Within the SLAP images are held in two different

ways. There are video buffers under the direct control

of the sequencer and there is a significant amount of

memory within the vector itself. Commercial video

buffers typically require separate boards and must be

controlled via the Host bus. The cost of endowing

the controller with the ability to directly control such

buffers was held to be too high. The alternative way

to control such buffers is to pass requests to the Host

to perform the operations. This is unwieldy. The
SLAP controller includes a number of custom video

buffers. Each is able to hold one standard image ( 512
x 512 x 8 bits ), supports region of interest operations

directly, and can be accessed transposed. Each buffer

is physically compact and is under the direct control

of the sequencer. The prototype SLAP includes four

such buffers. Video rate I/O can be directed to and
from the buffers.

Access to buffer images is fast, but there are opera-

tions that are able to proceed much faster than video

rate. Thus, restricting image inputs and outputs to

the buffers is an unnecessary impedance. There are

a number of PEs per processor chip. Each such chip

has an associated static RAM that is used to pro-
vide a secondary storage level for the resident PEs.

In the prototype each PE has 8 KBytes of storage

(permitting 16 images to be held within the vector).

Access to this storage is achieved by co-opting the

video and neighbor pathways of the vector, under se-
quencer control. This mechanism permits the PEs

to operate on (and generate) images at a much finer

operation grain than is efficiently permitted by the
buffers.

PROCESSING ELEMENT

The PEs perform the bulk of the computation. Pixel

data arrives and leaves the PE via the video path
across the vector. The shared instruction stream is
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broadcastto thePE chips by the sequencer. In the

prototype the instructions are 27 bits wide. A single

on-chip decoder expands the instruction to provide

the control signals for the coresident PEs. All PEs

operate using the same instruction clock as the se-
quencer, in the prototype this is 125 as.

In contrast to the majority of modern SIMD sys-

terns a PE has a multi-bit word (16 bits in the pro-

toype). This design decision lets the basic operation
unit of a PE be a reasonable match to common pre-
cision needs. There are also a number of PE abilities

that are reasonable to give a bit-parallel processor but

not a bit-serial design. These include local address-

ing abilities, significant hardware assistance for multi-

plicative operations, and rotate/shift abilities. From

the programming perspective these features provide a

PE with significant operational flexibility and power.

APE has a local register file (32 words in the pro-

totype) that can use local or broadcast addresses.

This addressing ability is also extended to the of-

fchip image storage mentioned earlier. In the SIMD
model the PEs are unable to branch independently.
The bit-serial PE solution is to maintain a stack of

condition bits whose top bit is used to determine

whether or not a state change can take place. The
stack values are manipulated by condition operators.

Smaller SIMD machines (in PE count) such as the IL-

LIAC IV are able to centralise a similar facility. The

SLAP PE supports structured conditionals using a

sleep counter. A counter value of zero permits state

changes within the PE's register file and offchip stor-
age. An instruction field is dedicated to support this

facility. This form of state control is efficient in both

hardware and computation time, the conditional ma-

nipulation takes place concurrently with operations

and has a resolution of a single instruction.

The PE has a rotate/shift unit (RSU) which can
take both amount and direction of operation from the

PE. This permits easy access to locally determined

fields. The PE ALU performs full word additive and

logical operations in a single instruction cycle. The

ALU operation set includes variants on the arithmetic

operations to support multi-precision operations with
minimal overhead. Multiplicative operations are sup-

ported in the ALU by Booth-type logic. A 2 bit Booth

step is used to perform a 16 x 16 multiply in about

8 cycles (generating a 32 bit result), for example. A

division or modulos operation takes approximately 16

cycles. The multiplicative operations are actually se-
quenced by the on-chip decoder. The operation field

of an instruction starts an operation by changing de-

coder state, the decoder then issues the appropriate

control bits each cycle to the coresident ALUs until

told to stop. During such an operation the instruction

stream arriving at the chip can include operations for

other PE components. Utilisation of this ability is

expected to require no more compiler sophistication
than a simple form of delayed branch analysis.

Neighbor communication is provided by a third
functional unit in the PE datapath. The operations

it supports transfer (and receive) a single word of
data in one cycle. Additionally, longer sequences of

neighbor communication steps can be performed us-

ing a dedicated instruction field. A feedback path is

supported for the sequencer to sample global state.

There is a single bit wired-OR line that appears

within the PE as a single register. Writing a value

to that register can change the value examined by

the controller within a couple of cycles.

A single prototype PE is sketched in Figure 2.

There are two 16 bit buses (A and B) and a dual-
ported (read and write) register file. The three func-

tional units read operands from A and B, placing
the result word onto B. The functional units have

operation sets that are symmetric in their use of the

operand buses. The units are the integer ALU, RSU,
and the communication unit. An instruction has

three phases: place a value on A; compute a result

value onto B; store from B. Each phase takes one

cycle, three instructions can be executing (different

stages) concurrently.

PROGRAMMING

A Host process invocation of a SLAP operation em-

ploys a construct semantically similar to a routine
call or thread. The Host program can be written in

any reasonable language. The SLAP is controlled by

a user-supplied C program, the harness. The harness

is unable to directly address components of the PE

vector state. Rather, the harness is responsible for

invoking sequences of code modules that execute in
the sequencer and the vector. A high level language,

SLANG is provided for the modules. The decision to

use C to link SLANG modules together removes the

need to make SLANG a completely general purpose

language that controls the SLAP system for an entire
application. A module cannot invoke another mod-

ule directly, this permits a module to have complete

control of the sequencer and the vector. Data can be

passed from one module to the next by parameters

relayed via the harness and by leaving image data in
the offchip memory and the external image buffers.

The SLAP is a highly parallel machine. The con-
structs of SLANG have been chosen to facilitate

the expression and optimisation of image computa-

tions. The SLANG compiler generates code for the
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Figure 2. SLAP Processing Element

sequencer and the vector. The language is similar to

C or Pascal with constructs and mechanisms to pro-

vide appropriate programming models and make par-

allelism and video synchronisation implicit. In this
section we begin with a brief discussion of hierarchical

control in image computation and then outline impor-

tant aspects of SLANG and the compilation process.

CONTROL

In applications that involve image computation one

can reasonably identify a three level hierarchy of con-

trol. At the highest level are the broad algorithmic

decisions. For example, whether to run filter X or

filter Y. The variety and frequency (frame) of such

decisions make the use of a general-purpose language

and processor appropriate. In the SLAP system this

role is carried out by the controller (a 68030) running

a harness (in C).

During an image computation there are decisions

to be made on every row (e.g., video synchronisation)

or at least several times per frame (e.g., adapting a

filter size near the image vertical limits). This type of

decision involves significant changes in control flow.

In the SLAP system this is appropriate for the se-
quencer. At the lowest level are the decisions that

must be made on a per pixel basis (e.g., threshold

testing). The SLAP PE is responsible for these de-
cisions that must be made several times per scanline

using local data. This latter class of decisions can

be represented using control flow constructs that (in

the SLAP PE) are mapped into conditional manipu-

lations. They can frequently be mapped into arith-

metic operations instead.

In SLANG the lower two levels of decision are im-

plicitly identified by the compiler using information

about the variables involved in the controlling expres-

sion. The lockstep synchronisation of the PEs and the

sequencer greatly facilitate the mapping.

COMPUTATION LOCALE

A SLANG variable is integer and can be scalar or ar-
ray in the usual senses. A third attribute locality is
also included in each variable declaration. A variable

defined to be local has an instance in every PE. A

variable defined to be global exists uniquely within

the sequencer. This locality information is used by
the compiler to place computations. Thus, if all the

operands of an operator are global then the opera-

tion is scheduled to take place in the sequencer. If

the operands are all local then the computation will

be carried out using PE-loeal data at every PE. If the

operand localities are a mix then the global operands

will be broadcast to the PEs where the operation will

take place. This notion of locality propagates through
expressions in the obvious way.

In a SLANG program the locality of the expression

controlling an if statement determines whether the
sequencer's general branching mechanism or the PE

conditional manipulation is used. The programmer

does not need explicitly distinguish the two in any

other way. The iterative SLANG constructs, while,

repeat and for all require global controlling expres-
sions.

The compiler employs locality information in op-

timisation. Constant propagation is a conventional

compiler optimisation that permits the computation
of constant expressions during compilation. By using

SLANG locality information this technique can be

carried one step further to place computations that

might otherwise have been carried out on the vector

into the sequencer (which mimics the PE ALU and
RSU operation set). The sequencer and the vector

perform arithmetic computations concurrently and in

general this code motion is useful because most of the

execution time is usually spent in the vector.
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COMMUNICATION

Communicationofdatalaterallywithin thevectoris
expressedusinga classof unaryoperatorsthat we
calldirectionais. Syntactically they appear as single

word symbols, left and right. For example, "left

expr _' yields the value of the expression ezpr com-

puted at the PE's left neighbor. There are two other

directionals (up and down) useable within certain
contexts as explained below. The set of four direc-

tionals have been demonstrated (Ref. 4) to provide a

compiler for a SIMD machine with significant oppor-

tunities for optimisation.

PROGRAMMING MODELS

The SLANG language provides three distinct mod-

els for programming image operations on a SLAP.

The models differ in the way that video synchroni-
sation and the specification of the computation are

related. The first model is, in a sense, the most basic

for the system. Input and output image(s) are held
in offchip memory and the vector is able to perform

random access to the data (i.e., the video pathway is

not connected to external devices).

Access to the image buffers held within the con-
troller and to "live" video sources and sinks requires

significant sequencer assistance. There are two pro-

gramming models that can achieve this in a parsimo-
nious manner. The first model is a variant of the sim-

ple first scheme. The programmer writes code that is

to be executed once per scanline. This code is then

imbedded within a scanline pass statement. The
interpretation of the resulting construct is that the

scanlines of the input and output image(s) specified

with the statement are to be transported to and from

the appropriate PEs as required. In a sense this is the

native mode for the SLAP system, capable of making

good use of the pipelining of the video shift register
in the vector.

A very large number of the low-level image-

processing operations can be cast as "position-

independent" programs. In this scheme a program-
mer writes code that executes at one pixel position.

Within this code values that are computed at other

positions can be specified using relative offsets. A

single value generated by the code is the result value

for the position. An interpreter is required to per-

form the correct mapping. The Apply language (Ref.

15), is of this type. The third SLANG programming

model is a generalisation of thissimple form, permit-

ting the programmer to use the results of arbitrary

computations at other grid positions (not just input
pixel values). In the SLANG language, position inde-

pendent programming is achieved using a grid pass.

Of the three image computation models we have
found that all three have their place. Some compu-

tations simply cannot be phrased well as grid pro-

grams, but are easily written as seanllne code (e.g.,

histogramming and the Hough Transform (Ref. 5)).

The ability to write SLANG code that does not re-

quire even the implicit video synchronisation permits

the programmer to realise the power of the vector un-

encumbered, as a systolic array with programmable

cells. From the implementation viewpoint, a differ-
ence between the models is that the scanllne model

uses variables that are retained between real image

scanlines, in the grid model each set of variables is

implicitly declared anew for each pixel position. Use
of a pass construct provides the compiler with a good
deal of information about the structure of the com-

putation defined.

COMPILATION

We have already alluded to significant optimisation

opportunities exploiting directional and pass infor-
mation, tIere we briefly examine the target machine

for the SLANG compiler. Each SLANG module is in-

voked to run on a machine that generally retains very

little state between modules. The code words gener-
ated include sequencer and PE instruction fields. The

vector and the PE vector run in lockstep, making

• static allocation of tightly cooperative computations

across the two subsystems straightforward.

The image memory in the vector is allocated (and

deallocated) by software on the controller to provide

image storage. Applications create images by invok-

ing the controller routine which, returns an address.

This address is then passed to modules, identifying

images. SLANG symbolic variables have to be allo-
cated within the register files and memories in both

the sequencer and the PEs. No special techniques are

required.

The mapping of pass code to something amenable

to code generation on the vector is straightforward
for the scanline model but a little more complicated

for the grid. The latter code is basically remapped

so that all references to data that has not yet arrived

are removed. The resulting code is then implemented

using circular buffers.

EXAMPLES

Two examples are shown below, keywords are shown

capitalised. The first is a very simple SLANG module

that thresholds an image "on-the-fly". As we men-

tioned above, this would be actually a very inefficient
use of the SLAP, because the majority of the available
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computationcyclesat the video rate are not being
used.

SLANG simple_threshold ( t )
BEGIN

VAR t : GLOBAL ;

PASS ( SCANLINE , IN ( a EXTERN ) ,
OUT ( b EXTERN ) )

b :=a>= t

END.

The second example is more interesting, demon-

strating _agments of the code for a 2D FFT-like com-

putation, the Walsh-Hadamard computation. A har-

ness component might be

allocate_image( k start ) ;

column_transform( start ) ;

allocate_image( _ g_start ) ;

vector_transpose( start , t_start ) ;

column_transform( t_start ) ;

The vector_transpose module transposes an image in
place in the vector. That operation takes about one
Lame time. The SLANG column_transform module

is sketched below. SLANG does not currently have

routines, column_huffle and butterfly are macros.

SLANG column_transform ( start )

BEGIN

column_shuffle( start ) ;

FOR level := 0 TO 8 DO

FOR i := 0 TO 255 DO

butterfly( start , level , i )

END.

STATUS

The prototype's 2# CMOS chips, each of which con-

tain four PEs have been fabricated and are now being
tested. The boards, sequencer, and controller have

been designed. A first version of the SLANG com-

piler has been built. It does not yet perform the grid

pass mapping or perform substantial optimisations

(a number of which have been tested independently).

A compiler for Apply to SLANG mapping is close to
completion.

SUMMARY

We have briefly described a SIMD image manipula-

tion machine and the fundamentals of a high level

language for it. The system includes a computational
component, called here the sequencer, that is not usu-

ally found in SIMD architectures. We have indicated

how it is well exploited. The language appears to

be able to support convenient programming models

with very efficient mappings to the hardware. The
Processing Elements are designed with novel features

to add flexibility to an SIMD system.
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